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A B S T R A C T

Information visualization seeks to amplify cognition through inter-
active visual representations of data. It comprises human processes,
such as perception and cognition, and computer processes, such as
visual encoding. Visual encoding consists in mapping data variables
to visual variables, and its quality is critical to the effectiveness of
information visualizations. The scalability of a visual encoding is
the extent to which its quality is preserved as the parameters of the
data grow. Scalable encodings offer good support for basic analytical
tasks at scale by carrying design decisions that consider the limits of
human perception and cognition. In this thesis, I present three case
studies that explore different aspects of visual encoding quality and
scalability: information loss, perceptual scalability, and discriminabil-
ity.

In the first study, I leverage information theory to model encoding
quality in terms of information content and complexity. I examine
how information loss and clutter affect the scalability of hierarchical
visualizations and contribute an information-theoretic algorithm for
adjusting these factors in visualizations of large datasets.

The second study centers on the question of whether a data prop-
erty (outlierness) can be lost in the visual encoding process due to
saliency interference with other visual variables. I designed a con-
trolled experiment to measure the effectiveness of motion outlier de-
tection in complex multivariate scatterplots. The results suggest a
saliency deficit effect whereby global saliency undermines support to
tasks that rely on local saliency.

Finally, I investigate how discriminability, a classic visualization cri-
terion, can explain recent empirical results on encoding effectiveness
and provide the foundation for automated evaluation of visual encod-
ings. I propose an approach for discriminability evaluation based on
a perceptually motivated image similarity measure.

Keywords: HCI; information visualization; perception; visual data
analysis; statistics
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1 I N T R O D U C T I O N

During the past twenty years, information visualization went from
a niche human-computer interaction topic to a critical component
in the emerging data science curriculum. A market now exists for
applications dedicated to visualizing data, and visualization became
mainstream in news media. Research communities are discussing its
role in science education, and in the digital humanities. With the
promise of amplifying cognition through the visual representation of
abstract data, visualization proposes methods for mapping data to
images and techniques for interacting with these representations. Vi-
sualization research has experienced a boom in the last decade, with
contributions that advanced our understanding of graphical percep-
tion, interaction, literacy, scalability, and many other topics.

Despite the rapid growth, visualization needs to overcome some
issues to become a mature field. At the core of this discussion are
the lack of agreement upon a theoretical foundation for visualization,
a poor understanding of the factors that drive visualization effective-
ness, and a lack of standard and convenient methods for evaluating
new designs.

Theoretical frameworks grounded in information theory and math-
ematics have recently been proposed (Chen and Golan, 2016; Kindl-
mann and Scheidegger, 2014), and we are starting to see applications
and models that build upon them (Correll et al., 2018; Faust et al.,
2017). In the midst of the reproducibility crisis in psychology, there
has been an effort to revise basic visualization assumptions; some
classic experiments were redone (Kim and Heer, 2018), while new
questions are being examined empirically (Zgraggen et al., 2018). The
area that has seen the least progress is evaluation; designers and en-
gineers still need to pick among methods that are either too costly or
inappropriate in order to evaluate their tools.

Furthermore, there are signs of misalignment between the assump-
tions and goals of visualization research and visualization in practice.
An example is the role that visualization plays in machine learning.
Machine learning is a lively and expanding field that is drastically
changing business models and people’s lives. With machine learning
being the de facto source of data-driven insights, one would expect
visualization to be a critical tool. It appears that this is not the case.
A recent study has shown that visualization is not used until the
communication part of the workflow, when data scientists need to
disseminate results (Batch and Elmqvist, 2018). Visualization is not
considered during the exploratory phase for taking too much time,

1



2 introduction

because raw numbers or tables are thought to convey more informa-
tion, or for being just unnecessary. When visualization is used, it is
not interactive.

One of the main tools machine learning practitioners use for vi-
sualization is an interactive notebook called Jupyter which, by one
account, is only less popular than Python and R as a general tool
(Kaggle, 2017). In Jupyter, interaction has a very different conno-
tation than that found in visualization research. Users type code
and get “instant” feedback on the computation results, sometimes
in the form of data plots. This interactivity is very different than the
manipulation of GUI controls or the direct manipulation of plot el-
ements that are common in visualization research. In a sense, it is
much more primitive, less fluid. But if the notebook is interactive in
essence, what prevents one from adding interactive controls to the
plots for more fluid interaction? The answer may be the data scale.
Most of the time when dealing with real-world datasets the size of
the data prevents fluid interaction. For instance, t-SNE, a visualiza-
tion method for high-dimensional vectors can take anywhere from
seconds to hours to produce an image, depending on the dataset size
(van der Maaten and Hinton, 2008). But if it took only 10 seconds, it
would still be prohibitively slow for fluid interaction.

How can visualization be scalable when interaction, the main so-
lution we have to explore large data spaces, is not viable? We hope
that the few visualizations we make have good quality. Scalability
means to retain quality as the size and complexity of the data in-
creases. Here I refer specifically to visual encodings (also known as
visual mappings), which are the methods used to map data variables
to visual channels; for instance, in scatterplots horizontal and vertical
position are used to encode a pair of numerical data variables. Some
dimensions of quality of visual encodings are discriminability, expres-
siveness, and information content. These criteria are proxies for the
ability of a visualization to support important tasks, such as cluster
detection, outlier detection, and the estimation of summary statistics
(e.g., mean).

Interaction is a solution to the problem of scale as it offers mecha-
nisms for navigating information spaces. If a single view of the data
is not sufficiently informative, users can obtain additional views by
panning, zooming, and filtering. The scale achieved through inter-
action is bounded by the efficiency of the interaction approach, the
quality of the visual encoding, and human energy and time. Infor-
mation foraging theory helps us understand the interplay between
encoding and interaction: humans use available information to esti-
mate resource costs and opportunity costs; these costs are weighed to
devise the best information seeking strategy (Pirolli and Card, 1999).
As such, the quality of the visual encoding influences the results of
the interactive experience. The pursuit of better visual encoding qual-
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Figure 1.1: A treemap representation of a large hierarchy. Due to lack of
space, most categories are represented with tiny dots, or simply
not drawn, producing illegible dark blobs. A summarization
strategy needs to account for the available display space and the
importance of each data point.

ity is, thus, not limited to situations where interaction is not available.
Interaction relies on visual encoding to provide cues for information
foraging.

In the present thesis, I investigate issues of scalability and qual-
ity of stand-alone visualizations from three different angles. First, I
take an information-theoretic approach to balance information loss
and clutter in aggregated views of large hierarchical datasets. Sec-
ond, I explore the gap between displayed information and perceived
information with a controlled experiment that evaluates the extent to
which motion outlier detection is supported in multivariate animated
scatterplots. Finally, I propose an automated approach for testing the
discriminability of visualization encodings. In the next sections, I
briefly introduce each of these contributions.

Information Loss

Data plots are in the middle of an information reduction pipeline
that begins with data collection and ends with reasoning (Chen and
Golan, 2016). The data is sampled from the real world, stored in some
representation, mapped into visual representations, then reduced to a
visual impression. The space where the data lives in is progressively
constrained along this pipeline. Depending on the data scale and
the visualization type, the amount of information loss in the plotting
stage varies drastically; from the loss of price precision in stock price
charts to large numerical arrays in t-SNE. Information loss causes
ambiguity and reduces expressiveness, but it also lets people extract
information more easily.
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Figure 1.2: Animation is used in scatterplots to allow better perception of
changes between data states. Speed of motion encodes the dif-
ference in the values represented by the coordinates x and y.
The complexity of these charts increases with the number of
data points, and the number of data variables represented. Here,
color and size encode distinct variables, making this a 4D plot.
Are we able to identify a motion outlier independently of other
visual features, as we would easily using a univariate visualiza-
tion (e.g., boxplot)?

Uncertainty and errors that arise from data collection are widely
acknowledged and many visualization techniques exist for represent-
ing this kind of error (e.g., error bars). But the uncertainty that
arises from information loss at the visual mapping stage and the
one resulting from not accounting for ambiguity are less understood.
For instance, hierarchical edge bundling, a technique for grouping
edges, makes graphs more readable but reduces their discriminabil-
ity: changes in the graph connectivity may “hide” within the bundles.
As a result, different datasets may yield the same image. This trade-
off between simplicity and precision permeates the design of many
visualization techniques, especially hierarchical visualizations, which
are suited to simplification.

In Chapter 3, I investigate the balance between clutter and informa-
tion loss in hierarchical displays (Figure 1.1). I present a technique
that embeds the goal of reducing information loss and the constraint
of clutter reduction. Grounded in the information-theoretic princi-
ple of minimum description length, the approach consists in treating
visualizations as models of the data and using a criterion for selec-
tion that is similar to the ones used to select among statistical models.
The result is a technique that can prune a hierarchy for display in a
screen of a given size. My results show that the technique affords
near-constant information density across screen sizes while keeping
a low level of clutter.
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Saliency Deficit

If the visualization pipeline reduces information, we may think that
one way to work around information loss is to simply represent more
dimensions. This would be correct if human perception, a component
of the pipeline, was unlimited. While the relative sophistication of
the human visual system is used to justify visualization as a tool, the
reality is that many capacity limits impose obstacles to visualization.
For instance, we have great difficulty in detecting unique colors in
displays with more than five colors (Haroz and Whitney, 2012).

The gap between displayed information and perceived information
happens to be the least understood area of the visualization process.
Our lack of understanding gave rise to many visualization designs
that now are starting to fall out of flavor due to empirical findings
that demonstrate their ineffectiveness (Harrison et al., 2014).

One of the mechanisms that modulate performance in visualization
tasks is saliency detection, a critical component of attentional control.
It allows us to save resources by focusing on select regions of a scene.
This natural importance-assignment mechanism can be leveraged to
facilitate information processing or it can make it more difficult if its
allocation is misaligned with the user’s task. Computational models
of saliency exist, but they only help us predict eye movements, and
we don’t know to what extent these sensorial processes are offset
by goal-oriented strategies. That is, it may not matter that salience
does not help as long as the user has a good strategy to accomplish
the goal. For this reason, much research is necessary to learn how
saliency interacts with information visualization tasks.

In Chapter 4, I contribute the results of an experiment that asked
people to detect motion outliers in animated scatterplots with multi-
ple visual dimensions 1.2. With the task focusing on a single dimen-
sion (motion) the study seeks to find whether people can perform
efficiently in the presence of many other dimensions that can act as
distractors. This question is fundamental to encoding scalability. To
what extent can we add information to a plot without making it extra
difficult to accomplish basic tasks?

Scalable Evaluation

To explain the issue of scalable evaluation in visualization, let’s draw
a parallel with evaluation in the field of machine learning. Evalua-
tion methods in machine learning are split into two classes: offline
and online evaluation. These classes are concerned with very dif-
ferent metrics. On one hand, online evaluation methods measure
indicators that businesses care about, such as customer retention and
customer engagement. Online methods are costly and slow because
they require deployment of models to production. On the other hand,
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Figure 1.3: A set of three trivariate datasets. In the top row, size encodes the
variable PRCP (precipitation) and horizontal position encodes
the variable SNOW. In the bottom row horizontal position en-
codes PRCP and color encodes SNOW. Which encoding allows
better perception of differences in the values of PRCP? Would
the answer be the same if the values of SNOW were not skewed?

offline methods are based on the abstraction of the problem and the
separation from the model’s real-world use; an example is the cross-
validation framework, used with metrics such as precision, recall, and
accuracy. The problem of improving student retention is reduced to
predicting student performance in classes, which is in turn reduced to
a label matching problem. Machine learning would not have grown
as it grew if it wasn’t for offline evaluation, as it is far more scalable
than online evaluation.

Visualization evaluation is dominated by online methods. The
equivalent of measuring business metrics in visualization research is
measuring user performance or collecting user opinions and insights
in experiments where users are asked to use a tool to analyze a real
dataset. While online methods have their place in the research eval-
uation life cycle, over-reliance on them creates research that can not
be compared, because its evaluation is contaminated with factors that
cannot be reproduced. This problem affects especially the evaluation
of new encodings and layouts.

A visualization field with scalable evaluation methods would have
frameworks and metrics that isolate the visual mapping from the
tool, from user populations, and from decision making issues. Such
measures would assess specific visualization properties such as dis-
criminability, ambiguity, clutter level, saliency, information loss, and
uncertainty. This would allow the creation of visual encoding bench-
marks. Evaluation approaches that are affected by decision making
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issues, such as cognitive biases, literacy, or domain knowledge, would
still be available to research with broader scope.

The obstacles to realizing this ideal are many. On top of the list is
the difficulty in modeling human visual judgments. Second is estab-
lishing which and how measurable properties impact visualization
effectiveness. Third is defining a general framework that can be used
with a wide variety of visualizations. Chapter 5 presents work that
make advances in these three fronts. I test an image similarity mea-
sure against empirical plot similarity data and propose the use of
discriminability tests based on it (Figure 1.3). The results show that
the discriminability scores can help explain recent empirical results
regarding the effectiveness of visualization encodings.

Summary

In summary, this thesis presents the following contributions:

• A technique for summarizing large hierarchies for visualization
purposes (Chapter 3).

• The findings of a controlled experiment designed to assess the
effectiveness of motion outlier detection in multivariate animated
scatterplots (Chapter 4).

• A method for scoring the discriminability of visualization en-
codings (Chapter 5).

In Chapter 2 I discuss the problem of scale in visualization and
how it relates to visual encoding quality, and in Chapter 6 I conclude
this thesis by discussing how the contributions relate to each other,
and by outlining the possibilities these contributions open for future
research.





2 S C A L A B I L I T Y A N D Q U A L I T Y

We can analyze data without plotting it. We can compute statistics
or simply read the data values. That is the way my grandfather ana-
lyzed daily the sales of his bakery, which he recorded manually and
kept in a notebook. He used a calculator to compute aggregates and
detected trends without any visual aid. He stayed in business for
decades, even after computers and Microsoft Excel became popular
in small businesses. The question of when we need visualization is
equivalent to the question of when summary statistics or tables are
not enough. Like handwritten summary statistics and tables, a vi-
sualization is a model of the data, and can be assessed in terms of
complexity and accuracy. Given the choice, we weigh this trade-off
between representations to select them, in addition to many other
considerations, such as the adequacy to the medium, and whether
the data is to be communicated. Visualization is most often needed
when we do not trust the statistics and when tables are not adequate
given the scale of the data. When the nature of the task and the na-
ture of the data allow us to trust a single statistical estimate, then
that estimate is a more efficient way to carry the information. We
will choose the most trustful way to represent the data provided it is
sufficiently concise. Tables are more faithful than visualizations and
statistics, but do not scale well.

We can observe this tension between representations (numbers, ta-
bles, and images) in journalism. For instance, much country-wide
data is reported as a single statistical estimate, like a percentage,
while others, such as the voting intentions for presidential candi-
dates during election time, are more likely to be represented in a
map. Sometimes the high compression rate of a statistical estimate
does not yield enough trust—as when what is at stake is the name
of the next president, but is appropriate when the decisions are less
consequential. In any case, the data comes from large surveys and
goes through a data processing pipeline where it gets reduced. The
degree to which the reduction is acceptable helps to determine which
representation is most appropriate.

The classic case for visualization is by Francis Anscombe, who
demonstrated the effect of outliers on statistical properties through
four distinct datasets that yield identical or very similar values for
mean, variance, correlation, and regression line coefficients (Figure
2.1) (Anscombe, 1973). By plotting them, we can see that the datasets
are wildly different, and thus, the statistic properties are misleading.

9
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Figure 2.1: Anscombe’s Quartet. Statistics computed on these datasets are
near identical.
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Figure 2.2: Four of Matejka and Fitzmaurice’s twelve datasets, also known
as “Datasaurus dozen”. Similar to Anscombe’s, these datasets
produce equal statistics.

Later, Matejka and Fitzmaurice (2017) proposed a method to generate
datasets akin to Anscombe’s, but with arbitrary shapes (Figure 2.2).

Anscombe’s quartet shows how statistics can be unreliable, and
it makes evident that we have the ability to estimate visually many
properties of a dataset. Anscombe summarizes the virtues of visual-
ization and compares it to statistics as follows:

Graphs can have various purposes, such as: (i) to help us
perceive and appreciate some broad features of the data,
(ii) to let us look behind those broad features and see what
else is there. Most kinds of statistical calculation rest on
assumptions about the behavior of the data. Those as-
sumptions may be false, and then the calculations may be
misleading. We ought always to try to check whether the
assumptions are reasonably correct; and if they are wrong
we ought to be able to perceive in what ways they are
wrong.

