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Figure 1: Feature distributions in a typical direction stimuli. Values are sampled from independent distributions. The target
point (marked in red) receives an outlying value in the relevant dimension (either direction or speed). Depending on the
condition, the target can have mean or maximum (salient) values in the irrelevant dimensions. For instance, in the condition
+color, the target has salient color. The scatterplot in the bottom left is the first frame; the arrows in the bottom right represent
the displacement between the initial and final frames, which is animated.

ABSTRACT
We report the results of a crowdsourced experiment that
measured the accuracy of motion outlier detection in mul-
tivariate, animated scatterplots. The targets were outliers
either in speed or direction of motion, and were presented
with varying levels of saliency in dimensions that are irrele-
vant to the task of motion outlier detection (e.g., color, size,
position). We found that participants had trouble finding the
outlier when it lacked irrelevant salient features and that
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visual channels contribute unevenly to the odds of an outlier
being correctly detected. Direction of motion contributes the
most to accurate detection of speed outliers, and position
contributes the most to accurate detection of direction out-
liers. We introduce the concept of saliency deficit in which
item importance in the data space is not reflected in the
visualization due to a lack of saliency. We conclude that mo-
tion outlier detection is not well supported in multivariate
animated scatterplots.
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1 INTRODUCTION
In this paper, we investigate questions related to the inde-
pendence of visual dimensions in animated scatterplots. We
often seek to encode data in as many visual variables as
possible, and this strategy has been extended to scatterplots
with the use of color, size, and motion. Here we question
the accuracy of the basic task of motion outlier detection in
the complex scenes formed by animated multivariate scat-
terplots. Does the saliency of non-motion features impact
the detection of motion outliers? Can we put motion outliers
in a state where they are hard to detect by simply changing
their color, size, or position? If so, in visualizations where
observing change is a relevant task the variations in data
point saliency will hinder or amplify the local perception of
change, turning the encoding unreliable.
The perception literature has abundant studies on the

performance of search tasks in static and moving scenes
[7, 8, 21, 33, 35]. However, psychology studies are difficult
to comprehend by non-experts, and their low level makes
it difficult to extract implications for visualization design.
Nonetheless, these controlled experiments produced gen-
eral results that support useful rules of thumb; for instance,
targets among uniform distractors are much easier to de-
tect than when the distractors have high variance [7]. This
rule captures well the results of “pre-attention” experiments
with single and conjunction static features (e.g., color), and
with motion components (speed and direction). Detection of
speed and direction outliers in displays where no other fea-
tures compete is considered efficient, and the effects of speed
on direction and vice-versa are well studied [25]. However,
detecting speed and direction targets in scenes where many
other channels are used is not well studied.

In the second edition of his book, Ware warned that stud-
ies on perceptual independence among three or more visual
channels were rare [34]. Almost 15 years later, our under-
standing of these interactions and their implications to visu-
alization is insufficient, and fewer are the studies that involve
motion in visualization. Progress recently has been made in
revising rankings of encoding effectiveness [17, 22]. While
these have great practical application, they do not seek to
explain the fundamental phenomena driving performance
results.
Among the powerful concepts that may help us unveil

the roots of problems in the visual mapping of data is visual
saliency. In this paper, we contribute an experiment aimed
at measuring the gap in motion outlier detection accuracy
between salient and non-salient outliers. We simulate ani-
mated scatterplots that contain either a speed outlier or a
direction outlier. Then we vary the number of static features
that, in addition to motion, are salient in these outliers.

Figure 2: Snapshot of the interface for the speed task. The
direction task asked "Select the point thatmoves in themost
deviant direction."

We find that motion outliers that have additional salient
features are much more likely to be correctly identified than
non-salient outliers. Our results show that motion is not im-
mune from the interference of other dimensions and suggest
that motion outlier detection is unreliable in multivariate
animated scatterplots. We proceed to define the notion of
saliency deficit: a state where the saliency profile in a visu-
alization scene impairs the effectiveness of a visualization
task; and suggest that saliency deficit models can help the
automatic identification of saliency-boosting opportunities
in visualizations.

2 RELATEDWORK
In this research, we are interested in the role saliency plays in
motion outlier identification. While this question has wide-
ranging applications, we constrain our investigation to ani-
mated scatterplots. In this section, we will review the related
work in perception for information visualization, the use of
animated scatterplots, and the recent trend of developing
empirical perception models for visualization.