The process Anscombe is referring to, which supports rapid ex-
traction of visual statistics about distributed visual information, is
now known as ensemble coding (Szafir et al., 2016). In information
visualization, there are four types of ensemble coding tasks: a) iden-
tification (absolute and relative values, outliers); b) summary (mean,
variance, distribution statistics, cardinality); c) segmentation; and d)
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(a) Scatterplot with alpha = 0.5.
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(b) Scatterplot with alpha = 0.1.

(c) Splatterplot.

Figure 2.3: The "Pollen" synthetic dataset at different zoom levels. Over-
plotted scatterplots hide features in the data overview. Splat-
terplots (Mayorga and Gleicher, 2013) help to identify dense re-
gions; however, parameter tuning is needed (bandwidth, thresh-
old, and clutter radius).

pattern recognition (trend, shape, similarity). Combined, these tasks
allow us to construct a more accurate mental model of the data than
if we relied solely on a few statistics.

To better understand the role of visualization in the present day
it helps to examine the workflows where visualization is a compo-
nent. Chen and Golan (2016) described in detail six workflows, which
they grouped into four blocks according to the role the visualization
plays. Disseminative visualizations, often used in news media, are
used to communicate information to others. Observational visualiza-
tions are used in routine operations, where analysts use it to speed-
ily observe captured data. Analytical visualization is used as part
of investigations whose goal is to examine complex relationships be-
tween variables, and covers scientific workflows, for instance. And
Model-developmental visualization is used to improve existing mod-
els, methods, and systems. These workflow groups differ with respect
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to the kinds of processes they comprise and their order. For instance,
in disseminative visualization one understands the data and crafts a
message before constructing a visualization that carries that message.
Such a human process is not present in observational visualization
before image rendering: the data and the tasks are regular enough
that no human input is needed in the visual mapping phase.

2.1 poor statistics and poor visualizations

We have seen that visualization allows us to represent more faithfully
a dataset than it is possible with descriptive statistics. By representing
each point individually we can avoid the problems that are inherent
to aggregation. However, this is only true within the capacity lim-
its of a visualization design. Each visualization has a capacity that
depends on the display capacity (number of available pixels), use of
colours and other visual variables, and layout. The visualization ca-
pacity is the entropy of a visualization, determined by the number of
datasets that can be represented unambiguously (Chen and Jänicke,
2010). Beyond the capacity of a plot, we start to observe the exact
same problem that statistics suffer from in the Anscombe’s quartet
example. In Figures 2.4 and 2.5, I show examples of poor visual-
izations that resemble Anscombe’s quartet in that the reader cannot
trust the message conveyed by the dataset representation. The reason
for these failures can vary: sometimes it is the size of the dataset; in
other cases the visual marks used in the chart are not robust to noise.
I identify three classes of scalability problems.

B. Shneiderman S. Carpendale W. Cleveland
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Figure 2.4: A linear histogram fails to depict low-level differences in skewed
distributions. Important outliers are represented with little
“ink”. Data: Citation counts of three information visualization
authors (downloaded from Google Scholar on August 23, 2018).

overplotting The most common scalability problem, it occurs when
the visualization is rendered ineffective due to the cardinality of
the dataset (the number of rows). In an over plotted visualiza-
tion the structure of a dataset cannot be accurately represented,
causing ambiguity. The visual manifestation of this problem
can be too much overlap in scatterplots, a sheer amount of edge
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Figure 2.5: Parallel coordinates fail to convey patterns in the presence of
noise. Top: Five data relationships produced with mathemati-
cal functions. Bottom: The same datasets after the addition of
noise at a noise-to-signal ratio of 13%. Example extracted from
Johansson et al. (2008).

crossings in node-link plots, or too many tiny elements in a
space-filling plot (e.g., a treemap plot).

multidimensional Occurs when the number of relevant dimensions
(columns) is higher than the number of visual variables a visu-
alization can employ or display effectively. The analyst often
needs to “stitch” multiple charts, one for each relevant subset
of relevant variables. In Chapter 4, I will present a complex
instance of this problem where the task of detecting motion out-
liers becomes more difficult when multiple visual channels are
used in a plot.

distributional Occurs when the dataset lies within a subset of data
distributions that are not handled well by the visualization. The
common cause of this issue is the presence of outliers, which
can render linear scales useless (unless the purpose of the vi-
sualization is to detect outliers). A more intricate example is
presented by Johansson et al. (2008), who demonstrated that
the introduction of Gaussian noise (13% measured as the ratio
between the standard deviation of the noise and the range of
the variables) in a set of 5 different synthetic, bivariate datasets
reduced discriminability of their parallel coordinates represen-
tations to 70%, as determined empirically. The datasets featured
the following mathematical relationships: negative linear, nega-
tive linear with discontinuity, and sinusoidal relationships with
one, two, and three periods. In this case, the addition of noise
did not disrupt the structure of the data, but the visual struc-
ture of the image was affected. Some visual representations are
more vulnerable to these kinds of perturbations than others.
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2.2 interaction

Information visualization deals with the problem of scale by lever-
aging interaction. Among the interactive tasks supported in visual-
ization tools are filtering, highlighting, brushing, pan & zoom, and
details on demand (Wilkinson, 2006). An interactive control or an
interactive gesture in the case of natural user interfaces allows users
to express queries that change the view, and should provide near-
immediate response. Slow responses (500ms or more) cause users to
reduce their activity and cover less data in their analysis, ultimately
leading to fewer insights (Liu and Heer, 2014).

Among popular interaction paradigms are the early and prevalent
direct manipulation paradigm (Shneiderman, 1983), which was orig-
inally realized with tools that feature interactive sliders, and modern
paradigms, such as embedded interaction (Saket et al., 2018), free-
form sketching (Lee et al., 2013), and visualization by demonstra-
tion (Saket et al., 2017). Although all interaction techniques in some
way will improve the scalability of a data analysis, there are some
tools that notably empower the user to explore vast data spaces effi-
ciently. In the domain of 3D simulation, Bruckner and Möller (2010)
proposed scene clustering and “searching by example” as ways to
visualize and search for patterns in large parameter spaces. Search
by example enables searching for patterns in large collections of scat-
terplots (Wilkinson and Wills, 2008), and querying specific temporal
patterns in large time-series data (Holz and Feiner, 2009).

Interactive visualization has been recently linked with problems
related to bias and discovery of spurious patterns. First, by interact-
ing with the data selectively, people may draw conclusions that are
affected by known cognitive biases, such as oversensitivity to consis-
tency and the vividness criterion (Wall et al., 2017). This can be reme-
died by interacting with subsets of that data in a way that covers the
entire data space more uniformly. Second, by repeatedly subsetting
and querying the data, analysts are more likely to encounter random
patterns and mistake them for valid, generalizable ones (Zgraggen
et al., 2018). This is formally known as the multiple comparisons
problem in statistics.

Interaction is limited as a solution to the problem of scale. Inter-
active visualization tools have a sliding window nature: one sets the
window to the data at a certain position to examine reliably a rela-
tively small subset of the data, and then slides it over the data space
in order to achieve good coverage. This is done with operations that
constrain the scope of the analysis, such as filtering and zooming, and
is informed by an “overview” of the data. While the size of the data
space is ever increasing, it is unlikely we will move to larger windows,
so the task of analyzing data tends to become more time-consuming
and exhaustive. While better interactive techniques for covering large
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data spaces are needed, better static images and feature extraction are
also needed for guiding attention to relevant subsets or to outright
eliminate the need to slice and dice the data.

2.3 feature extraction

Another way of dealing with scale, feature extraction seeks to increase
the information content of overviews. It can be based on the informa-
tion theoretic notion that regularities in the data can be compressed
while causing little loss of information (Chen and Jänicke, 2010), or
on the Bayesian surprise notion (still linked to information theory)
that data that contradicts prior beliefs has more importance (Correll
and Heer, 2017). The biggest issue with these models is parameteriza-
tion: it is often hard to choose parameters that produce useful views,
in part because we lack reliable tools to gather users’ soft knowledge
and goals, which are often necessary to decide what is relevant.

For instance, splatterplots are scatterplot extensions where clutter
is controlled with subsampling and dense regions are emphasized
with smooth shapes (Mayorga and Gleicher, 2013). This strategy is
meant to counteract the “equalization” effect caused by overplotting
in scatterplots, whereby relatively sparse regions look just as dense
as truly dense regions. Van Goethem et al. (2017) solves essentially
the same problem in time-series by aggregating lines that follow the
same trend, similar to edge bundling but depending on parameters
that relate to the formal definition of trend in time-series.

In the network visualization domain, Graph Thumbnails are icon-
sized visualizations of large graphs that allow large-scale compar-
isons of graphs using small multiples (Yoghourdjian et al., 2018). The
representations focus on the coarse structural characteristics of the
graphs. Different than the examples above, which are modifications
of existing visual representations, this is a novel visualization method
designed from scratch to overcome perceptual scalability issues.

Dimensionality reduction methods have become increasingly pop-
ular together with machine learning techniques that represent data
points as large vectors. These methods vary with respect to what
kind of structure they preserve. Principal component analysis finds
a linear reduction of the vectors to maximize the variance; it is gen-
erally good at preserving global structures. t-SNE finds a non-linear
embedding that tends to capture local structure well (van der Maaten
and Hinton, 2008), while UMAP features a parameter that changes
the importance of local and global structure preservation (McInnes
and Healy, 2018).
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2.4 perceptual vs computational scalabil-
ity

When the word scalability appears in an information visualization pa-
per, it usually refers to algorithm performance, measured with la-
tency (Liu and Heer, 2014), or more loosely with the number of
data points rendered and manageable with interaction (Fekete and
Plaisant, 2002; Shneiderman, 2008).

Fekete and Plaisant (2002) presented a tool capable of displaying
one million data points in scatterplots and treemaps by leveraging
GPU processing; later, Shneiderman (2008) made a call for research
efforts to increase the capability of visualization tools to billions of
records by exploiting pixel-based representations, density representa-
tions, and data aggregation. Recently, a series of techniques based
on pre-processed data structures and aggregated plots—Nanocubes
(Lins et al., 2013), Hashedcubes (Pahins et al., 2017), and Gaussian
cubes (Wang et al., 2017)—allowed visualization and low-latency in-
teraction with hundreds of millions of spatio-temporal records, such
as tweets, flights, social media checkins, and taxi rides. Similarly,
by pre-computing data subsets and using binned plots, imMens lets
users scale their visual analyses from 1 million to 1 billion records
with nearly no difference in interaction latency (Liu et al., 2013).

On the perceptual scalability side, techniques were developed to
improve some plots or were developed from scratch to be more scal-
able than the alternative methods. Unlike the works I mentioned
under (Section 2.3), these do not involve any statistical or domain-
specific judgements of data importance, they are purely represen-
tational solutions. For instance, despite the questionable aesthetics,
Cushion Treemaps (van Wijk and van de Wetering, 1999) tries to im-
prove the perception of structure in crowded treemaps, and benefited
from large adoption by developers of file-system visualization tools
(Disk Inventory X, SequoiaView, WinDirStat, GrandPerspective, Om-
niDiskSweeper, etc.), which can well be considered a statement of its
effectiveness.

A large class of recent systems attempts to solve what I referred
to as multidimensional scalability problem by embedding subplots
that depict additional dimensions (Alsallakh et al., 2012; Krzywinski
et al., 2009; Loorak et al., 2017). However, while solving that problem
these interfaces may be hurting perceptual scalability since, by design,
visual marks are added to the visualization causing increase in clutter.
While it is currently difficult to assert this with confidence, as the
community lacks a standard method to test perceptual scalability (see
next section), the evidently crowded displays produced with these
techniques suggest that perceptual scalability is at risk (Figure 2.6).
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Figure 2.6: Circos visualization of genome sequencing. The effectiveness
of hyperdense visualizations like this is questionable. Example
extracted from Saw et al. (2013), licensed under Creative Com-
mons.
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2.5 quality measures

In a recent survey, Behrisch et al. (2018) divide quality measures for
information visualization in three levels: low-level (perception), mid-
level (perception/task), and high-level (meta-perception/user). Most
existing measures fall into the mid-level category. Mid-level measures
rely on a specification of the task; that is, their goal is not to score the
absolute quality of an encoding, instead, they seek to score the quality
of a single view given the data, a task, and sometimes a visual pattern.
For instance, if the task is finding clusters, a metric may rank views
based on the presence and discriminability of groups (Albuquerque
et al., 2010; Tatu et al., 2011). These measures are then often used to
search for views that best feature the pattern.

The vast majority of these measures are designed specifically for
one visualization type, and only a small number of approaches have
been evaluated against empirical effectiveness data (Behrisch et al.,
2018). For instance, based on studies that show that aspect ratio
of scatterplots can influence the accuracy of correlation perception,
Fink et al. (2013) found that a pair of measurements extracted from
the Delaunay triangulation of the scatterplots correlates reasonably
with user preferences. A significant challenge for task-specific qual-
ity measures is that users tend to follow an unstructured exploration
path where multiple tasks are performed in parallel; thus, a single
task-specific measure is not sufficient.

Low-level measures do not assume a specific task, and focus ex-
clusively on the visual mapping. These measures exist mostly in the
theoretical realm, with the notable exception of clutter measures and
information theoretic measures, both of which have been translated
into computational measures. Clutter measures exist in general form,
stemming from vision science research (Rosenholtz et al., 2010), and
encoding-specific form for scatterplots (Bertini and Santucci, 2004)
and parallel-coordinate plots (Ellis and Dix, 2006). In the same vein,
graph readability criteria are used in the calculation of layouts and
can involve measuring edge crossings, and overlaps between nodes
and groups (Dunne et al., 2015; Purchase, 2002). While Behrisch et al.
classifies clutter reduction approaches as mid-level, I choose to label
them as low-level for they do not carry considerations of task and
are thus more general. On the information theory side, Chen and
Jänicke (2010) derived visualization capacity measures from classic
information theory concepts (e.g., entropy, mutual information); later,
Chen and Golan (2016), applying notions of data compression to the
pipeline model of visualization, proposed general cost and benefit
measures.

Finally, high-level measures attempt to quantify properties that are
traditionally perceived as subjective, such as memorability, aesthet-
ics, and engagement. So far, this topic has only been explored with
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user studies and experiments, and no measures for visualization have
been proposed. An interesting aspect of measures at all levels is that
most are not presented as quality measures; instead, they are embed-
ded into automated techniques for optimizing visualizations. As a
result, they are rarely used to evaluate new visualization encodings.

2.6 summary

This chapter introduced the problem of scalability in information vi-
sualization. The main points are:

• As the parameters of the data grow, visualization begins to suf-
fer from the same faithfulness problems that affect summary
statistics, and that justify visualization as a complement to statis-
tics in data analysis.

• Scalability problems in visualization stem not only from dataset
size, but also from dataset distribution, and multidimensional-
ity.

• Interaction can dramatically improve the scalability of a visual
data analysis, but is ultimately limited by human energy and
time.

• Feature extraction is used to increase the scalability of static
views, with the drawback of needing careful parameterization.

• Quality measures for visual encodings are mostly specific to a
visualization type and make assumptions about the analytical
task. There are few empirically validated general measures that
can be used for evaluation.





3 C L U T T E R A N D
I N F O R M AT I O N

For many years, the information visualization community followed
Ben Shneiderman’s celebrated visual information-seeking “mantra”
for design: “overview first, zoom and filter, details on demand” (Shnei-
derman, 1996). However, as datasets have grown (and small dis-
plays have become more prevalent), “overview first” is increasingly
challenging to achieve in an effective way. Overviews of very large
datasets are often too high-level or cluttered to reveal anything inter-
esting. The task of iterative exploration and sifting through the data
is left to the analyst in the traditional model. This chapter introduces
a method for optimizing large hierarchical visualizations to fit in con-
strained screen spaces, effectively creating starting point overviews
that are designed to balance the goal of maximum information con-
tent with the challenge of reducing clutter and enhancing readability.
The work is inspired by Keim’s visual analytics process, which states:
“analyze first, show the important” (Keim et al., 2006). The critical
“analyze first” step is addressed to shape the initial view of the data,
so as to reveal important data entities while minimizing clutter, har-
nessing computing power to create data-driven starting points for
analysis. The display-optimized tree cut model I present is parame-
terized to allow for interactive drill down, as well as presentation of
optimized overviews of data.