Perception
Visual attention research investigates the limits of atten-
tion of the human visual system and has produced a num-
ber of theories that explain the mechanisms of visual in-
formation processing (see Healey and Enns [13] for a re-
view). Feature integration theory proposes that scenes are
initially processed as many separable basic dimensions (e.g.,
color, motion, orientation), which are later integrated to




form more complex objects [32]. Without focused attention,
features remain separated. As a consequence of this mech-
anism, searches for basic features occur in parallel and are
fast, while searches for conjunction features, which involve
more than one dimension (e.g., a red circle in a scene with
red squares and blue circles), occur serially and thus slow
down as the number of objects present in the scene increase.
Visual search experiments usually ask participants to deter-
mine whether a target is present in a scene with distractors,
and the number of distractors is manipulated. Reaction times
(RT) and accuracy are recorded, and results are summarized
as the slope of the linear relationship between the response
and the number of distractors. Parallel searches have slope
close to 0. Frequently, the term “popout” is used to describe
the easy identification of targets in these searches.

While many experiments corroborate feature integration
theory, other experiments found that some conjunction searches
are too efficient to be serial searches. For instance, motion-
shape targets can be detected in parallel, suggesting the
existence of a motion filtering process, which effectively sub-
sets the scene, reducing the search task to a simple feature
search on moving items [21, 33]. Aiming at explaining these
problematic cases, the theory of guided search posits that the
goals of the viewer play a large role in visual search, with ac-
tivation maps (“heatmap” representations of the visual space
storing the likelihood of locations containing a target) be-
ing constructed with bottom-up and top-down information.
Top-down processes are cognitive, driven by users tasks and
goals, while bottom-up processes are driven by sensory in-
formation. Guided search theory suggests that the difference
in performance between single feature and conjunction tasks
is due to the amount of guidance that bottom-up processes
can provide [35]. Thus top-down guidance is the reason “fast”
conjunction searches exist.

The impact of color on motion discrimination is well stud-
ied. Both hue and luminance have been shown to indepen-
dently enable apparent motion of simple objects when they
are displayed in different positions in successive frames,
prompting debate as to whether or not color and motion
are processed by separate pathways [23]. Croner and Al-
bright [6] found that hue saliency and luminance saliency
aid the discrimination of motion direction; that is, partic-
ipants detect more accurately targets moving in the same
direction among distractors moving in random directions
when the targets have distinct hue or luminance, which may
suggest that color segmentation of the scene occurs prior
to motion discrimination, a process opposite to the motion
filtering mentioned above.

The statistical saliency model (SSM) [25] seeks to explain
motion popout phenomena with a simple statistical measure
that quantifies the saliency of targets with respect to the
distractors in the scene. The SSM explains the following

asymmetries inmotion popout phenomena: a) searching for a
moving target among still distractors is easier than searching
for a still target among moving distractors; b) searching for
a fast target among slow targets is easier than the opposite;
c) adding variability in speed when searching for a unique
motion direction has little effect, while adding variability
in direction when searching for a unique speed makes the
search task more difficult. The SSM is compelling because
calculation of the saliency of objects is trivial and efficient,
and because it has been shown to explain search results
in experiments where dimensions other than motion are
examined. We review this model in more detail in Section 3.
We enumerate the following challenges in transferring

the existing perception knowledge to the problem addressed
in this work:

1 In the perception experiments cited above, targets are cho-
sen arbitrarily. In our experiment, targets are outliers in the
statistical sense. We ask whether outlierness as a statistical
property is preserved through the visual mapping.

2 Motion outlier detection in scatterplots is not a conjunc-
tion task. While the conjunction of motion and other di-
mensions is well studied, our problem is defined as a basic
feature search in the presence of many irrelevant dimen-
sions.

3 The dimensions in our stimuli encode continuous data
attributes, while in perception studies they are often dis-
cretized to some degree (e.g., moving / still, fast / slow,
bright / dim) [6, 21, 23, 33].

Animated Scatterplots
Scatterplots are one of the most effective visualizations be-
cause they employ position along a common scale, which
was found to be the representation with which people can
most accurately perform visual judgments [14]. Less impor-
tant dimensions are commonly mapped to color, size, and
shape. Gleicher et al. demonstrated that people can accu-
rately compare means in multiclass scatterplots despite the
addition of one discrete irrelevant cue (shape) [12]. This
work shows that people can comfortably extract a summary
statistic confined to a single dimension in the presence of an
irrelevant dimension. Here, we investigate whether another
summary statistic (outlierness) can be extracted frommotion
in correlated scatterplots with more than one irrelevant di-
mension (color, size). A key difference is that our scatterplots
do not feature discrete dimensions that would enable the
visual segmentation of the scene.

Szafir et al. argue that ensemble coding allows us to vi-
sually extract statistical information from scatterplots, such
as outliers and statistical summaries, but acknowledge that
attentional control may be problematic when multiple vari-
ables are encoded simultaneously, although the empirical



basis is still lacking [31]. Robertson et al. [24] found that
animated scatterplots were not superior to static trend visu-
alizations in analytical tasks (error rates) focused on trajecto-
ries. Huber and Healey [15] devised precise discriminability
lower limits for motion (in displays with no competing visual
channels): a target-distractor difference of a least 20 degrees
is necessary for direction oddballs to be detected accurately;
for speed, the difference needs to be at least 0.43 degrees of
visual angle. Our outliers satisfy these conditions (Section 4).

Albeit designed to devise guidelines for notification design,
Bartram et al.’s study of visual cues came to conclusions that
relate to visualization design. Subjects were asked to perform
a task in a window while glyphs overloaded with various
encodings were scattered in the periphery [1]. The authors
measured how accurately subjects could detect change in
the glyphs. Motion was found to be the most reliable cue,
better than changes in shape and color. They concluded that
motion “does not seem to interfere with existing color and
form coding” and that motion detection is effective even in
visual periphery and with small amplitudes.

Etemadpour et al. [9, 10] used motion as a solution to
clutter on the assumption that motion does not suffer in-
terference from other channels. They reported a large im-
provement in the accuracy of ranking cluster density when
motion was used as an encoding for cluster density. The
improvements were relative to scatterplots where density
was not explicitly encoded (implicitly encoded as position);
plus, density is necessarily correlated to position, which
makes motion-position a double encoding for density. Sim-
ilarly, animated scatterplot matrices that encoded density
with flickering were found superior to conventional ones in
density judgement tasks [5].

3 SALIENCY
The statistical saliency model (SSM) [25] is a model of vi-
sual search based on the intuition that the visual system is
interested in unusual things. Rosenholtz represents a visual
scene in an appropriate feature space and then computes
the saliency of a target as the number of standard deviations
between its feature value and the mean of distractors. For
a 1-D feature, this corresponds to a simple z-score, while
for a higher number of dimensions, the saliency value is
given by the Mahalanobis distance. Their model can be seen
as a formalization of Duncan and Humphreys’ [8] rule of
thumb that states that search is easier when target-distractor
similarity decreases, or when distractor-distractor similarity
increases.
The use of search tasks and reaction times as proxies for

attention relies on the premise that search for salient items
should be faster than search for items that do not draw atten-
tion. Rosenholtz’s study of visual search is directly relevant
to motion outlier detection in visualization, and to ranking,

indirectly, if we assume that ranking points defaults to find-
ing the most outlying point in increasingly narrow search
spaces. For our purposes, however, the existing empirical
validation of the SSM is limited. First, the scenes used to
test it are usually distractor arrays of constant density (as
in a uniform grid) [7]; second, no more than two features
(speed and direction of motion) are varied. In information
visualization displays, especially scatterplots, the x and y
positions of points are commonly correlated, forming point
clouds with varying density and levels of occlusion, and the
points may be overloaded with multiple visual encodings,
such as color, size, and shape [31].
A subsequent paper demonstrates how the SSM predicts

asymmetries in colour search in the presence of non-neutral
backgrounds [28]. The model is also the foundation for the
feature congestion model of visual clutter [27], where sep-
arate pixel-level saliency maps of color and contrast lumi-
nance are linearly combined to produce clutter maps for
raster images. The maps can be further aggregated to pro-
duce a scalar measure of overall display clutter.

Critically, it is not clear how low-level dimensions should
be composed for the calculation of saliency in complex vi-
sualizations. In Rosenholtz’s study of motion outlier detec-
tion [25] it was suggested that the Mahalanobis distance
should be calculated on the 2D space formed by speed and
direction of motion, whereas in the feature congestion model
saliency is calculated as a linear combination of 1D saliencies.
It is likely that the latter is the appropriate method in a scene
where motion and static features are varied, in which case
we need to learn the dimension coefficients.

The pixel-level saliency maps employed in the feature
congestion model and in many other saliency models [16]
are not compelling for visualization applications because
they operate after rendering, a late stage of the visualization
pipeline, and because they are commonly tuned for natural
images [3]. Recently, saliency models for data visualization
were proposed [4, 20] that owe their performance mostly
to accurate predictions of fixations on text elements (e.g.,
labels) in static visualizations.