In addition to the challenge of providing optimized overviews for
very large datasets, in many situations, visualizations need to be
adaptable to a variety of screen sizes. For example, consider an in-
teractive visualization embedded as part of an online news story —
one version may be appropriate for a smart phone display, while an-
other will be appropriate for a large monitor. The situation is not
as simple as changing the zoom factor, or the flow of the webpage,
but rather the level of abstraction must adjust to make the visualization
readable and aesthetically pleasing across devices.

Many factors influence the ability of visualization systems to ef-
fectively display large amounts of data; in particular, the available
display size, which is determined by the physical constraints of the
screen, and the perceptual scalability of the visualization, which de-
pends on the choice of visual representation and layout (Yost and
North, 2006). Most information visualizations become over-cluttered
when the dataset is large. Clutter reduction is an active area of re-
search in information visualization, as elaborated by Ellis and Dix
in their taxonomy of clutter reduction methods (Ellis and Dix, 2007).
Clutter is shown to have a negative impact on visual search (Haroz
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and Whitney, 2012; Rosenholtz et al., 2010; Wolfe, 1998a) and short
term memory (Miller, 1956). In a study of orientation judgment, Bal-
dassi et al. (2006) found that clutter causes an increase in orientation
judgment errors, and increase in perceived signal strength and deci-
sion confidence on erroneous trials. Rosenholtz et al. (2007) include
the notion of performance in the very definition of clutter: “a state
in which excess items, or their representation or organization, lead to
degradation of performance at some task”. Besides, in some resource-
constrained client environments (e.g., web browser), the number of
graphic primitives necessary to represent large data affects rendering
and, consequently, interactive tasks, such as selection and filtering.

In visualizations of hierarchical data, one can take advantage of the
hierarchical structure to abstract data at varying levels, in order to re-
duce the level of clutter when the available space prevents depiction
of the full data. Visualizations that implement such strategy are called
multiscale visualizations (Elmqvist and Fekete, 2010) and deciding
the appropriate level of abstraction for them is not trivial. Overly-
detailed views have high clutter, whereas overly-abstract views can
hide important patterns. The right level of abstraction depends on
the dataset and the available display space; for example, large desk-
top displays afford more detail, while mobile phones have not only
less space, but also coarser interaction resolution due to the “fat fin-
ger” problem. In this chapter, I refer to this problem as the level of
abstraction problem.

The display-optimized MDL tree cut technique that I will present
in this chapter can be applied to any hierarchical dataset where there
are quantitative data values associated with the leaves of the tree. In
the next sections I will introduce the mathematical foundation behind
the general display-optimized tree cut, and demonstrate the approach
applied to two popular hierarchical visualization types — treemap
and sunburst. I will also report on multiple validation approaches:
a crowdsourced study whose results indicate that the tree cut ap-
proach provides for faster target finding compared to traditional ap-
proaches, and a quantitative comparison of clutter and information
content across traditional techniques and the display-optimized MDL
treemaps.

3.1 related work

In this section, I survey two areas: techniques for controlling clutter in
visualizations using aggregation and the use of tree cuts (also known
as antichains) to navigate large graph hierarchies.
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Clutter Control

Based on the cartographic principle of constant information density
(Töpfer and Pillewizer, 1966), VIDA is a system that automatically
creates visualizations in which density remains constant across zoom
levels (z dimension) and within each view (x and y dimensions) (Wood-
ruff et al., 1998). The display is divided into regions, where the visual
representation is modified (e.g., dots instead of glyphs) to meet a tar-
get density value specified by the user. Density measures are number
of objects and number of vertices per unit of display area.

ViSizer is a framework for resizing visualizations (Wu et al., 2013).
It employs a sophisticated image warping technique that scales im-
portant regions uniformly and deforms less important regions. The
significance measure is composed of the feature congestion clutter
measure (Rosenholtz et al., 2010) and a degree of interest (DOI) func-
tion. ViSizer focuses on non-space filling visualizations such as word
clouds and scatterplots.

Chuah (1998) employs a simple strategy for automatic aggregation
in histograms, and ordered radial and treemap visualizations: ag-
gregate neighboring objects whenever there is occlusion or they are
too small to be perceived. This approach works better where data
items have an intuitive order (e.g., time series, histograms, or file
directories ordered by name). Cui et al. (2006) tackled the optimal
level of abstraction problem, but focusing only on accuracy; that is,
how well the abstracted data represents the original dataset. They
proposed two measures of quality: the histogram difference measure
and the nearest neighbor measure, which were integrated into Xmdv-
Tool. As the measures do not account for the visual quality of the re-
sulting visualization, the user determines the best view interactively,
by tweaking the level of detail and comparing the quality measure
values. Likewise, based on aggregation quality measures, Andrienko
and Andrienko (2010) allow users to specify the desired level of ab-
straction in visualizations of movement data (flow maps).

Koutra et al. (2015) proposed a parameter-free method based on
the minimum description length to select the best (most succinct)
summary for large graphs among a set of alternatives: cliques, stars,
chains, and bipartite cores.

Perhaps the closest to this work, Lamarche-Perrin et al. (2014, 2012)
introduce a method for selecting abstract representations of hierar-
chical datasets. In their work, a two-part information criteria consist-
ing of entropy and Kullback-Leibler divergence is used to select the
tree cut featuring the best balance between conciseness and accuracy.
Their procedure requires tuning a free weighting parameter that spec-
ifies the relative importance of one criterion over the other. It does
not account for the available display space, so any adjustments to ac-
commodate small or big screens need to be done manually by tuning
the aforementioned weighting parameter.
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Figure 3.1: On the left, a series of polynomials ranging from order 1 to 8

fitted to a 10-point data set. On the right, the cost of encoding
(in bits) the two parts of each polynomial model.

Tree Cuts or Antichains

Tree cuts, also known as antichains, have been widely used in the
exploration of large graphs and hierarchies. SentireCrowds (Brew et
al., 2011) and ThemeCrowds (Archambault and Greene, 2011) employ
a maximal antichain selection method to abstract a hierarchy of topics
visualized as a treemap. That method is based on matching node
scores resulting from user queries. GrouseFlocks (Archambault et
al., 2008) reduces the complexity of interacting with large graphs by
letting users manipulate cuts of superimposed aggregate hierarchies.
Users can adjust the cut level of abstraction by performing topology-
preserving operations involving merging and deletion of aggregates.
In order to ensure the abstracted hierarchy view remains under the
display capacity, ASK-GraphView (Abello et al., 2006) parametrizes
clustering with maximum antichain size. In ASK-GraphView and
GrouseFlocks the hierarchies are not part of the data, but created by
an algorithm. This allows great flexibility to modify the hierarchy
structure around display constraints. In this work, I focus on “rigid”
hierarchies, where classes carry domain specific relevance and, thus,
cannot be merged or deleted without cost to interpretation.

3.2 theoretical foundations

Suppose a set of measurements D = (x1, y1), .., (xn, yn) was collected
as part of an experiment and we were asked to send this data over
a network where the transmission cost is high. Among the countless
possible ways of encoding the data, it is in our best interest choosing a
scheme that allows for the shortest message. In this scenario, the code
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length for sending the raw data, assuming that encoding a number
has a fixed cost of b bits is:

L(D) =
n

∑
i=1

{
L(xi) + L(yi)

}
= 2nb. (3.1)

If the relation between x and y can be described by a polynomial
model (or any other model), it might be possible to reduce signifi-
cantly the code length. As an example, let’s examine the polynomial
case. A polynomial regression model has the following form:

ŷ =
p

∑
k=0

âkxk + ε. (3.2)

So the code length of the data as seen through a fitted polynomial
model θ̂ is:

L(θ̂, D) =
n

∑
i=1

L(xi) +
p

∑
k=0

L(âk) +
n

∑
i=1

L(ri | θ̂), (3.3)

where âk is the k-th parameter of the polynomial and ri is the i-th
residual. Namely, the equation above is a sum of the cost of encoding
the model and the cost of encoding the data conditioned on the model
(residuals). Note that the cost of sending the vector ~x is constant
across all models. As a polynomial might not fit the data perfectly, it
is necessary to send the model residuals, so that the receiver is able
to reconstruct D accurately. However, depending on our tolerance to
errors, we might be willing to ignore residuals smaller than a fixed
threshold. The better the fit, the more economical is the description
of the residuals. Overall, it is only worth representing our data with a
polynomial model if we can find a model whose code length overhead
is smaller than the code length of vector ~y:

∑ L(yi) > ∑ L(âk) + ∑ L(ri|θ̂). (3.4)

To illustrate this notion, consider the ten data points depicted in
Figure 3.1, left. I fitted to this data a family of polynomials of increas-
ing order and compared the cost of representing the data with each
of them in a setting where any number is represented with 64 bits,
and residuals smaller than 0.5 are ignored. Figure 3.1, right, shows
the cost of each fitted polynomial from order 1 to 8. It is clear that
the more parameters a model has, the better is its fit. However, the
model that provides the shortest description is that featuring the best
balance between goodness of fit and complexity. In our example, this
model is the 4th order polynomial, which also satisfies (3.4), as the
cost of encoding y in the naive scheme is 640 bits.

In this example, I used information theoretic reasoning to deter-
mine the model that most concisely captures the regularities in the
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data. The criterion I employed is a simplification of the Minimum
Description Length (MDL) Principle, which I describe formally in the
following subsection. MDL is a powerful approach to model selec-
tion that has been used to solve a large variety of problems, including
polynomial regression, Gaussian density mixtures and Fourier series
regression (Lee, 1999), and applied problems such as image segmen-
tation (Lee, 2001), learning word association norms (Li and Abe, 1998)
and learning decision trees (Quinlan and Rivest, 1989).

Minimum Description Length

Proposed by Rissanen, MDL is an information criterion used for model
selection in statistics (Rissanen, 1983). The principle is based on the
following notion: given a set of observed data and a family of fitted
models, the best model should provide the shortest encoding of the
data. The description length of a model is calculated as a sum of
two parts: the length of the binary codes that describe a) the model
parameters, and b) the data residuals (Lee, 2001). More formally, the
MDL criterion can be written as:

L(θ̂,~x) = L(θ̂) + L(~x | θ̂), (3.5)

where θ̂ is a parameter vector, ~x is the data, and L(θ̂) and L(~x | θ̂) are
the parameter description length (a) and the data description length
(b), respectively.

Unlike in the polynomial example, where we used computer-ori-
ented calculations for the code length, MDL is concerned with optimal
code length. That is, with MDL, we do not care about how a model is
encoded in practice as much as we care about how concisely it can be
encoded in theory. Let A be an alphabet and α be any of the symbols
in A. If the probability p(α) of occurrence of α ∈ A is known, then in
the optimal encoding scheme for A the length of α is:

LOPT(α) = − log2 p(α). (3.6)

This result is important because often the likelihood function of the
model θ̂ is known, so the data description length (number of bits to
encode the residuals) follows from (3.6):

L(~x | θ̂) = − log2 p(~x | θ̂). (3.7)

For instance, in our polynomial example we could leverage the
fact that, as per the regression model assumption, the residuals are
approximately normally distributed, and use the log of the Gaussian
likelihood, given by (n/2)log2(RSS/n), as L(~x | θ̂), where RSS is the
residual sum of squares.
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Frequently, the probability distribution of the model parameters
(usually, a vector of integer or real numbers) is not given; in this case,
Rissanen (1983) proposes a universal prior probability distribution or,
equivalently, a coding system, for integers. Rissanen demonstrated
that the optimal code length for such integers with unknown proba-
bility function can be achieved with his coding system and approx-
imated to log2n. Therefore, we can estimate the description length
of arbitrarily complex models, as long as their parameters can be de-
scribed as arrays of integers or real numbers.

Let’s assume θ̂ is a vector of real numbers, which can be encoded by
representing the integer and fractional parts separately. The fractional
part needs to be truncated to a pre-defined binary precision ρ, since
the binary representation of many numbers can be infinite. Thus, the
number of bits to encode θ̂ is:

L(θ̂) =
k

∑
i=1

log2bθ̂ic+ kρ, (3.8)

where k is the number of parameters in the model.
Note that the choice of the precision ρ is of major importance.

Choosing fewer bits to encode the fractional parts yields a small L(θ̂),
but at the expense of L(~x | θ̂), as the residuals will be larger. A finer
precision reduces the residuals, as the encoded values will be closer
to the true estimates, but increases the cost of encoding the parame-
ters. In order to minimize the description length, we need to optimize
the precision. Rissanen (1989) shows that if the model parameters
are estimated from n data points using Maximum Likelihood Estima-
tion (MLE) and n is large, the optimal precision ρ is approximately
(log2 n)/2. Thus, (3.8) can be rewritten as:

L(θ̂) =
k

∑
i=1

log2bθ̂ic+
k
2

log2 n. (3.9)

With the expressions for data and parameter description length,
(3.5) can be written in more detail as:

L(θ̂,~x) =
k

∑
i=1

log2bθ̂ic+
k
2

log2 n− log2 p(~x | θ̂). (3.10)

Equation 3.10 embodies the fundamental trade-off between concise-
ness and accuracy that defines the MDL principle. Models with more
parameters will achieve better accuracy (high likelihood) at the ex-
pense of simplicity. In fact, if we set L(θ̂) constant, MDL falls back
to MLE, selecting the model that offers the best fit to the data. In
that sense, L(θ̂) can be thought of as a safeguard against over-fitting.
Likewise, over-concise models have low accuracy, being just as un-
desirable. Minimization of the description length tends to select the
model featuring the best balance between these criteria. In the in-
formation theoretic interpretation, the selected model corresponds to
the best compression of the data.
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L(A)     <  L(B)

L(S|A)  >  L(S|B)

Figure 3.2: An illustration of two tree cuts: A (yellow) and B (pink).
More abstract cuts (A) have lower parameter description length
(L(A)), but higher data description length (L(S|A)).

MDL Tree Cut Model

Having laid out the general formulation of the MDL principle, in this
section I explain the tree cut model, which is an important building
block for our abstraction approach. The tree cut model is a general-
ization method based on MDL, originally developed for the linguistic
problem of automatic acquisition of case frame patterns from large
corpora (Li and Abe, 1998).

Consider a tree structure representing the hierarchical relation be-
tween abstract classes, e.g., IS-A, part of, instance of. The degree of
abstraction grows towards the root. Assume that only the leaves are
observable (countable), and the internal nodes accumulate the counts
of their children. L is the set of all leaves. A dataset S is a multiset of
observations, each representing one occurrence of a leaf l ∈ L, with
l ∈ S denoting the inclusion of l in S as a multiset. We denote the
dataset size by |S|, the total number of observations.

A tree cut is any set of tree nodes that exhaustively covers the leaf
nodes. Graphically, it can be represented by a path crossing the tree
lengthwise, as in Figure 3.2. Nodes along the cut represent the sub-
trees dominated by them and are assigned each a probability value.
Depending on how regular is our data S, a concise way to transmit
it over an arbitrary channel to a receiver who has knowledge of the
tree is to send a tree cut. The receiver then estimates the value of
each leaf based on the value of the node representing it in the cut.
In other words, a cut is a model of the data, carrying estimates of
the observed values. The residuals are sent separately, in the MDL
fashion, as discussed in Section 3.2.
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A tree cut model M is defined as the tuple (Γ, θ̂), where Γ =

[C1, C2, ..., Ck] and θ̂ = [P̂(C1), P̂(C2), ..., P̂(Ck)]: the vector of nodes
(classes) and their parameters (estimated probabilities), respectively.
The probability P̂(C) of a class is estimated by MLE, as follows:

P̂(C) =
f (C)
|S| , (3.11)

where f (C) is the accumulated count of the class C. The estimated
probability of each of the leaves under a class is obtained by normal-
ization of the class probability over the number of leaves C under the
class:

P̂(l) =
P̂(C)
|C| . (3.12)

Note that behind this formula is the assumption of uniform probabil-
ity. This means the probabilities (or frequencies) of the leaves under
a cut are smoothed.