In the next section, we will explain howwe created stimuli
with salient and non-salient targets following SSM’s defini-
tion of saliency.

4 EXPERIMENTAL DESIGN
We designed an experiment to find whether saliency pre-
dicts the accuracy of motion outlier detection tasks in ani-
mated multivariate scatterplots. In particular, we investigate
whether saliency in irrelevant dimensions influences accu-
racy. Irrelevant dimensions are those that are not part of the
task; for instance, when participants are instructed to find
the fastest point, all dimensions (color, size, etc.) but speed
are irrelevant.



The experiment is split into two tasks, a direction task and
a speed task. The former asks participants to select the point
with the most deviant direction, and the latter asks them to
select the fastest point. Throughout this paper we will refer
to visual channels as dimensions, and to specific values in
these dimensions as features. We’ll also call direction and
speed the relevant dimensions in their respective tasks. Each
animated scatterplot (a scene) we produced has 12 conditions,
where only the target is varied: a baseline where the target
has no irrelevant salient features, plus five instances where it
holds a single irrelevant salient feature (position, color, size,
direction/speed, or size increase); a second baseline where
the target has five irrelevant salient features at once, plus five
instances where one irrelevant feature is held out. Thus, half
the stimuli follows a one-at-a-time design, and the other half
follows a hold-one-out design.We call these condition groups
saliency-deficient and saliency-charged. We use the following
notation to refer to individual conditions: in the saliency-
deficient group, + conditions refer to the added irrelevant
salient feature. For example, +position refers to a stimulus
where the only irrelevant salient feature is position. In the
saliency-charged group, - conditions refer to the removed
irrelevant salient feature. For example, -position refers to a
stimulus where only position is not salient. In all stimuli, the
target has outlying value in the relevant dimension.

The reader may question why we do not vary dataset size,
correlation, or the parameters of the sampling distribution.
When distribution and dataset size are manipulated, the fun-
damental quantity that is being varied is the saliency of the
target. For instance, a scene with more point spread results
in less target saliency, and the same with a more crowded
scene. As our goal is to find the effect of saliency on accuracy
and we are already varying saliency by manipulating visual
features, varying the factors in question would be redundant.
Therefore, we see no reason in increasing the complexity of
the experiment by adding these additional variables.

We generated ten different scenes per task, across 12 scene
conditions, for a total of 120 stimuli per task. We collected
20 judgments of each stimulus for a total of 2400 judgments
collected for each task, 200 per task-condition. We are inter-
ested in measuring the differences in error rates between the
saliency-deficit and the saliency-charged baselines, and the
impact of introducing or removing features.

Stimuli
Wewrote a procedure for generating realistic stimuli inspired
by animated scatterplots of the Gapminder data. The Gap-
minder plots map an often correlated pair of variables to the
x and y coordinates, use size to encode a time-varying quan-
titative variable (usually population), and map a categorical

Table 1: Feature ranges. When speed is the task, the
target is assigned an outlying distance value andmean
or salient value for the other features.When direction
is the task, the target receives an outlying direction.
The color spectrum is defined by matplotlib’s Viridis
colormap.
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x, y [0, 500] px 250 variable
color [ , ]
size (area) [100, 600] px 350 600
size increase [1, 2] multiplier 1.5 2
distance [25, 100] px 62.5 100 150
direction [-81, 171] degree 45 171 225

variable (continent) to color. In our scenes, we simulate in-
stead a continuous variable mapped to color because it allows
fine-grained control of the saliency.

A scene has 50 data points and is composed of two frames
that are linearly interpolated to produce the animation. We
decomposed motion into distance, which determines how
much the point moves in the 2D plane (Euclidean distance),
and direction. We sampled the features for the initial frame
and calculated the positions in the final frame based on sam-
pled values for distance and direction. x1 and y1 are sampled
from a multivariate normal distribution with correlation 0.7.
The values for color, size increase, and distance are sampled
from independent normal distributions. Direction (angle) is
sampled from a beta distribution (α = 9.55, β = 10) that has
shape similar to a normal, but produces values that are more
concentrated around the mean. This pattern was chosen to
preserve the correlation of the plot; that is, the point cloud,
as a whole, should be moving in a well-defined direction.
Due to the animation duration being constant for all points,
distance is effectively a measure of speed.