As discussed in the previous section, the data description length is
the log of the likelihood of the data:

L(S | Γ, θ̂) = −∑
l∈S

log2 P̂(l). (3.13)

The minimum data description length is held by the deepest tree cut
model, comprised of all leaves, which features no better abstraction
than the raw data. The cost of encoding the parameters θ̂ of the
model, an array of real numbers, is given by (3.9). Note that, Li
& Abe omit the first term in (3.9), namely, the cost of encoding the
integer part of the parameters, because the model parameters are
probabilities; hence, the cost of encoding the integer parts is always
0. In summary, Li and Abe’s tree cut model minimizes the following
information criterion:

L(θ̂, S) =
k
2

log2 |S| −∑
l∈S

log2 P̂(l). (3.14)

To be more precise, in addition to the probabilities θ̂, a receiver
would also need to know the classes Γ to decode the data correctly.
Since the number of possible cuts in a tree is finite, in theory we
could use an index to inform Γ, as part of the coding scheme. As
such indexes would be equally probable a priori, their code length
would be constant for all models and so, can be safely ignored. For
the purpose of model selection, all we need to account for is the cost
of encoding θ̂ and (S | θ̂).

Li and Abe (1998) provided an efficient, greedy algorithm that is
guaranteed to find the tree cut whose description length is minimal
(Listing 3.1). The algorithm is based on the following insight: for each
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tree cut segment, the description length calculation depends only on
the subtrees covered by it. Therefore, the best tree cut is either the
root tree cut or the concatenation of the best tree cuts for each of the
child subtrees. This algorithm is guaranteed to find the minimum
description length regardless of changes in the description length cal-
culation so long as these changes do not alter the independence be-
tween subtree cuts. In the rest of this chapter, I present different ways
to calculate parameter and data description lengths, but the same al-
gorithm is used for minimization.

Listing 3.1: Find-MDL. For each child subtree recursively finds the best tree-
cut. The child treecuts are appended and the resulting descrip-
tion length is compared to that of the root treecut, which consists
of a single node, the root. Whichever holds the lowest descrip-
tion length is returned.

1

2 def find_MDL(t):

3 ’’’

4 Recursively finds the best treecut.

5 Args:

6 t - a tree

7 Return:

8 the MDL treecut for t

9 ’’’

10

11 if is_leaf_node(t):

12 return [t]

13 else:

14 c = []

15

16 for child in t.children:

17 treecut_child = find_MDL(child)

18 c.append(treecut_child)

19

20 # L calculates the description length

21 if L([t.root]) < L(c):

22 return [t.root]

23 else:

24 return c

3.3 mdl drill-down

In this section, I experiment with using the tree cuts selected by Li
and Abe’s approach to inform which nodes should be abstracted in
views of a hierarchical dataset. Since such cuts are generated with
no consideration of the available display size, I adapt the method
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(a)

(b)

(c)

(d)

Figure 3.3: Display-optimized MDL tree cuts (left) reveal important nodes
while reducing clutter when compared to simple depth thresh-
olding (right). These are Docuburst views of the book Gamer
Theory, revealing occurrences of concepts in the book using color.
Concepts are organized into a semantic hierarchy. From top
to bottom increasing numbers of nodes are revealed through
adjusting the tree cut parameter (left) or increasing the depth
threshold (right). We can see that in (b, left) several important
dark-green nodes are revealed while unimportant nodes remain
hidden. Figure (b, right) has twice as many nodes, but impor-
tant nodes remain hidden. These nodes are not revealed by the
simple depth threshold until (d, right), where there are a signif-
icant number of unimportant nodes also visible.



32 clutter and information

by introducing a weighting parameter that determines the relative
importance of fitness to the data over clutter. An increase in weight
results in a deeper tree cut. In my proof-of-concept, the user can
manipulate this parameter interactively to increase the level of detail
of the view.

I chose to implement the technique on Docuburst, an open-source
document visualization tool (Collins et al., 2009a). Docuburst dis-
plays a sunburst representation of the WordNet ontology where the
size of nodes and categories (angular extent) is weighted by their
occurrence in the input document, allowing users to inspect which
words and categories of words are more prevalent in a document.
The color of a node is based on the non-cumulative count of uses of
the corresponding word in the document. In their future work sec-
tion, Collins et al. discuss two problems that could potentially be
solved with uneven MDL tree cuts. First, abstracting subtrees that
have low relative importance. Second, the top levels of WordNet are
too abstract, as far as carrying little information about the document’s
content.

Figure 3.3 features views of the book Gamer Theory, by McKenzie
Wark. The most representative categories of the document are the
darkest (most frequent); for instance: game, entertainment, algorithm,
storyline, boredom, etc. In a full tree view, 6,302 nodes would be ren-
dered, which is likely enough to cause latency in a browser-based
visualization. Also, displaying this many nodes results in small, illeg-
ible labels and the need to interactively zoom and pan.

The tree cut resulting from minimizing Li and Abe’s information
criterion is shown in Figure 3.3(a). Nodes under the tree cut are
hidden, whereas nodes on or above the tree cut are visible. Unless
the available display size is limited, that view can be considered too
abstract.

Following Wagner (2000), we introduce a free weighting parameter
W to equation (3.14) as a means to control the importance of the data
description length over the parameter description length and, as a
result, the tree cut depth:

L(θ̂, S) =
k
2

log2 |S| −W ∑
l∈S

log2 P̂(l) (W > 0). (3.15)

The semantics of increasing W is equivalent to that of drilling
down; the more weight applied to the data description length (resid-
uals), the more parameters (nodes) will be included in the model
(tree cut) to minimize the overall description length. Thus, weighted
MDL tree cuts can be useful to reveal details at a rate that is more
compatible with the distribution of values in the hierarchy. In order
to illustrate this concept, we mapped W to the drill-down action in
Docuburst; that is, when users roll the mouse wheel, W is increment-
ed/decremented by a predefined delta. Figure 3.3(b-d), left, shows
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the result of three subsequent increments in W, starting from 3.3(a),
left. In contrast, Figure 3.3(b-d), right, shows the result of three drill-
down steps where a conventional depth threshold is incremented. It
is clear that, in only a few steps, weighted MDL views allow access
to most of the representative nodes in the document with much less
clutter than using the depth threshold or the full overview. In terms
of number of nodes rendered (a-d), the weighted MDL views cost 32,
387, 730, and 887 nodes; while the depth threshold views cost 183,
808, 2202, 4199 nodes.

An important concern is choosing ∆W so that every increment re-
sults in a view that has significantly more information than the pre-
vious. In my tests, ∆W was defined empirically, and a value of 250

yielded good results for visualizing a variety of documents. Since
the amount of information and the number of tree nodes increase
monotonically with W, ∆W could be determined dynamically with
the definition of a minimum number of tree nodes to enter the view.
Then a standard optimization algorithm, such as Nelder-Mead (Ols-
son and Nelson, 1975), could be used to find the smallest increment
to W that satisfies this minimum. Alternatively, ∆W could be based
on a model of user’s interest.

Weighted MDL views can be useful as a way to explore visualiza-
tions interactively, but the problem of optimizing the level of detail as
a function of the available display space before any user input remained
unsolved. Specifically, we needed a method capable of generating
a first view of the dataset that is as informative as possible within
the bounds of readability. The next section presents a satisfactory
method.

3.4 display-tailored tree cut models

This section begins with the consideration that hierarchical visualiza-
tion concerns, in general, the representation of tree cut models, in the
sense defined in Section 3.2. If we treat visualization techniques (e.g.,
treemap, sunburst) as coding schemes and the views produced with
them as encoded tree cut models, we can select optimal views using
MDL criteria. In particular, we are interested in expressing parame-
ter and data description lengths in a way that relates to clutter and
fitness in visualizations. We will focus on space-filling hierarchical
visualization techniques, as the connection to MDL is more obvious.

In a space-filling visual representation of a hierarchical dataset, the
pixel grid is divided into areas proportional to the data values. Areas
are recursively grouped in the visual space according to the hierarchy
topology, so that siblings are always adjacent. In addition, color and
labels can be used to convey the hierarchical structure.
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A non-aggregated hierarchical visualization Vmax is an encoding of
the deepest tree cut model of a dataset. For example, in a treemap
without decorations (e.g., padding), Vmax fills the entire display space
with rectangles representing the tree leaves. Given the dataset S and
the set Λ of visualizations of S using a specific layout, each of which
corresponds to a tree cut of S, Vmax is the visualization that maximizes
L(V):

Vmax = arg max
V∈Λ

(L(V)), (3.16)

Note that, for sake of simplicity, we make no distinction in the nota-
tion between a visualization V and the tree cut encoded by it.

In the information theoretic interpretation, if visualizations allowed
for lossless coding, Vmax would always minimize L(S |V) and provide
the best fit to the data, corresponding to the model selected by MDL
when we set L(V) constant or, equivalently, to the model selected
by MLE. However, a space-filling visualization is a partial and lossy
coding system: partial because there exist some source symbols that
cannot be encoded (e.g., data points that map to subpixel areas); lossy
because it is possible that a pair of symbols share a code word (e.g.,
data points that map to overlapping areas due to rounding).

Depending on the available display space, when the dataset is rela-
tively small, Vmax generally provides the best fit to the data, but when
the number of leaves is large, decoding of information is impacted,
due to the aforementioned limitations caused by display pixel reso-
lution. This is a key departure from Li and Abe’s method, where an
increase in the length of the model always yields an increase in fitness.
In other words, there is a limit on the model fitness to data achievable
by a space-filling visualization. This constrain results from limited
pixel availability and from limitations in visual acuity. The fact that
Vmax does not necessarily hold the minimum data description length
can be denoted as follows:

L(S |Vmax) ≥ min
V∈Λ

L(S |V), (3.17)

This inequality can be read as: the data description length of the
visualization of the deepest tree cut (Vmax) is not necessarily minimal.
As a result, before even considering the parameter description length,
we can observe that it pays off selecting treemaps more abstract than
Vmax when datasets are large relative to the available screen size.

Treemap

Before I introduce the calculations for the treemap, recall that the fit-
ness to data is a function of an estimated probability and a true value
(i.e., the data). The fitness to data is degraded the more the estima-
tion deviates from the true value, in terms of likelihood. Assume that
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Figure 3.4: Treemap visualizations generated with the display-tailored
MDL procedure, with the following resolutions: 375x400px,
375x667px and 1920x1080px. More abstract tree cuts are selected
for smaller displays.
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in visualization models the estimated probability is a function of a
quantity estimated visually; for instance, the area or the position of
a polygon. Thus, by expressing mathematically any problems in this
visual estimation, we can directly affect the fitness to data. My goal
here is to define this estimation problem in a way that reflects the
degradation of fitness when the display shrinks.

Let’s define the dataset S in more detail. S is a 2-tuple (L, f ), where
L is the subset of classes that are tree leaves, and f is a function such
that for each l ∈ L, f (l) is the count of l.

Then the area of a leaf can be defined as the following composite
function with respect to the display area D (in pixels):

(A ◦ f )(l) = A( f (l)) =
f (l)
|S| D. (3.18)

Likewise, the area of an abstract class C is given by:

A( f (C)) = ∑
l∈C

A( f (l)), (3.19)

where l ∈ C is the set of tree leaves dominated by C. We call G =

(L, A ◦ f ) the linearly transformed dataset using A ◦ f . Essentially, G
is the dataset with scores transformed to pixels. The probabilities of
the classes are estimated based on the encoded G. For conciseness,
we abbreviate A( f (C)) as A(C) in the rest of this section.

A treemap encodes such areas as a vector of rectangle coordinates
~R = [R1, R2, ..., Rk]. Formally, we describe a treemap as a 2-tuple
T̂ = (Γ, (R | D)). Given D, we can refer to any point in the grid
with an integer index 1 ≤ i ≤ D. Thus, to transmit Ri, we need
only two integers, corresponding to the indexes of the top left and
bottom right corners. Since the index space is finite and the indexes
are equally likely, we can use Rissanen’s universal prior to arrive at
L(i) = log2 D. The parameter description length is then:

L(~R) = 2k log2 D. (3.20)

Equation 3.20 gives an approximation of the optimal number of bits
necessary to transmit the parameters of a treemap, ignoring any fac-
tors that are constant across all treemaps. For the sake of simplicity,
we consider a treemap with no colors or labels.

Since the pixel grid imposes a limited precision on the representa-
tion of areas, we approximate the encoded area of C in the treemap
by rounding A(C):

A′(C) = bA(C) + 1/2c. (3.21)

Note that A′(C) does not account for precision lost by the fact that
A(C) has to be decomposable into exactly two factors. P̂(C), the
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probability of a class, is estimated simply as the ratio between the
encoded class area and the total display area:

P̂(C) =
A′(C)

D
. (3.22)

As in (3.12), we assume that P̂(l) is estimated by normalizing P̂(C)
with respect to the leaves dominated by C:

P̂(l) =

{
P̂(C)
|C| if P̂(C) > 0

c if P̂(C) = 0
(3.23)

where c is a constant representing the estimated probability of the
leaves under a class whose rounded area is zero, and can be thought
of as an uninformed probability. We can set c to an arbitrarily small
value so as to penalize cuts featuring subpixel areas or, more sensibly,
define c as the sum of the probabilities of the “invisible” classes in a
cut, divided by the total number of tree leaves under such classes. The
piecewise function above can also be defined in a more conservative
way; for example, setting P̂(l) = c if A′(C) < δ, in order to penalize
cuts with small areas, where δ is the smallest visible or selectable area.
For example, the desired minimum pixel area on a high resolution
wall-sized display may be different than that on a smartphone device.

The data description length is L(G | T̂), the log of the following
likelihood of G (as discussed in Section 3.2):

L(G | T̂) = ∏
l∈L

P̂(l)A(l) (3.24)

It is worth mentioning that the expression above is not strictly a
likelihood, but a power of the likelihood, since the data counts have
been multiplied by a common factor that converts them to areas. Fi-
nally, the information criterion for selection of treemaps is:

L(T̂, G) = L(T̂) + L(G | T̂) = 2k log2 D−∑
C∈Γ

A(C) log2 P̂(l) (3.25)

Sunburst

The structure of a sunburst can be thought of as a series of overlap-
ping disks, one for each tree level. A tree cut can be represented as a
vector of arcs ~Q. The central angle of the arc of a class equals the sum
of its children’s angles. Arc radius is proportional to the depth of a
class in the tree: rj = (j + 1)∆r, with rj being the radius of all classes
of depth j, and ∆r = d/2h, where d is the sunburst diameter and h is
the number of tree levels. ∆r is the “thickness” of each tree level in
the sunburst diagram.
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It is reasonable to assume that users decode a sunburst by estimat-
ing the ratio of the arc length of a class and the circumference of
the disk that corresponds to the tree level where the class belongs.
Assuming the sunburst is sized to optimally fit the screen, as more
levels are displayed, ∆r is reduced, and estimating the value of a class
becomes more difficult. This implies that selecting the best tree cut
depends on how many levels are displayed, and vice-versa. For ex-
ample, a class with a relatively low frequency and depth 2, might
be readable when displaying only three levels of a tree, but can be
rendered invisible when eight more levels are displayed, as the level
disks will shrink.

In order to avoid a chicken or the egg dilemma, where the tree cut
depends on ∆r and ∆r depends on the tree cut, we need to define the
true value independently of ∆r. We can then calculate the description
length of tree cuts that yield varying ∆r with respect to this true value.

I define the following mapping of S, where function A is the area
of the arc sector of radius d/2, which is independent of ∆r. This is
the true value to be estimated.

(A ◦ f )(l) = A( f (l)) =
f (l)
|S| π(d/2)2. (3.26)

A sunburst needs only two integers to inform each area, corre-
sponding to the pixel indexes of the endpoints of an arc. Therefore,
the parameter description length is:

L(~Q) = 2k log2 d. (3.27)

The arc length s of a class C at depth j is:

s(C) =
f (C)
|S| 2πrj. (3.28)

Assume then, that the true value A is estimated based on the sector
angle, which is, in turn, estimated based on the arc length of the
sector:

(A′ ◦ f )(l) = A′( f (l)) =
θ̂(d/2)2

2
=
bs(C) + 1/2c(d/2)2

2rj
(3.29)

where θ̂ is the estimated angle and j is the depth of class C. Note
how the rounding of s implies that the decoded area of arcs with
length smaller than .5 is 0, due to the pixel resolution constraint. The
estimated probability of a class is the ratio between the estimated area
of the class and the full area of the sunburst (before cuts):

P̂(C) =
A′(C)

π(d/2)2 . (3.30)
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The data description length expression is the same used in the
treemap case (L(G | T̂) in Equation 3.25).

To select the MDL tree cut, we need to run two rounds of mini-
mization. In the first, we select the best tree cut under each value of
h; for instance, the best tree cut considering all levels up to level h,
then h− 1, and so on. In the second round, we select the best of the
tree cuts from the previous step. The tree cut models are comparable,
as they attempt to encode the same true value.