After all points are sampled, a target is selected according
to the condition. If position is salient, then we select the point
with the highest Mahalanobis distance (i.e., the most distant
from the center of the point cloud); otherwise, the point
closest to the center is selected. If color is salient, we assign to
the target the maximum color in the color range; otherwise,
we assign it the mean color. This pattern is followed for all
the other irrelevant visual dimensions.
All targets are outliers detectable through the interquar-

tile range method (Tukey’s fences, k=1.5); thus, an analyst
using boxplots to analyze the distributions of speed and
direction would clearly identify the target as an outlier (po-
sitioned beyond a boxplot’s whiskers). We produced outliers
by assigning to targets a constant value outside the sampled
distribution range. On average, direction and speed outlier
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Figure 3: Flow diagram illustrating the sequence of screens
in the study interface. Participants could replay the anima-
tions twice. Blank screens were place in-between replays.

values were 3.11 and 3.82 standard deviations from the mean.
For comparison with Huber and Healey’s discriminability
thresholds, in average, the trajectory of speed outliers was
0.95 degrees of subtended visual angle longer (40% higher)
than that of the next fastest point on a 113ppi laptop screen
(e.g., Macbook Pro 13in.) at typing distance (20in.). The dif-
ference between direction outliers and the next most deviant
points was 52 arc degrees (43% higher), in average.

Table 1 lists the dimension ranges for the sampled points,
as well as the mean and salient values. We use the inverted
version of matplotlib’s Viridis colormap [30], where higher
values are darker (bright points on awhite backgroundwould
not "pop out"). Viridis was found to have superior perfor-
mance, measured in time and accuracy of relative similarity
judgments, in comparison with other popular colormaps [19].
We chose the direction range again respecting the principle
that the plot trend shouldn’t be overly disrupted. The size
range was chosen so as not to cause too much occlusion.
In addition, the render order on the screen (from largest to
smallest) also reduced occlusion. We inspected the stimuli to
make sure that the targets were not occluded. Size increase
is a multiplier of the initial size. Figure 1 displays a scene
for the direction task in the saliency-deficient baseline con-
dition. The target moves in an outlying direction but has
average values for speed, color, size and position. All stimuli
are provided in the supplemental materials.

Procedure
We presented the stimuli embedded in the Mechanical Turk
interface (Figure 2). The page presented the first frame of the
animation until the play button was pressed. After the end of
the animation, the visualization was stationed in the second
frame, allowing participants to select the target and submit
the response or replay the animation up to two times before
submission. The animation duration was 500 milliseconds.

When play was pressed the second or third time, the points
faded to a blank screen then reappeared in their first frame
positions before the animation took place. This sequence is
illustrated in Figure 3. The variable number of views was in-
troduced as a measure to mitigate errors due to interruptions,
as these can be a problem in crowdsourced studies where we
have no control over the environment. The number of views
was capped at three to prevent the task from becoming too
easy to the extent no differences can be detected between
the conditions. Trials were published as two separate groups
of HITs on Mechanical Turk (speed and direction). Within
each group, trials appeared in random order. Participants
were not limited in the number of tasks they could complete.
We recorded time, accuracy and number of views.

Participants were instructed to find the fastest point ("find
the fastest point") in the speed task and the most deviant
point ("find the point that has the most unique trajectory
compared to the rest") in the direction task. Therefore, the
task is to “find the maximum”, with all targets being outliers.
This mitigates the risk of participants not comprehending
the outlierness concept or the study being affected by dif-
ferent notions of what an outlier is. Participants had the
opportunity to perform test trials, as it is common on MTurk,
but these trials did not provide feedback.

5 EXPERIMENT RESULTS
We collected 4800 observations from 67 participants, who
performed an average of 71.6 tasks (sd = 42.4). The median
completion time was 10.3s. Figure 4 displays the accuracy dis-
tribution per task-condition. Accuracy is calculated per stim-
ulus (a scene-condition pair) as the ratio correct/incorrect. In
the following sections, we examine the odds of a participant
selecting the outlier and which features contributed most to
incorrect selections.

Channel Contributions
We used the R package lme4 [2] to fit a pair of generalized
linear mixed models (GLMM), one for each task (speed and
direction). We specified the models with a binary response
variable (correct = [true, false]) and five binary covariates
[salient, non-salient]: position, color, size, speed/direction,
and size increase. This model is also known as a binomial
logistic regression. In order to account for scene-specific
and participant-specific effects, we inserted the variables
scene and subject as random effects. As such, the random
impact from scenes that happen to be more or less difficult, or
participants that are more or less accurate, is reduced. Figure
4 shows the data, and Figure 5 shows the model estimates.
Below we discuss the main findings.
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Figure 4: Distribution of accuracy for each condition. For each stimulus, accuracy is calculated over 20 judgments. There are
10 stimuli per condition, one for each scene.
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Figure 5: Estimates for the effect of irrelevant salient fea-
tures on the odds of a speed (top) and direction (bottom) out-
lier being identified. Binary covariates andmultiplicative co-
efficients. Red denotes statistical significance (p < .05).