Proof-of-concept

To illustrate the use of the proposed display-tailored MDL procedure,
I developed two prototype visualizations (treemap and sunburst) of
the Directory Mozilla (DMOZ) dataset. As of November, 24, 2014,
DMOZ consisted of 3,847,266 web pages, categorized under a total of
782,031 topics. I selected the subtree under the prefix “Top/World”,
which contains 2,083,282 pages written in English under 498,487 top-
ics. I wrote browser-based clients that request tree cuts from a Node.js
server. The parameters required by the server are display size and
root node ID. The layouts are calculated in the server using D3 and
rendered in HTML. Although the server has no knowledge of the al-
gorithm used by the client to calculate the treemap, it relies on the
fair assumption that the areas are calculated approximately as in Sec-
tion 3.4.

The resulting visualizations, parameterized for a variety of screen
resolutions, are presented in Figure 3.4. Note that as the display res-
olution increases, deeper tree cuts are selected. This is a consequence
of fewer classes in such cuts being represented with tiny areas; hence,
the likelihood of these cuts increases, while their description length
decreases.

The treemaps drawn by the client allocate significant space for la-
bels, in a way commonly known as “padding”. That space is sub-
tracted from the space available to represent each node’s ancestors,
and is also meant to help users understand the tree structure better.
The MDL calculations do not account for this “wasted” space (in the
estimation sense) and the clutter introduced by the labels; therefore,
there is more complexity in the resulting views than what is encoded
in L(T̂). I consider, however, the results satisfactory.

3.5 validation

The proposed technique is based on the premise that a high-quality
display of hierarchical data has a good balance between clutter and
information; hence, the main question to be answered is whether the
proposed approach is scalable, in the sense that it can consistently
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produce high-quality views under varying display resolutions and
dataset sizes. It should be noted that it is not my intention to pro-
vide a comprehensive evaluation of abstraction approaches; instead,
I am interested in comparing the proposed method with reasonable
baselines to put its quality in perspective.

To address this, I adopted two validation approaches, following
Munzner’s (2014) nested model of validation. At the visual encoding
level, I test performance in a comparative controlled study, and I re-
port on a quantitative image analysis that measures clutter. At the
algorithm level, I report the scalability of the approach.

User Study

Clutter is shown to correlate with response times in visual search
tasks (Haroz and Whitney, 2012; Rosenholtz et al., 2010; Wolfe, 1998a);
therefore, a sensible way to assess the level of clutter in a visualiza-
tion is by measuring the time participants take to locate targets. In
hierarchical displays, an important caveat of abstraction is hiding po-
tentially interesting nodes; that is, if a node of interest is located deep
in the hierarchy, more abstract views will require more drill downs
to locate it. I designed a user study where participants were asked to
find targets in treemaps abstracted with different methods, including
MDL. Among other factors, I varied display resolution, target value,
and target depth, and examined how each abstraction approach per-
formed in interactive tasks.

Tasks

Participants were instructed on how to use the drill down (re-rooting)
function and were given the path to the target (i.e., a list of the tar-
get’s ancestors); for instance: Top/Arts/Music. A CSS hack was im-
plemented to make labels not searchable with a browser’s find tool.
The following factors were varied in the tasks: abstraction technique,
display size, dataset size, target depth, and target value. MDL was
compared with three levels of depth threshold: t3 and t4, which
correspond to the conservative approaches of capping nodes with
depth greater than 3 and 4, and t∞, which is equivalent to no aggre-
gation. Display resolution has three levels: 375x667px, 1024x768px,
and 1920x1080px, which match common resolutions of smart phones,
laptops, and desktop monitors, respectively. For dataset size, three
subtrees of DMOZ were tested: top, arts and soccer, containing ap-
proximately 500,000, 55,000, and 3,000 categories each. Target depth
(distance from root) varied among 3, 4, 5, and 7; and target value
varied between average and outlier. The value of average targets was
the average of the values of all categories in the target’s level, while
the value of outliers was ten times the average. Given these con-
straints, the target location in the tree was chosen randomly. Depend-
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ing on the combination of factors, the target might be visible in the
“overview” screen or drill down might be necessary to find it; for ex-
ample, a target with depth 4 in a treemap where nodes with depth
higher than 3 are hidden (i.e., t3) can only be seen upon a drill down.
The crossing of all factors resulted in 288 interactive tasks.

During pilot testing, I realized that some tasks might take a long
time (over two minutes), and a long session is incompatible with par-
ticipants’ expectations of fairness in crowdsourcing tasks. Thus, each
session consisted of one training task followed by 8 tasks. In total,
each participant completed 9 tasks, which were assigned randomly
within display resolution, in order to avoid participants having to in-
teract with visualizations larger than their screen. Completion times
and number of drill-down interactions were recorded. In order to
minimize the effect of latency, in the interactive tasks the timer was
paused whenever the user drilled down, and resumed once the new
view was completely rendered.

Participants

Participants were recruited with the CrowdFlower crowdsourcing plat-
form and compensated with $2. They were presented with the in-
structions both on the CrowdFlower page listing my study and on
the study page hosted in our servers. Participants were allowed to
skip each task after three minutes and withdraw the study at any
time.

Results

I analyzed 980 completed trials (∼ 3.4 per task avg.) after removing
96 outliers. The median session length was 11 minutes. I used a
log-linked Gamma generalized linear model, including as covariates
display resolution, dataset size, target depth and target value both as
main effects and in two-way interactions with technique. A new vari-
able was created representing the order tasks are completed within
the session. User was included as a random intercept. Baseline levels
are t∞, 1920x1080px, top, average, depth and order 0.

The model intercept is 4.37 (79 seconds). Model estimates corre-
spond to increase/decrease in the intercept estimate, which is in log
scale. For instance, for an intercept of 4.37, a variation of -0.1 repre-
sents a reduction of 8 seconds in mean time. The null model states
that the effect is 0, indicating that the covariate has no influence on
the response time. p-values are calculated with Wald Z-tests.

The results show that, relative to t∞, all other techniques are respon-
sible for a significant decrease in response times on average (Figure
3.5). Order has a small, but significant negative effect on times and so
does changing the value of the target to outlier, to a larger extent. The
outlier effect is significantly and slightly larger for the MDL approach,
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Variable Coefficient p-value
-1.0 -0.5 0.0 0.5

Estimate

-1.0 -0.5 0.0 0.5

technique MDL 0.028

t_3 0.025

t_4 0.019

display 375x667 0.071

1024x768 0.107

root arts 2.19E-07

soccer 2.00E-16

depth depth 0.054

order order 6.75E-08

value outlier 0.003

interactions 375x667:MDL 0.680

375x667:t_3 0.771

375x667:t_4 0.636

1024x768:MDL 0.045

1024x768:t_3 0.346

1024x768:t_4 0.741

arts:MDL 0.683

arts:t_3 0.177

arts:t_4 0.176

soccer:MDL 0.081

soccer:t_3 0.015

soccer:t_4 0.044

depth:MDL 0.190

depth:t_3 0.093

depth:t_4 0.083

outlier:MDL 0.043

outlier:t_3 0.085

outlier:t_4 0.296

Figure 3.5: Results from a generalized mixed linear model (Gamma, log-
linked) fitted to the user study data. Response variable is com-
pletion time. Estimates are in log scale.
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Figure 3.6: Number of drill-down interactions needed to complete a single
trial of the study, grouped by abstraction technique and target
value.
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although the differences in estimates are not dramatic. Interestingly,
depth does not seem to significantly affect the response variable. This
may be due to not accounting for the time for new views to load when
drilling down. A decrease in dataset size improves completion times
only for t∞, and in the smallest dataset condition (soccer), both t3 and
t4 perform worse than t∞. This is probably due to participants hav-
ing to drill-down with t3 and t4, while the target is already visible
with MDL and t∞. This explains why the effect sizes are larger for
soccer than for arts. Smaller display sizes are associated with a small
decrease in response times, except for MDL in the 1024x768 displays,
where we observe a significant increase in response times.

Figure 3.6 gives the distribution of the number of drill-down in-
teractions needed to complete one trial, grouped by abstraction tech-
nique and target value. In the average target value condition, the
distribution of values for MDL is skewed to the right compared to all
other approaches; that is, it required fewer drill downs. In the outlier
condition, MDL was better than t3 and t4, and similar to t∞.

Discussion

The results confirm that lack of abstraction in views of large hier-
archies is detrimental to user performance, at least in visual search
tasks. In that respect, even highly abstract approaches, such as t3

and t4, are better than unabstracted views. However, as we are not
accounting for the latency between drill downs, it is possible that in
high latency environments the benefits of abstraction are cancelled
by the effect of latency when locating targets requires drill down. In
such a case, Figure 3.6 suggests that MDL would require fewer drill-
downs than t3 and t4. The fact that a reduction in dataset size was
detrimental to user performance in all abstraction conditions suggests
that abstraction for small datasets may be overkill; nevertheless, com-
pared to t3 and t4, MDL was the least affected by a dataset reduction.

I expected outlier targets to be easier to spot, as their size is ten
times larger than the average. The fact that MDL benefits the most of
the outlier condition is likely a result of the MDL tendency to expose
nodes with large model residuals.

The interaction between MDL and display size suggests a non-
linear relation: response times increased with a reduction to 1024x768,
then decreased with the 375x667 display. This suggests that the ben-
efit of MDL over t∞ is larger in the extremes of the tested display
size range. In addition, it suggests that too much information may
have been added to the display at 1024x768. It is possible that an
adjustment in the weighting parameter that controls the importance
of fitness over clutter would be beneficial.

Overall, the average response time of MDL was very similar to that
of depth threshold approaches, even though the average clutter in
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Figure 3.7: Left: Level of clutter computed with the Feature Congestion
measure as a function of display size. Right: Node count as
a function of display size. In both charts, the dataset is DMOZ,
and aspect ratio is 1:1.

MDL views tends to be higher. In the next section, we investigate the
behavior of MDL views using an analytical measure of clutter.

Measuring Clutter

To complement the analysis of the previous section, I compared the
same abstraction techniques with the feature congestion measure of
clutter (Rosenholtz et al., 2010), which is based on the notion that
clutter in a display is associated with degrading performance in vi-
sual search. It essentially measures the difficulty of adding a new,
salient item to a display. The measure computes the local variability
of color and contrast luminance at multiple scales, then combines the
values over space and scale to generate a scalar.

Feature Congestion Measure

To calculate the feature congestion measure, the image is represented
in the perceptually uniform color space CIELab. Three spatial scales
are created for the image using a Gaussian pyramid, which is a mul-
tilevel structure where each scale δ is created by smoothing and sub-
sampling the representation at scale δ− 1. In a Gaussian pyramid, a
many-to-one correspondence exists between pixels in adjacent pyra-
mid levels.

Next, color and luminance contrast features are found for each
scale. For luminance contrast, a difference is computed between the
results of two Gaussian filters. This common procedure, which mea-
sures the intensity of a region relative to its surroundings, captures
the center-surround operation of visual receptive fields (see Itti et al.
(1998) for a similar application). The color feature corresponds to
local mean color, computed by pooling with a Gaussian filter.

For each of these features, local covariance is computed. From
the covariance matrices, the volume of the covariance ellipsoids is
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calculated, which is the final local measure of feature clutter. Hence,
we have separate 2D maps of clutter for color and luminance contrast
for each scale. Intuitively, large covariance ellipsoids indicate a large
utilization of the feature space, and consequent feature crowding.

In order to obtain a global measure of clutter, these clutter maps
are pooled spatially and across scales, resulting in scalar measures
of clutter for each feature. At last, the scores are linearly combined,
producing a single image clutter score.

Procedure

I generated treemap views of the DMOZ’s subtree “Top/World”, the
same used throughout this chapter, in resolutions ranging from 100 x
100px to 2400 x 2400px, with the four abstraction approaches tested
in the user study: t∞, t3, t4, and MDL. Then I calculated the feature
congestion measure using only contrast luminance, as the treemaps
do not vary color. In addition, the views were generated without
labels, in order to focus on clutter caused by tree structure. Padding
was kept, as it is usually necessary for understanding structure in
treemaps featuring deep levels.

The results of the experiment are shown in Figure 3.7, left. The clut-
ter of t∞ views remains constant and high across the whole range of
resolutions. t3 and t4 decrease exponentially as the resolution grows.
Just like t∞, the clutter in MDL views remains constant, but is lower
than t∞. Note that for small displays, MDL ends up “falling back”
to t3 and t4. As space becomes available, the distance between MDL
and the depth thresholded views becomes higher, with MDL filling
the space with more data.

While clutter is often considered to be unwanted, it is positively
correlated with information density, and my approach attempts to
find a balance. So, while the clutter of t3 and t4 drops dramatically
at large screen sizes, so does the information density. Clutter can be
compared with the number of nodes visible in the visualizations as
seen in Figure 3.7, right. MDL, t3, and t4 consistently reveal far fewer
nodes than t∞. The number of nodes revealed by MDL increases with
screen size, while maintaining a roughly constant level of clutter. I
argue that while MDL reveals a smaller number of nodes at screen
width 1024px, compared to t3, and the clutter is higher, this is due to
the better (more uniform) distribution of nodes across the space, as
seen in Figure 3.8.

Woodruff et al. (1998) argue in favor of constant information den-
sity (e.g., constant number of objects per area) across x, y and z dimen-
sions of a multiscale visualization. They achieve that automatically by
modifying the visual representation of data points and by adjusting
the level of abstraction unevenly. Figure 3.8 (middle) demonstrates
that MDL can also approximate constant information density across
x and y dimensions. In addition, the results of the feature conges-
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tion experiment suggest that MDL approximates constant informa-
tion density across display resolutions. Across the z dimension (drill-
down) I saw variations in the information density caused by the ex-
pansion of nodes that have many children (fan out effect (Archambault
et al., 2008)). Unlike VIDA (Woodruff et al., 1998) and GrouseFlocks
(Archambault et al., 2008), which create new aggregates to minimize
fan out, my method preserves the original hierarchy structure. As
a result, if there are strong variations in how wide the first levels of
subtrees are, the information density can vary.

Scalability Analysis

The MDL algorithm is a customization and application of the ap-
proach of Li and Abe, with the additional optimization step of includ-
ing a factor of display size. Li and Abe found that determining the
MDL tree cut terminates in time O(NxS), where N denotes the num-
ber of leaf nodes in the input tree T and S denotes the input sample
size. The algorithm I propose here increases this procedure by the
transformation from the data domain to the pixel domain, and the
estimation of the probabilities of leaves, both of which are O(NxS).
As S is generally much larger than N, my algorithm scales roughly
linearly with the size of the dataset.

Any overhead encountered by generating a display-optimized tree
cut could be shifted to a server-side pre-calculation, for example, to
pre-cache the tree cut for a variety of standard screen sizes, thereby
eliminating any delay incurred by the tree cut operation. The re-
sulting trees generally balance better information density with the
number of nodes, and will render faster and consume fewer client
resources than an equivalent full tree, and show a more uniform in-
formation density than a fixed-level tree cut.

3.6 discussion

Generality: With the formulae for treemap and sunburst visualiza-
tions, I exemplified how model selection criteria can be written for
visualizations under the MDL framework. It is possible that good
results can be achieved with MDL with many other kinds of hier-
archical visualizations where (a) some visual aspect of the nodes is
weighted by a score, and (b) the scores are cumulative. This might in-
clude visualizations that are not traditionally hierarchical but were
augmented with multiscale functionality, such as aggregated scat-
terplots, parallel coordinates and node-link diagrams (Elmqvist and
Fekete, 2010). Defining criteria for new classes of visualization in-
volves the specification of three main expressions:
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Figure 3.8: Treemap views of the DMOZ dataset for a 1024x768px display.
On the top, the full view of the dataset. In the middle, the level
of detail is based on the best MDL tree cut (uneven). On the
bottom, an even cut is performed below level 4 of the tree. The
MDL tree cuts yield a better balance of information density and
clutter.
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Figure 3.9: Subtle visual cues for collapsed nodes using texture (treemap)
and border thickness (sunburst).

• The transformation from the data domain to the visualization
domain (pixel units) (A(C)).

• Number of bits necessary to encode the visualization (L(V)).

• How probabilities of tree leaves are estimated from the visual
representation of classes (P(l)).

Uniform distribution assumption: Behind the estimation of the
probability of leaves given a class is the assumption of uniform prob-
ability. If this assumption is not reasonable in a certain application
domain, P(l) can be easily changed to reflect a different probability
distribution. A case where this might be useful is when depicting ge-
ographic information, where the user might have a prior assumption
about the distribution; for example, given a certain value for the State
of New York (e.g., gross product), one might expect that value to be
concentrated in New York City. In many other cases, lacking prior
knowledge, I expect the uniform distribution to be fairly reasonable.

An important limitation is that if the data is uniformly distributed,
the tree cut generated will be the most abstract possible (i.e. the root).
This occurs, for example, if the value of every leaf is 1. Likewise, if a
different distribution is used and the data conforms exactly, the tree
cut will be overgeneralized. This occurs because the goal of MDL
is the shortest message, and when the data conforms to the model
expectation nothing stands on the way to selecting the most concise
model.

Interpretation: It is especially important in models such as mine,
where abstraction is calculated algorithmically, that the presence of
data abstraction is made apparent in ways that are not distracting
to the main task of working with a visualization. While my tech-
nique and evaluation focus on the level of abstraction, I have begun
an investigation into the representation problem. Figure 3.9 suggests
preliminary visual designs which subtly distinguish aggregates from
regular leaves. On treemaps, aggregates are textured; on sunbursts,
collapsed nodes are decorated with a colored, thicker border.
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3.7 summary

I presented a technique for using the MDL Principle, extended with
considerations of display space, to create optimized views of hier-
archical datasets which fit the “analyze first, show the important”
first step of the visual analytics pipeline. In addition to providing
overviews customized to dataset and display size characteristics, the
display-optimized tree cuts can be interactively expanded by chang-
ing the weighting parameters.

The number of nodes displayed in a display-optimized MDL tree
cut is similar to those in an even tree cut at a set depth, but fewer than
showing a full tree. This increases the rendering efficiency, resulting
in a performance gain in web-based visualization applications, where
processing resources, memory, and display space may be constrained
(e.g. on mobile devices). In addition, on small screens and any touch
device where rendered elements are small, interaction accuracy can
be difficult due to the “fat fingers” problem. My technique applies
abstraction in cluttered areas of a visualization, which will likely im-
prove target selection accuracy.

I have demonstrated my technique applied to two datasets across
two different hierarchical visualization types, treemap and sunburst
diagrams, and outlined the steps required to generalize the approach
to other visualization types. Display-optimized MDL tree cuts may
prove especially useful due to their general nature — they are not
customized to dataset characteristics. However, it is also possible to
tailor them to the dataset, for example, by basing the tree cut on a
selected data attribute, as long as that attribute is quantitative on the
leaves and cumulative in the hierarchy.

Future work includes applying the display-optimized MDL tree
cut to new visualization types. In addition, I see promise in the chal-
lenge of developing new methods for representing abstraction. While
I demonstrate the possibilities of interactive drill down to deeper lev-
els of the tree cut using a fixed step size, there is promise in inves-
tigating ways to automatically tailor the drill down step based on
dataset characteristics, display space, and to harmonize tree cut drill
down with more traditional techniques to click and open branches
manually.





4 S A L I E N C Y D E F I C I T

New visualization designs are created in academia and in industry at
a faster pace than rigorous evaluation can follow. One way to inform
a broad audience and validate a large number of designs at once is by
running controlled experiments that examine fundamental questions.
Empirical visualization research aims at laying out and continuously
testing this foundation.

In this chapter, I investigate questions related to the independence
of visual dimensions in animated scatterplots. We often seek to en-
code data in as many visual variables as possible, and this strategy
has been extended to scatterplots with the use of color, size, and
motion. Here we question the accuracy of the basic task of motion
outlier detection in the complex scenes formed by animated multivari-
ate scatterplots. Does the saliency of non-motion features impact the
detection of motion outliers? Can we put motion outliers in a state
where they are hard to detect by simply changing their color, size, or
position? If so, in visualizations where observing change is a relevant
task the variations in data point saliency will hinder or amplify the
local perception of change, turning the encoding unreliable.

The perception literature has abundant studies on the performance
of search tasks in static and moving scenes (Dick et al., 1987; Dun-
can and Humphreys, 1989; McLeod et al., 1988; Von Mühlenen and
Müller, 2000; Wolfe, 1998b). However, psychology studies are diffi-
cult to comprehend by non-experts and their low level make it diffi-
cult to extract implications to visualization design. Nonetheless, these
controlled experiments produced general results that support useful
rules of thumb; for instance, targets among uniform distractors are
much easier to detect than when the distractors have high variance
(Dick et al., 1987). This rule captures well the results of “pre-attention”
experiments with single and conjunction static features (e.g., color),
and with motion components (speed and direction). Detection of
speed and direction outliers in displays where no other features com-
pete is considered efficient, and the effects of speed on direction and
vice-versa are well studied (Rosenholtz, 1999). However, detecting
speed and direction targets in scenes where many other channels are
used is not well studied.

In the second edition of his book, Ware warned that studies on
perceptual independence among three or more visual channels were
rare (Ware, 2004). Almost 15 year later, our understanding of these
interactions and their implications to visualization is insufficient, and
fewer are the studies that involve motion in visualization. Progress
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recently has been made in revising rankings of encoding effectiveness
(Kim and Heer, 2018; Moritz et al., 2018). While these have great
practical application, they do not seek to explain the fundamental
phenomena driving performance results.

Among the powerful concepts that may help us unveil the roots
of problems in the visual mapping of data is visual saliency. In the
next section I contribute an experiment aimed at measuring the gap
in motion outlier detection accuracy between salient and non-salient
outliers. I simulate animated scatterplots that contain either a speed
outlier or a direction outlier. Then I vary the number of static features
that, in addition to motion, are salient in these outliers.

The results show that motion outliers that have additional salient
features are much more likely to be correctly identified than non-
salient outliers. This suggests that motion is not immune from in-
terference of other dimensions and that motion outlier detection is
unreliable in multivariate animated scatterplots. I define the notion
of saliency deficit: a state where the saliency profile in a visualiza-
tion scene impairs the effectiveness of performing a visualization task;
and suggest that saliency deficit models can help the automatic iden-
tification of saliency-boosting opportunities in visualizations.

4.1 related work

I am interested in the role saliency plays in motion outlier identifica-
tion. While this question has wide-ranging applications, I constrain
my investigation to animated scatterplots. In this section I review the
related work in perception for information visualization, the use of
animated scatterplots, and the recent trend of developing empirical
perception models for visualization.

Perception

Visual attention research investigates the limits of attention of the
human visual system and has produced a number of theories that
explain the mechanisms of visual information processing (see Healey
and Enns (2011) for a review). Feature integration theory proposes
that scenes are initially processed as many separable basic dimen-
sions (e.g., color, motion, orientation), which are later integrated to
form more complex objects (Treisman and Gelade, 1980). Without fo-
cused attention, features remain separated. As a consequence of this
mechanism, searches for basic features occur in parallel and are fast,
while searches for conjunction features, which involve more than one
dimension (e.g., a red circle in a scene with red squares and blue
circles), occur serially and thus slow down as the number of objects
present in the scene increase. Visual search experiments usually ask
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Figure 4.1: Snapshot of the interface for the speed task. The direction task
asked "Select the point that moves in the most deviant direction."

participants to determine whether a target is present in a scene with
distractors, and the number of distractors is manipulated. Reaction
times (RT) and accuracy are recorded, and results are summarized
as the slope of the linear relationship between the response and the
number of distractors. Parallel searches have slope close to 0. Fre-
quently, the term “popout” is used to describe the easy identification
of targets in these searches.

While many experiments corroborate feature integration theory,
other experiments found that some conjunction searches are too ef-
ficient to be serial searches. For instance, motion-shape targets can
be detected in parallel, suggesting the existence of a motion filtering
process, which effectively subsets the scene, reducing the search task
to a simple feature search on moving items (McLeod et al., 1988; Von
Mühlenen and Müller, 2000). Aiming at explaining these problematic
cases, the theory of guided search posits that the goals of the viewer
play a large role in visual search, with activation maps (“heatmap”
representations of the visual space storing the likelihood of locations
containing a target) being constructed with bottom-up and top-down
information. Top-down processes are cognitive, driven by users tasks
and goals, while bottom-up processes are driven by sensory infor-
mation. Guided search theory suggests that the difference in per-
formance between single feature and conjunction tasks is due to the
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amount of guidance that bottom-up processes can provide (Wolfe,
1998b). Thus top-down guidance is the reason “fast” conjunction
searches exist.

The impact of color on motion discrimination is well studied. Both
hue and luminance have been shown to independently enable appar-
ent motion of simple objects when they are displayed in different po-
sitions in successive frames, prompting debate as to whether or not
color and motion are processed by separate pathways (Papathomas
et al., 1991). Croner and Albright (1997) found that hue saliency and
luminance saliency aid the discrimination of motion direction; that
is, participants detect more accurately targets moving in the same
direction among distractors moving in random directions when the
targets have distinct hue or luminance, which may suggest that color
segmentation of the scene occurs prior to motion discrimination, a
process opposite to the motion filtering mentioned above.

The statistical saliency model (SSM) (Rosenholtz, 1999) seeks to ex-
plain motion popout phenomena with a simple statistical measure
that quantifies the saliency of targets with respect to the distractors
in the scene. The SSM explains the following asymmetries in mo-
tion popout phenomena: a) searching for a moving target among still
distractors is easier than searching for a still target among moving
distractors; b) searching for a fast target among slow targets is eas-
ier than the opposite; c) adding variability in speed when searching
for a unique motion direction has little effect, while adding variabil-
ity in direction when searching for a unique speed makes the search
task more difficult. The SSM is compelling because calculation of
the saliency of objects is trivial and efficient, and because it has been
shown to explain search results in experiments where dimensions
other than motion are examined. I review this model in more detail
in Section 4.2.

I enumerate the following challenges in transferring the existing
perception knowledge to the problem addressed in this work:

1 In the perception experiments cited above, targets are chosen ar-
bitrarily. In this experiment, targets are outliers in the statistical
sense. I ask whether outlierness as a statistical property is pre-
served through the visual mapping.

2 Motion outlier detection in scatterplots is not a conjunction task.
While the conjunction of motion and other dimensions is well stud-
ied, the problem here is defined as a basic feature search in the
presence of many irrelevant dimensions.

3 The dimensions in my stimuli encode continuous data attributes,
while in perception studies they are often discretized to some de-
gree (e.g., moving / still, fast / slow, bright / dim) (Croner and
Albright, 1997; McLeod et al., 1988; Papathomas et al., 1991; Von
Mühlenen and Müller, 2000).
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Animated Scatterplots

Scatterplots are one of the most effective visualizations because they
employ position along a common scale, which was found to be the
representation with which people can most accurately perform visual
judgments (Heer and Bostock, 2010). Less important dimensions are
commonly mapped to color, size, and shape. Gleicher et al. (2013)
demonstrated that people can accurately compare means in multi-
class scatterplots despite the addition of one discrete irrelevant cue
(shape). This work shows that people can comfortably extract a sum-
mary statistic confined to a single dimension in the presence of an
irrelevant dimension. Here, I investigate whether another summary
statistic (outlierness) can be extracted from motion in correlated scat-
terplots with more than one irrelevant dimension (color, size). A key
difference is that my scatterplots do not feature discrete dimensions
that would enable the visual segmentation of the scene.

Szafir et al. (2016) argue that ensemble coding allows us to visually
extract statistical information from scatterplots, such as outliers and
statistical summaries, but acknowledge that attentional control may
be problematic when multiple variables are encoded simultaneously,
although the empirical basis is still lacking. Robertson et al. (2008)
found that animated scatterplots were not superior to static trend
visualizations in analytical tasks (error rates) focused on trajectories.
Huber and Healey (2005) devised precise discriminability lower limits
for motion (in displays with no competing visual channels): a target-
distractor difference of a least 20 degrees is necessary for direction
oddballs to be detected accurately; for speed, the difference needs
to be at least 0.43 degrees of visual angle. Our outliers satisfy these
conditions (Section 4).

Albeit designed to devise guidelines for notification design, Bar-
tram et al.’s study of visual cues came to conclusions that relate to
visualization design. Subjects were asked to perform a task in a win-
dow while glyphs overloaded with various encodings were scattered
in the periphery (Bartram et al., 2003). The authors measured how
accurately subjects could detect change in the glyphs. Motion was
found to be the most reliable cue, better than changes in shape and
color. They concluded that motion “does not seem to interfere with
existing color and form coding” and that motion detection is effective
even in visual periphery and with small amplitudes.

Etemadpour et al. (2014) and Etemadpour and Forbes (2017) used
motion as a solution to clutter on the assumption that motion does
not suffer interference from other channels. They reported a large
improvement in the accuracy of ranking cluster density when motion
was used as an encoding for cluster density. The improvements were
relative to scatterplots where density was not explicitly encoded (im-
plicitly encoded as position); plus, density is necessarily correlated
to position, which makes motion-position a double encoding for den-
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sity. Similarly, animated scatterplot matrices that encoded density
with flickering were found superior to conventional ones in density
judgement tasks (Chen et al., 2018).

4.2 saliency

The statistical saliency model (SSM) (Rosenholtz, 1999) is a model of
visual search based on the intuition that the visual system is inter-
ested in unusual things. Rosenholtz represents a visual scene in an
appropriate feature space and then computes the saliency of a target
as the number of standard deviations between its feature value and
the mean of distractors. Their model can be seen as a formalization
of Duncan and Humphreys’s (1989) rule of thumb that states that
search is easier when target-distractor similarity decreases, or when
distractor-distractor similarity increases.

Formally, saliency is defined as following in the SSM. Given a set
of feature vectors, the saliency, S, of a target vector is defined as
its Mahalanobis distance to the mean of the distractors (Rosenholtz,
1999):

S =
√
(T − µD)′Σ−1

D (T − µD) (4.1)

where ΣD is the covariance matrix of the distractors, T is the target
vector and µD is the mean of the distractors. Mahalanobis distance
is a measure of the distance between a point and a distribution, and
is commonly used to find outliers in multivariate data. In the one-
dimensional case, the Mahalanobis distance is equivalent to a z-score,
that is, the number of standard deviations a point is from the center
of the distribution, while in the multivariate case, it corresponds to
the number of covariance ellipsoids from the center.

In qualitative terms, Rosenholtz defines the saliency of an item or
a region as the ease of search if that item or region were targets in
a scene; alternatively, it can be defined as the likelihood of an item
attracting eye movements, assuming zero influence of the task. These
notions of saliency are compatible, and are consistent with the use in
similar vision science and information visualization models (Itti et al.,
1998; Matzen et al., 2018).

The use of search tasks and reaction times as proxies for attention
relies on the premise that search for salient items should be faster
than search for items that do not draw attention. Rosenholtz’s study
of visual search is directly relevant to motion outlier detection in visu-
alization, and to ranking, indirectly, if we assume that ranking points
defaults to finding the most outlying point in increasingly narrow
search spaces. For our purposes, however, the existing empirical val-
idation of the SSM is limited. First, the scenes used to test it are
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usually distractor arrays of constant density (as in a uniform grid)
(Dick et al., 1987); second, no more than two features (speed and di-
rection of motion) are varied. In information visualization displays,
especially scatterplots, the x and y positions of points are commonly
correlated, forming point clouds with varying density and levels of
occlusion, and the points may be overloaded with multiple visual
encodings, such as color, size, and shape (Szafir et al., 2016).

A subsequent paper demonstrates how the SSM predicts asymme-
tries in colour search in the presence of non-neutral backgrounds
(Rosenholtz et al., 2004). The model is also the foundation for the
feature congestion model of visual clutter (Rosenholtz et al., 2007),
where separate pixel-level saliency maps of color and contrast lu-
minance are linearly combined to produce clutter maps for raster
images. The maps can be further aggregated to produce a scalar
measure of overall display clutter. To evaluate the feature congestion
model, the authors compared its predictions for a clutter-ranking task
on a collection of 25 maps with the rankings elicited from 20 people.
Spearman’s rank-order correlation was high (0.83, p < .001) and ap-
proximated the average correlation between pairs of subjects (0.70).

Critically, it is not clear how low-level dimensions should be com-
posed for the calculation of saliency in complex visualizations. In
Rosenholtz’s study of motion outlier detection (Rosenholtz, 1999) it
was suggested that the Mahalanobis distance should be calculated on
the 2D space formed by speed and direction of motion, whereas in
the feature congestion model saliency is calculated as a linear combi-
nation of 1D saliencies. It is likely that the latter is the appropriate
method in a scene where motion and static features are varied, in
which case we need to learn the dimension coefficients.