Motion outlier detection is not well supported. We observed
a mean accuracy lower than 25% in the condition baseline-
deficient in both tasks. This condition is where the motion

outlier does not have salient features other than motion. Low
accuracy suggests subjects were mostly unable to separate
motion from other dimensions in order to correctly iden-
tify the motion outlier. In other words, motion detection in
multivariate scatterplots suffers interference from irrelevant
dimensions.

Accuracy depends on the saliency of irrelevant features. We
recorded higher accuracy in most conditions where the mo-
tion outlier had irrelevant salient features. In particular, sub-
jects achieved averages of 78.5% and 58.5% accuracy in the
baseline-charged condition, in the speed and direction tasks,
respectively. Removing one salient feature at a time generally
caused a drop in accuracy; conversely, adding one salient
feature generally increased accuracy, but not by much, espe-
cially in the direction task, which suggests that in crowded
displays motion outliers can only reliably be extracted if they
have multiple salient features. More generally, animated scat-
terplots may reliably support only the detection of global
outliers.

Direction plays the largest role in the speed task. The fitted
model indicates that direction saliency accounts for an in-
crease of 4.7 times in the odds of correct speed outlier detec-
tion, which corresponds to a shift in probability from 0.19
(intercept) to 0.52. This result is somewhat aligned with pre-
vious findings that direction variability degrades searching
for a unique speed. Targets with salient direction might have
allowed subjects to segment the scene, cancelling some of
the noise that impacts accuracy.



Position plays the largest role in the direction task accuracy.
Position is estimated to account for an increase of 3.2 times
in the odds for the direction task, which is equivalent to a
shift in probability from 0.10 (intercept) to 0.26. This result
is not trivial: while targets in salient positions (surrounded
with blank space) are more visible, they are arguably more
difficult to compare, due to their distance from other points.
In addition, this result highlights the effect of clutter on
this task. Our sampling process produces a point cloud with
a high-density center. Points with low spatial saliency are
located in these cluttered regions.

Size and color have small influence in the direction task. Both
size and color contributed modestly to the outcome. We
found no evidence of a difference between the odds estimate
for these dimensions, as their confidence intervals largely
overlap. In general, we observe precedence of spatial at-
tributes (position, speed, and direction) over form attributes
(color and size).

Size makes no difference in the speed task. We found that size
and size increase did not alter the odds of correct detection in
the speed task (these variables have odds ratio approximately
1). This is in contrast to a small, but significant effect in the
direction task. It is possible that this can be explained by
larger points being perceived as moving slower, which would
degrade the performance relative to the baseline; however,
ourmodel did not point to a negative effect. It is also plausible
that the distribution of values mapped to size did not produce
enough saliency. Weber’s law predicts a non-linear relation
between area change and perceived area change, which may
have caused points with maximum area to appear closer to
the mean and less salient.

Which features mislead?
When examining the incorrect choices of participants one
would normally expect that the points they selected are close
to the target in speed or direction; that is, more incorrect se-
lections should be recorded for faster or more deviant points.
This expectation was contradicted by the low correlations
we observed between task dimensions and selection counts:
0.23 for speed and 0.28 for direction. The correlations were
calculated on the subset of non-target points with selection
count greater than 0. This suggests that incorrect selections
are not necessarily due to the proximity to the outlier value
in the target dimension; that is, irrelevant dimensions may
be leading participants to make mistakes.
To find which dimensions play a role in the number of

times a non-target point is selected we fit generalized lin-
ear models (GLM) to the subset of 1,530 non-target points
that were selected at least once. Since the observed response
variable—selection count—is skewed and lies in the interval
(1, ∞) we set the models with a Gamma response variable.

The covariates are saliencymeasures (SSM) on speed/direction
and on all other dimensions. We use the saliency measure
here because unlike targets, which were made either salient
or not, non-target features lie within a saliency spectrum.
Likewise, we split position saliency into saliency in the first
frame (xy1) and in the second frame (xy2).

We included terms for interactions of all saliencymeasures
with speed/direction. In order to make the estimates compa-
rable and easier to interpret we standardized all covariates
(zero-mean and unit-variance). In Figure 6, the effects are
multiplicative; that is,y = β0×β1x1×β2x2×β12x1x2..., where
β0 is the intercept, βi are fixed effects, βi j is an interaction
term, and xi are dimension values. The interaction plots in
Figure 6 depict the curve that represents the relationship be-
tween speed/direction and the response variable (count), and
how this curve is changed as a function of the interacting
variable. Below we report the main findings.

Position and direction saliencies boost the effect of speed. In
the speed task, the model estimates reveal, not surprisingly,
that speed is a confuser and that the interactions of speed
with direction saliency and position saliency in the first
frame are significant. The interaction terms are positive:
the misleading effect of speed increases as a function of
the saliency of these irrelevant dimensions. In Figure 6 (top
right), this is shown as an increase in slope: when the values
of either direction saliency or position saliency increase by
one standard deviation, the effect of speed on the response
becomes steeper. In practice, this indicates that fast points
moving from blank regions and in unique directions tend to
bemistaken for true speed outliers. This result is alignedwith
the channel contributions observed in the previous section:
position and direction have the highest impact on the odds
of a target being correctly identified.

Position saliency in the first frame and color saliency boost
the effect of direction. In the direction task we found that the
misleading effect of direction saliency is boosted by position
saliency in the first frame. In Figure 6 (bottom right) this is
seen as a slope increase when the value of saliency_xy1 in-
creases. Color saliency also interacts with direction, but to a
lesser extent. In addition, we found that the effect of speed is
significant and independent from that of direction. Consider-
ing the results above, it appears that position saliency in the
first frame is consistently a major factor for selection. Motion
outliers that are inside the point cloud might be overlooked
if there is a confuser departing from a salient position.

Position saliency in the second frame degrades the effect of
direction. Surprisingly, we found that position saliency in the
second frame has a negative interaction with direction. This
appears in Figure 6 as a decrease in the slope of the curve
when saliency_xy2 increases. Participants are thus less likely
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Figure 6: Left: estimates for the effect of feature saliency on the number of times a non-target is selected (erroneously). Right:
interaction plot depicting the modulation of the effect of speed and direction by irrelevant features.

to erroneously select a point moving in a salient direction
the more salient its final position. We hypothesize that this
effect may be due to points moving out of the cloud clearly
having direction perpendicular to the trend. As participants
were instructed to select “the point that moves in the most
deviant direction”, they may have been looking for points
that were in the opposite direction of the mean. Points mov-
ing in the opposite direction would likely be inside the cloud,
not moving out of it.

Replays
In this section, we examine the number of times participants
viewed the animation before selecting their answers. We
analyze the distribution of correct and incorrect selections
across the three possible values for number of views. Figure 7
shows this distribution split by task, condition, and whether
the trial was completed correctly. Due to the study being
deployed on Mechanical Turk, we are unable to separate
divided attention from task difficulty as the cause for replays.
A reproduction of this experiment in a controlled setting is
necessary for establishing a causal relationship.
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Figure 7: Distribution of number of views divided by task
and condition.

Overall, we observe the prevalence of a V-shaped distribu-
tion, suggesting that participants were more likely to watch
the animation either the minimum or maximum allowed
times. In the saliency charged group, speed task, we see a
clear pattern of correct answers coming more often from 1-
view judgments. This pattern is not present in the direction



task. In the saliency deficient group we observe the opposite
pattern: correct judgments are more likely to come from 3-
view judgments, with a few exceptions; namely, targets with
salient position in the direction and speed tasks and with
salient direction in the speed task seem to require less effort
than targets in the other deficient conditions. These patterns
are consistent with the coefficients found in the above analy-
ses, suggesting task difficulty may be behind them. We also
see the V-shaped symmetrical pattern in incorrect answers,
especially in the direction tasks, suggesting confidence in
wrong selections.

6 DISCUSSION
We found that motion outlier detection is unreliable in multi-
variate animated scatterplots. The accuracy of motion outlier
detection is degraded in the absence of other salient cues.
This suggests a level of interference of spatial (position) and
form (color, size) encodings over motion, and between the
individual components of motion (speed and direction). Fur-
thermore, we found evidence that while people were select-
ing outliers based on the relevant features (speed, direction),
irrelevant features may have acted as “boosters,” leading peo-
ple to select the wrong target. We hypothesize that this may
be due to people’s attention getting caught by near-outliers
that have high global saliency; since the animation is short,
they would not have enough time to revise a first impression.
We found spatial saliency, which is closely tied to clut-