The pixel-level saliency maps employed in the feature congestion
model and in many other saliency models (Judd et al., 2012) are not
compelling for visualization applications because they operate after
rendering, a late stage of the visualization pipeline, and because they
are commonly tuned for natural images (Bylinskii et al., n.d.). Re-
cently, saliency models for data visualization were proposed (Bylin-
skii et al., 2017; Matzen et al., 2018) that owe their performance mostly
to accurate predictions of fixations on text elements (e.g., labels) in
static visualizations.

In the next section I will explain how the stimuli were created with
salient and non-salient targets following SSM’s definition of saliency.

4.3 experimental design

I designed an experiment to find whether saliency predicts accuracy
of motion outlier detection tasks in animated multivariate scatter-
plots. In particular, the experiment investigates whether saliency in
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Figure 4.2: Illustration of the experimental design. The saliency-deficient
group has one baseline condition where no target features are
salient and conditions where only one feature is salient. The
saliency-charged group has one baseline condition where all tar-
get features are salient and conditions where all but one feature
are salient.

irrelevant dimensions influences accuracy. Irrelevant dimensions are
those that are not part of the task; for instance, when participants
are instructed to find the fastest point, all dimensions (color, position,
etc.) but speed are irrelevant.

The experiment is split into two tasks, a direction task and a speed
task. The former asks participants to select the point with the most
deviant direction, the latter asks them to select the fastest point. From
now on I will refer to visual channels as dimensions, and to specific
values in these dimensions as features. I will also call direction and
speed the relevant dimensions in their respective tasks. Each animated
scatterplot display (a scene) produced has 12 conditions, where only
the target is varied: a baseline where the target has no irrelevant
salient features, plus five instances where it holds a single irrelevant
salient feature (position, color, size, direction/speed, or size increase);
a second baseline where the target has five irrelevant features at once,
plus five instances where one irrelevant feature is held out. Thus, half
the stimuli follows a one-at-a-time design, and the other half follows
a hold-one-out design. These condition groups are called saliency-
deficient and saliency-charged (see Figure 4.2). The following notation is
used to refer to individual conditions: in the saliency-deficient group,
+ conditions refer to the added irrelevant salient feature. For example,
+position refers to a stimulus where the only irrelevant salient feature
is position. In the saliency-charged group, - conditions refer to the
removed irrelevant salient feature. For example, -position refers to a
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stimulus where only position is not salient. In all stimuli, the target
has outlying value in the relevant dimension.

The reader may question why I do not vary dataset size, correla-
tion, or the parameters of the sampling distribution. When distribu-
tion and dataset size are manipulated, the fundamental quantity that
is being varied is the saliency of the target. For instance, a scene with
more point spread results in less target saliency, and the same with a
more crowded scene. As the goal is to find the effect of saliency on
accuracy and saliency is already being varied through manipulation
of visual features, varying the factors in question would be redun-
dant. Therefore, I see no reason in increasing the complexity of the
experiment by adding additional variables.

I generated ten different scenes per task, across 12 scene conditions,
for a total of 120 stimuli per task. I collected 20 judgments of each
stimulus for a total of 2400 judgments collected for each task, 200 per
task-condition. I am interested in measuring the differences in error
rates between the saliency-deficit and the saliency-charged baselines,
and the impact of introducing or removing features.

Stimuli

The procedure for generating realistic stimuli is inspired by animated
scatterplots of the Gapminder data. The Gapminder plots map an
often correlated pair of variables to the x and y coordinates, use size
to encode a time-varying quantitative variable (usually population),
and map a categorical variable (continent) to color. In our scenes,
we simulate instead a continuous variable mapped to color because it
allows fine-grained control of the saliency.

A scene has 50 data points and is composed of two frames that
are linearly interpolated to produce the animation. Motion is decom-
posed into distance, which determines how much the point moves
in the 2D plane (Euclidean distance), and direction. I sampled the
features for the initial frame and calculated the positions in the final
frame based on sampled values for distance and direction. x1 and
y1 are sampled from a multivariate normal distribution with correla-
tion 0.7. The values for color, size increase, and distance are sampled
from independent normal distributions. Direction (angle) is sampled
from a beta distribution (α = 9.55, β = 10) that has shape similar to a
normal, but produces values that are more concentrated around the
mean. This pattern was chosen to preserve the correlation of the plot;
that is, the point cloud, as a whole, should be moving in a well-defined
direction. Due to the animation duration being constant for all points,
distance is effectively a measure of speed.

After all points are sampled, a target is selected according to the
condition. If position is salient, then I select the point with the highest
Mahalanobis distance (i.e, the most distant from the center of the
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Table 4.1: Feature ranges. When speed is the task, the target is assigned an
outlying distance value and mean or salient value for the other
features. When direction is the task, the target receives an out-
lying direction. The color spectrum is defined by matplotlib’s
Viridis colormap.
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x, y [0, 500] px 250 variable
color [ , ]
size (area) [100, 600] px 350 600

size increase [1, 2] multiplier 1.5 2

distance [25, 100] px 62.5 100 150

direction [-81, 171] degree 45 171 225

point cloud); otherwise, the point closest to the center is selected. If
color is salient, I assign to the target the maximum color in the color
range; otherwise, I assign it the mean color. This pattern is followed
for all the other irrelevant visual dimensions.

All targets are outliers detectable through the interquartile range
method (Tukey’s fences, k=1.5); thus, an analyst using boxplots to
analyze the distributions of speed and direction would clearly iden-
tify the target as an outlier (positioned beyond a boxplot’s whiskers).
I produced outliers by assigning to targets a constant value outside
the sampled distribution range. On average, direction and speed out-
lier values were 3.11 and 3.82 standard deviations from the mean.
For comparison with Huber and Healey’s discriminability thresholds,
in average, the trajectory of speed outliers was 0.95 degrees of sub-
tended visual angle longer (40% higher) than that of the next fastest
point on a 113ppi laptop screen (e.g., Macbook Pro 13in.) at typing
distance (20in.). The difference between direction outliers and the
next most deviant points was 52 arc degrees (43% higher), in average.

Table 4.1 lists the dimension ranges for the sampled points, as
well as the mean and salient values. I use the inverted version of
matplotlib’s Viridis colormap (Smith and van der Walt, 2015), where
higher values are darker (bright points on a white background would
not "pop out"). Viridis was found to have superior performance, mea-
sured in time and accuracy of relative similarity judgments, in com-
parison with other popular colormaps (Liu and Heer, 2018). I chose
the direction range again respecting the principle that the plot trend
should not be overly disrupted. The size range was chosen so as to
not cause too much occlusion. In addition, the render order on the
screen (from largest to smallest) also reduced occlusion. The stim-
uli were inspected to make sure that the targets were not occluded.
Size increase is a multiplier of the initial area. Figure 4.3 displays
a scene for the direction task in the saliency-deficient baseline condi-
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Figure 4.3: Feature distributions in a typical direction stimuli. Values
are sampled from independent distributions. The target point
(marked in red) receives an outlying value in the dimension of
interest (either direction or speed). Depending on the condition,
the target can have mean or maximum (salient) values in the
irrelevant dimensions. For instance, in the condition +color, the
target has salient color. The scatterplot in the bottom left is the
first frame; the arrows in the bottom right represent the displace-
ment between the initial and final frames, which is animated.
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Figure 4.4: Flow diagram illustrating the sequence of screens in the study
interface. Participants could replay the animations twice. Blank
screens were place in-between replays.

tion. The target moves in an outlying direction but has average values
for speed, color, size and position.

Procedure

The stimuli was presented embedded in the Mechanical Turk inter-
face (Figure 4.1). The page presented the first frame of the animation
until the play button was pressed. After the end of the animation, the
visualization was stationed in the second frame, allowing participants
to select the target and submit the response or replay the animation
up to two times before submission. The animation duration was 500

milliseconds. When play was pressed the second or third time the
points faded to a blank screen then reappeared in their first frame po-
sitions before the animation took place. This sequence is illustrated
in Figure 4.4. The variable number of views was introduced as a
measure to mitigate errors due to interruptions, as these can be a
problem in crowdsourced studies where I have no control over the
environment. The number of views was capped at three to prevent
the task becoming too easy to the extent no differences can be de-
tected between the conditions. Trials were published as two separate
groups of HITs on Mechanical Turk (speed and direction). Within
each group, trials appeared in random order. Participants were not
limited in the number of tasks they could complete. I recorded time,
accuracy and number of views.

Participants were instructed to find the fastest point ("find the fastest
point") in the speed task and the most deviant point ("find the point
that has the most unique trajectory compared to the rest") in the di-
rection task. Therefore, the task is to “find the maximum”, with all
targets being outliers. This mitigates the risk of participants not com-
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prehending the outlierness concept or the study being affected by
different notions of what an outlier is. Participants had the opportu-
nity to perform test trials, as it is common on MTurk, but these trials
did not provide feedback.

4.4 experiment results

I collected 4800 observations from 67 participants, who performed
an average of 71.6 tasks (sd = 42.4). The median completion time was
10.3s. Figure 4.5 displays the accuracy distribution per task-condition.
Accuracy is calculated per stimulus (a scene-condition pair) as the
ratio correct/incorrect. In the following sections I examine the odds
of a participant selecting the outlier and which features contributed
most to incorrect selections.

Channel Contributions

I used the R package lme4 (Bates et al., 2015) to fit a pair of gen-
eralized linear mixed models (GLMM), one for each task (speed and
direction). The models were specified with a binary response variable
(correct = [true, false]) and five binary covariates [salient, non-salient]:
position, color, size, speed/direction, and size increase. This model is
also known as a binomial logistic regression. In order to account for
scene-specific and participant-specific effects, I inserted the variables
scene and subject as random effects. As such, the random impact from
scenes that happen to be more or less difficult, or participants that
are more or less accurate, is reduced. Figure 4.5 shows the data, and
Figure 4.6 shows the model estimates. The null model has an odds-
ratio of 1; that is, irrelevant visual dimensions do not influence the
probability of an outlier being correctly detected. p-values are com-
puted for each visual dimension with Wald Z-tests. Below I discuss
the main findings.

Motion outlier detection is not well supported

The mean accuracy is lower than 25% in the condition baseline-deficient
in both tasks. This condition is where the motion outlier does not
have salient features other than motion. Low accuracy suggests sub-
jects were mostly unable to separate motion from other dimensions
in order to correctly identify the motion outlier. In other words, mo-
tion detection in multivariate scatterplots suffers interference from
irrelevant dimensions.
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Figure 4.6: Estimates for the effect of irrelevant salient features on the odds
of a speed (top) and direction (bottom) outlier being identified.
Binary covariates and multiplicative coefficients. Red denotes
statistical significance (p < .05).

Accuracy depends on saliency of irrelevant features

Most conditions where the motion outlier had irrelevant salient fea-
tures recorded higher accuracy. In particular, subjects achieved aver-
ages of 78.5% and 58.5% accuracy in the baseline-charged condition, in
the speed and direction tasks, respectively. Removing one salient fea-
ture at a time generally caused a drop in accuracy; conversely, adding
one salient feature generally increased accuracy, but not by much, es-
pecially in the direction task, which suggests that in crowded displays
motion outliers can only reliably be extracted if they have multiple
salient features. More generally, animated scatterplots may reliably
support only the detection of global outliers.
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Direction plays the largest role in the speed task

The fitted model indicates that direction saliency accounts for an in-
crease of 4.7 times in the odds of correct speed outlier detection,
which corresponds to a shift in probability from 0.19 (intercept) to
0.52. This result is somewhat aligned with previous findings that di-
rection variability degrades searching for a unique speed. Targets
with salient direction might have allowed subjects to segment the
scene, cancelling some of the noise that impacts accuracy.

Position plays the largest role in the direction task accuracy

Position is estimated to account for an increase of 3.2 times in the
odds for the direction task, which is equivalent to a shift in probability
from 0.10 (intercept) to 0.26. This result is not trivial: while targets in
salient positions (surrounded with blank space) are more visible, they
are arguably more difficult to compare, due to their distance from
other points. In addition, this result highlights the effect of clutter on
this task. The sampling process I used produces a point cloud with
a high density center. Points with low spatial saliency are located in
these cluttered regions.

Size and color have small influence in the direction task

Both size and color contribute modestly to the outcome. The results
contain no evidence of difference between the odds estimate for these
dimensions, as their confidence intervals largely overlap. In general,
there is a precedence of spatial attributes (position, speed, and direc-
tion) over form attributes (color and size).

Size makes no difference in the speed task

Size and size increase did not alter the odds of correct detection in the
speed task (these variables have odds ratio approximately 1). This is
in contrast to a small, but significant effect in the direction task. It is
possible that this can be explained by larger points being perceived as
moving slower, which would degrade the performance relative to the
baseline; however, the model did not point to a negative effect. It is
also plausible that the distribution of values mapped to size did not
produce enough saliency. Weber’s law predicts a non linear relation
between area change and perceived area change, which may have
caused points with maximum area to appear closer to the mean and
less salient.

Which Features Mislead?

When examining the incorrect choices of participants one would nor-
mally expect that the points they selected are close to the target
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in speed or direction; that is, more incorrect selections should be
recorded for faster or more deviant points. This expectation was
contradicted by the low correlations observed between task dimen-
sions and selection counts: 0.23 for speed and 0.28 for direction. The
correlations were calculated on the subset of non-target points with
selection count greater than 0. This suggests that incorrect selections
are not necessarily due to the proximity to the outlier value in the
target dimension; that is, irrelevant dimensions may be leading par-
ticipants to make mistakes.

To find which dimensions play a role in the number of times a
non-target point is selected I fit generalized linear models (GLM) to
the subset of 1,530 non-target points that were selected at least once.
Since the observed response variable—selection count—is skewed and
lies in the interval (1, ∞) I set the models with a Gamma response vari-
able. The covariates are saliency measures (SSM) on speed/direction
and on all other dimensions. I use the saliency measure here because
unlike targets, which were made either salient or not, non-target fea-
tures lie within a saliency spectrum. Likewise, I split position saliency
into saliency in the first frame (xy1) and in the second frame (xy2).

I included terms for interactions of all saliency measures with speed
or direction. In order to make the estimates comparable and easier
to interpret all covariates were standardized (zero-mean and unit-
variance). In Figure 4.7, the effects are multiplicative; that is, y =

β0 × β1x1 × β2x2 × β12x1x2..., where β0 is the intercept, βi are fixed
effects, βij is an interaction term, and xi are dimension values. The
null model states that β is equal to 1, which equates to a visual dimen-
sion having no effect on the selection count. p-values are computed
for each visual dimension with Wald Z-tests. The interaction plots in
Figures 4.8 and 4.9 depict the curve that represents the relationship
between speed/direction and the response variable (count), and how
this curve is changed as a function of the interacting variable. Below
I report the main findings.

Position and direction saliencies boost the effect of speed

In the speed task, the model estimates reveal, not surprisingly, that
speed is a confuser and that the interactions of speed with direction
saliency and position saliency in the first frame are significant. The in-
teraction terms are positive: the misleading effect of speed increases
as a function of the saliency of these irrelevant dimensions. In Figure
4.8, this is shown as an increase in slope: when the values of either
direction saliency or position saliency increase by one standard devi-
ation, the effect of speed on the response becomes steeper. In prac-
tice, this indicates that fast points moving from blank regions and in
unique directions tend to be mistaken for true speed outliers. This
result is aligned with the channel contributions observed in the pre-
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Figure 4.7: Estimates for the effect of feature saliency on the number of
times a non-target is selected (erroneously). Red denotes statis-
tical significance (p < .05).
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Figure 4.8: Interaction plot depicting the modulation of the effect of speed
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Figure 4.9: Interaction plot depicting the modulation of the effect of speed
and direction by irrelevant features in the direction task.
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vious section: position and direction have the highest impact on the
odds of a target being correctly identified.

Position saliency in the first frame and color saliency boost the effect of
direction

In the direction task the misleading effect of direction saliency is
boosted by position saliency in the first frame. In Figure 4.9 this
is seen as a slope increase when the value of saliency_xy1 increases.
Color saliency also interacts with direction, but to a lesser extent. In
addition, the effect of speed is significant and independent from that
of direction. Considering the results above, it appears that position
saliency in the first frame is consistently a major factor for selection.
Motion outliers that are inside the point cloud might be overlooked
if there is a confuser departing from a salient position.