ter, to have a large impact on accuracy in both speed and
direction tasks. Here, we emphasize the distinction between
occlusion and clutter. We inspected the stimuli for occlu-
sion and adjusted the z-order of elements to prevent small
points hiding under larger points. Instead of an effect due
to inability to see the targets, we believe the effect is due
to a difficulty of allocating attention, in the sense of feature
congestion: as the feature space becomes crowded there is
less chance for a single object to stand out [26].
The results suggest that it may be possible to predict

scenes where outlier detection is difficult on the basis of
saliency measurements. A linear model with a binary re-
sponse variable and feature saliency coefficients such as the
one we fit can output the odds of correct detection given a
“scene.” A linear model of saliency (for clutter measurement)
was used also by Rosenholtz et al. [26]. A threat to the gen-
erality of this approach is the fact that the statistical saliency
model is invariant to scale (due to the use of Mahalonobis
distance); for instance, points mapped to a very narrow color
range yield the same saliency values as if they were mapped
to a wide color range.
At a more general level, the results expose a failure of

mapping data outliers to visual outliers, which we refer to
as a saliency deficit. A data point or a group of data points
is saliency deficient when its importance in the data space

is not reflected in the visualization due to a lack of saliency.
Saliency deficit is thus a condition of imbalance between
data and visual importance. In Kindlmann and Scheidegger’s
algebraic model [18], such a failure is classified as a viola-
tion of the visual-data correspondence principle: important
changes in the data should yield important visual changes.
The notion of saliency deficit is task dependent: here we

examined motion outlier detection, but it is possible that
other tasks in other visualization types may suffer from the
same problem. Interference between visual channels is not
new in visualization research, which often points to the
theory of separable and integral dimensions [11]. When a
pair of visual dimensions is integral, information from an
individual dimension cannot be accessed easily. However,
these studies have been traditionally restricted to the task
of class-separation and with static features. For instance, in
a point cloud with varying hue and size, it’s not easy to
separate points based on each dimension independently.

It is plausible that the mechanism behind saliency deficit
depends on the number of visual channels employed. That is,
the more visual channels, the harder it becomes to perform
tasks that rely on saliency along a single dimension. This
sends us back to the feature congestion model of clutter,
which predicts difficulty in creating salient targets within
a crowded feature space. In order to assert this mechanism
with confidence, further research needs to examine this effect
with a variable number of visual channels.

7 LIMITATIONS
We would like to see the present experiment extended in
many ways. We controlled the outlierness of the targets, ani-
mation speed, and the distribution of the features and their
correlation in order to isolate the effect of feature saliency.
This imposes limitations on the scope of inference of the ex-
periment. It is plausible that interactions exist between the
controlled factors and the response variables; in particular,
as the outlierness of the target increases, the effect of other
features probably decreases. The effect of animation speed
may be complex: fast transitions may make tasks more diffi-
cult, but studies in the topic of change blindness have found
that large changes can also go undetected when introduced
gradually [29].
We have investigated only positive outliers. Due to a

known asymmetry in motion target detection—it is easier to
find fast targets among slow distractors than the inverse—we
cannot extend our conclusions to slow outliers.

As stated inDiscussion, wewould like tomeasure accuracy
in an experiment where the number of irrelevant dimensions
is manipulated. This could generate insights on the number
of dimensions beyond which some tasks start to lose accu-
racy. Likewise, it would be interesting to measure the effect
of motion on other encodings. Finally, it is possible that the



estimates for size and color do not generalize to other ranges.
In particular, the color saliency may vary depending on the
direction of the colormap (bright to dark or inverse) and the
background.

8 CONCLUSION
We reported the results of a controlled experiment designed
to test the effect of irrelevant visual dimensions on the ac-
curacy of motion outlier detection in multivariate animated
scatterplots. We found that color, size, position, speed, and
direction influence the accuracy with which people detect
the fastest or the most deviant data point. In particular, we
found that spatial visual dimensions, such as position, speed,
and direction have larger influence than form attributes, such
as color and size. Mean accuracy in detection of speed out-
liers was higher than 75% only when targets had multiple
salient features. When detecting direction outliers, mean
accuracy was never higher than 30% when targets lacked
salient features.

These results suggest a saliency deficit effect that prevents
motion targets from being detected accurately when their
overall saliency is low; as a consequence, animated scatter-
plots should be used with caution if outlier detection is a crit-
ical task. We believe saliency deficit may affect tasks in other
multivariate visualizations. Models of task accuracy that rely
on foundational variables, such as saliency, in conjunction
with models of user intent may inform the introduction of
automated interventions when the predicted accuracy of a
task given a plot is low.
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