Position saliency in the second frame degrades the effect of direction

Surprisingly, position saliency in the second frame has a negative
interaction with direction. This appears in Figure 4.9 as a decrease
in the slope of the curve when saliency_xy2 increases. Participants
are thus less likely to erroneously select a point moving in a salient
direction the more salient its final position. I hypothesize that this
effect may be due to points moving out of the cloud clearly having
direction perpendicular to the trend. As participants were instructed
to select “the point that moves in the most deviant direction”, they
may have been looking for points that were in the opposite direction
of the mean. Points moving in the opposite direction would likely be
inside the cloud, not moving out of it.

Replays

In this section I examine the number of times participants viewed the
animation before selecting their answers. I analyze the distribution
of correct and incorrect selections across the three possible values for
number of views. Figure 4.10 shows this distribution split by task,
condition, and whether the trial was completed correctly. Due to the
study being deployed on Mechanical Turk, I am unable to separate
divided attention from task difficulty as the cause for replays. A
reproduction of this experiment in a controlled setting is necessary
for establishing a causal relationship.

Overall, there is a prevalence of a V-shaped distribution, suggest-
ing that participants were more likely to watch the animation either
the minimum or maximum allowed times. In the saliency charged
group, speed task, there is a clear pattern of correct answers coming
more often from 1-view judgments. This pattern is not present in the
direction task. In the saliency deficient group we see the opposite
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Figure 4.10: Distribution of number of views divided by task and condition.

pattern: correct judgments are more likely to come from 3-view judg-
ments, with a few exceptions; namely, targets with salient position in
the direction and speed tasks and with salient direction in the speed
task seem to require less effort than targets in the other deficient con-
ditions. These patterns are consistent with the coefficients found in
the above analyses, suggesting task difficulty may be behind them.
The V-shaped symmetrical pattern also appears in incorrect answers,
especially in the direction tasks, suggesting confidence in wrong se-
lections.

4.5 discussion

Motion outlier detection was found to be unreliable in multivariate
animated scatterplots. The accuracy of motion outlier detection is
degraded in the absence of other salient cues. This suggests a level of
interference of spatial (position) and form (color, size) encodings over
motion, and between the individual components of motion (speed
and direction). Furthermore, the experiment produced evidence that
while people were selecting outliers based on the relevant features
(speed, direction), irrelevant features may have acted as “boosters,”
leading people to select the wrong target. I hypothesize that this may
be due to people’s attention getting caught by near-outliers that have
high global saliency; since the animation is short, they would not
have enough time to revise a first impression.

Spatial saliency, which is closely tied to clutter, had a large impact
on accuracy in both speed and direction tasks. Here, I emphasize
the distinction between occlusion and clutter. I inspected the stimuli
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for occlusion and adjusted the z-order of elements to prevent small
points hiding under larger points. Instead of an effect due to inability
to see the targets, I believe the effect is due to a difficulty of allocat-
ing attention, in the sense of feature congestion: as the feature space
becomes crowded there is less chance for a single object to stand
out (Rosenholtz et al., 2010).

The results suggest that it may be possible to predict scenes where
outlier detection is difficult on the basis of saliency measurements. A
linear model with a binary response variable and feature saliency co-
efficients such as the one I fit can output the odds of correct detection
given a “scene.” A linear model of saliency (for clutter measurement)
was used also by Rosenholtz et al. (2010). A threat to the generality of
this approach is the fact that the statistical saliency model is invariant
to scale (due to the use of Mahalonobis distance); for instance, points
mapped to a very narrow color range yield the same saliency values
as if they were mapped to a wide color range.

At a more general level, the results expose a failure of mapping
data outliers to visual outliers, which I refer to as a saliency deficit. A
data point or a group of data points is saliency deficient when its im-
portance in the data space is not reflected in the visualization due to
a lack of saliency. Saliency deficit is thus a condition of imbalance be-
tween data and visual importance. In Kindlmann and Scheidegger’s
(2014) algebraic model, such a failure is classified as a violation to the
visual-data correspondence principle: important changes in the data
should yield important visual changes.

The notion of saliency deficit is task dependent: here I examined
motion outlier detection, but it is possible that other tasks in other
visualization types may suffer from the same problem. Interference
between visual channels is not new in visualization research, which
often points to the theory of separable and integral dimensions (Gar-
ner, 2014). When a pair of visual dimensions is integral, information
from an individual dimension cannot be accessed easily. However,
these studies have been traditionally restricted to the task of class-
separation and with static features. For instance, in a point cloud
with varying hue and size, it is not easy to separate points based on
each dimension independently. Motion has generally been regarded
as a superior dimension, immune to interference from static features.

It is plausible that the mechanism behind saliency deficit depends
on the number of visual channels employed. That is, the more vi-
sual channels, the harder it becomes to perform tasks that rely on
saliency along a single dimension. This sends us back to the fea-
ture congestion model of clutter, which predicts difficulty in creating
salient targets within a crowded feature space. In order to assert this
mechanism with confidence, further research needs to examine this
effect with a variable number of visual channels.
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4.6 limitations

The present experiment could be extended in many ways. I controlled
the outlierness of the targets, animation speed, and the distribution
of the features and their correlation in order to isolate the effect of
feature saliency. This imposes limitations on the scope of inference
of the experiment. It is plausible that interactions exist between the
controlled factors and the response variables; in particular, as the out-
lierness of the target increases, the effect of other features probably
decreases. The effect of animation speed may be complex: fast transi-
tions may make tasks more difficult, but studies in the topic of change
blindness have found that large changes can also go undetected when
introduced gradually (Simons et al., 2000).

I have investigated only positive outliers. Due to a known asymme-
try in motion target detection—it is easier to find fast targets among
slow distractors than the inverse—I cannot extend the conclusions to
slow outliers.

As stated in Section 4.5, I would like to measure accuracy in an ex-
periment where the number of irrelevant dimensions is manipulated.
This could generate insights on the number of dimensions beyond
which some tasks start to lose accuracy. Likewise, it would be inter-
esting to measure the effect of motion on other encodings. Finally, it
is possible that the estimates for size and color do not generalize to
other ranges. In particular, the color saliency may vary depending
on the direction of the colormap (bright to dark or inverse) and the
background.

4.7 summary

In this chapter I reported the results of a controlled experiment de-
signed to test the effect of irrelevant visual dimensions on the accu-
racy of motion outlier detection in multivariate animated scatterplots.
I found that color, size, position, speed, and direction influence the
accuracy with which people detect the fastest or the most deviant
data point. In particular, spatial visual dimensions, such as posi-
tion, speed, and direction have larger influence than form attributes,
such as color and size. Mean accuracy in detection of speed outliers
was higher than 75% only when targets had multiple salient features.
When detecting direction outliers, mean accuracy was never higher
than 30% when targets lacked salient features.

These results suggest a saliency deficit effect that prevents motion
targets from being detected accurately when their overall saliency
is low; as a consequence, animated scatterplots should be used with
caution if outlier detection is a critical task. It is plausible that saliency
deficit may affect tasks in other multivariate visualizations. Models of
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task accuracy that rely on foundational variables, such as saliency, in
conjunction with models of user intent may inform the introduction
of automated interventions when the predicted accuracy of a task
given a plot is low.



5 D I S C R I M I N A B I L I T Y

Visualization research has its origins in HCI, statistics, vision science,
and design, just to name a few disciplines. Each of them contributed
methods that together define how research is done in the present
day. Of importance to this chapter is the role that human-centred de-
sign and experimental research with human participants, both com-
ing from HCI, have on the way visualization research and products
are tested.

To demonstrate the predominant process, let‘s examine Munzner‘s
influential nested model for visualization design and validation (Mun-
zner, 2009). This model prescribes nested steps for visualization de-
sign and methods for validating each step: a) domain problem and
data characterization; b) operation and data type abstraction; c) vi-
sual encoding and interaction design; d) algorithm design. At the
first level, the designer “must learn about the tasks and the data of
target users in some particular domain”. Also known as elicitation
of requirements, this phase borrows methods from human-centred
design, such as ethnographic studies. I argue that, in practice, this
step is conflated into learning about the tasks of the users in detri-
ment of the data. We don’t need to leave Munzner‘s text to observe
this happening. The output of step (a) is a “set of questions asked
about or actions carried out by the target users for some heteroge-
neous data”. Note how the characterization of data disappears from
the output. In the next level, operation and data type abstraction, the
output is a description of operations and data types. Characterizing
data is thus reduced to descriptions of its type. This gap gives rise
to what I call exemplary datasets, a small collection of datasets taken
as representative of the population and which the rest of the design
process becomes based upon. The outcome of the design process is
commonly overfit to these few datasets. In fact, many visualizations
are tested against the same datasets used for their design.

In statistical terms, the exemplary dataset is a single outcome of
size N of the random process that governs the data. This outcome is
more or less characteristic of the process depending on the complex-
ity of the process, which can be measured by the number of parame-
ters and the variance. That is, the more parameters, the broader the
universe of possible datasets and the less representative our example.
The more variance, the lower should be our expectation that future
samples will resemble our example.

In many cases, overfitting should not be a problem. Custom vi-
sualizations that appear in journalism or are commissioned by insti-
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tutions and whose purpose is to communicate, or to expose, do not
need validation because they are not meant to be used with other data.
Overfitting affects visualizations or techniques that are expected to be
effective over a large collection of datasets. For instance, teams that
develop custom tools for clients with specific needs should account
for large variations in the data if their tools are to last. If the designers
model products after “common” data, how can they guarantee that
people can make sense of rare data when it occurs?

5.1 the induction problem

Karl Popper discusses in great depth the difficulty of proving univer-
sal scientific statements through the induction method (Popper, 2005).
He argues that there is no logical basis for the argument that knowl-
edge can be derived from experience, for experience has no limit, so
we are never able to exhaust the observations needed to prove deduc-
tively that a statement is universal. Popper then proposes falsifiability
as a criterion for deciding if a statement is or is not scientific. Under
this criterion, a scientific statement has to allow one to reject it based
on observations. For instance, the universal statement “all swans are
white” can be rejected upon the observation of a single black swan.

Most visualization research is not in search of universal statements
and being merely falsifiable does not guarantee a claim will even be
accepted for publication. We rely on the strength of the evidence
to legitimate findings. When new layouts, visual representations, or
applications are proposed in our field, claims are made about their
efficacy that span both a universe of users and a universe of datasets.
How can we accept the validity of such claims? The more datasets
and the more people are observed in our experiments, the stronger
the evidence in favour of a contribution. In fact, the community has
given increasing importance to the number of people a technique
is tested with, and the background of these people: whether they
are students or professionals, for instance. However, we have not
recognized that failure to characterize data comprehensively imposes
limitations to the scope of inference of visualization research, and
threatens its validity.

It is not a stretch to say that data is the forgotten random variable
in visualization research. Rare are the examples of research that vary
data to an extent that enable us to infer that the proposed method
generalizes to other datasets. For instance, Rodrigues and Weiskopf
(2018) presented a layout for visualizing highly skewed distributions,
motivated by citation data, which often contains a few data points
with tens of thousands of counts and most points with counts near
zero. They tested the technique with 4 visualization experts and 3

datasets and concluded that it’s “well prepared to visualize countable
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data samples for data sets with a large range of frequencies”. When
backed by observations of few datasets, claims that a technique or
tool is adequate to visualize data are just as fragile as those that are
based on observations of few people using the technique.

Whether or not authors should test and scope their work more rig-
orously is open to debate. Research is incremental and the commu-
nity is free to collect more observations of the technique and attempt
to discredit it. From the perspective of the author, it may make sense
to delimit a scope within which it is hard to prove a claim wrong.
In fact, Popper acknowledged that one can amend a statement in or-
der to prevent falsification (“all swans are white except Australian
swans”). These he calls ad hoc hypotheses. In a similar fashion, a re-
searcher can state the limits wherein the technique is deemed good.

5.2 visualization discriminability tests

The culprits for undertesting in visualization research and practice
are the current evaluation methods. The most scalable method at our
disposal is crowdsourcing, and it may not be scalable enough because
of the cost. If a new technique can be deployed in a production en-
vironment with real users, collecting field logs could be a suitable
method. Laboratory experiments, expert evaluations, and field obser-
vations are all less scalable methods.

I propose a combination of data simulation and quality measures to
perform stress tests on visualization techniques. Simulation can solve
the problem of data characterization by forcing designers and re-
searchers to document the data parameters and boundaries wherein
the visualization is expected to produce high quality plots and by
generating comprehensive test sets. The most prominent use of sim-
ulation in the VIS community has been through the VAST challenges
(Cook et al., 2014), which are based on large synthetic datasets. In
this case, however, we have a single synthetic dataset and the chal-
lenge is to build a tool capable of extracting the answer to a problem.
In the spirit of what I propose, an interesting twist would consist in
publishing a set of datasets that covers a broad area of the parameter
space and asking for a tool that is capable of answering a problem
question given any of the datasets.

Quality measures constitute the other leg of the stress tests. While
simulation forces us to specify data, quality measures require us to
specify what the tool or technique is hoping to achieve, and how suc-
cess is measured. This sounds trivial, but there is anecdotal evidence
that researchers often do not know how to state what the contribution
of a tool is. For instance, the aforementioned non-linear dot plots, by
Rodrigues and Weiskopf (2018), are motivated by lack of bandwidth
found in common histograms when the distribution is skewed. In
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other words, we can state that a large family of skewed datasets pro-
duces the same histogram, which points to image similarity measures
as a possible way to verify that non-linear dot plots are effective over
a large spectrum of simulated, skewed datasets.

Here, I propose one type of stress test that is intended to evalu-
ate the perceptual scalability of visualizations: discriminability tests.
These are semi-automated tests based on the notion that when we
state that a design is more scalable than other, we are saying that this
design allows us to distinguish a larger family of datasets as N grows.
We can define, thus, scalability in terms of this discriminability crite-
rion:

scalability The relation between dataset size and discriminability.

We can then make this general definition more useful by specifying
a data scope and a concrete way to measure discriminability.

discriminability Given a collection of datasets, the average per-
ceived distance between the corresponding visualizations.

Alternatively, discriminability could be defined in terms of the av-
erage data distance needed to produce a just noticeable difference
in the visualization. Or, given a seed dataset and corresponding vi-
sualization, the effort needed to produce a second dataset (beyond
a certain data distance) that yields an ambiguous visualizations. If
an intelligent agent is trained to generate such ambiguity inducing
dataset pairs, the effort could be measured in terms of model com-
plexity. This ambiguity induction is conceptually the same procedure
proposed by Matejka and Fitzmaurice (2017) to generate wildly dif-
ferent scatterplots that have the same statistics.

There are many reasons why a visualization design may lack scal-
ability, the most common being clutter. Under very high clutter, a
large family of different datasets will be mapped into very similar
images. However, clutter is not general enough. There are many
situations where datasets will be mapped to ambiguous low clutter
images; for instance, skewed histograms tend to display a few bars
on either extreme of the horizontal axis. Discriminability is a more
general criterion because it attacks not the resulting image, but the
mapping of data to image.

In summary, a discriminability test takes as input a collection of
datasets, and a visualization function. It outputs a measure of the
discriminability of the datasets given the visualization function. A
stress test using the discriminability criterion performs discriminabil-
ity tests at different scales, and outputs a curve describing the relation
between scale and discriminability.

In this chapter, I investigate in depth the possibility of an analyti-
cal measure of similarity that can match human perceived similarity.
With such a measure we could perform large scale discriminability
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tests, involving not only variation in dataset size, but also in dataset
distribution, entropy, etc.

5.3 theoretical background

An alternative to set theory as a foundation for mathematics, category
theory is a general mathematical theory of structures and systems of
structures. It allows us to define families of structures and see how
structures of different kinds are related without having to deal with
their details (Marquis, 2015). Using category theory, Kindlmann and
Scheidegger (2014) formalized in mathematical terms the minimal
quality criteria for visualization, which has appeared previously in
the literature in various forms; for instance, the expressiveness and
effectiveness criteria of Mackinlay (1986).

Three objects are defined in Kindlmann and Scheidegger’s alge-
braic process: data (D), representation (R), and visualization (V). If
r and v are structure preserving maps from D to R and from R to
V then their composite r ◦ v is a structure preserving map from D
to V. The notion of structure preserving maps (homomorphisms),
which can be composed, is central to category theory (Cheng, 2008).
Morphisms can be depicted as arrows, and their composition as con-
catenation of arrows in commutative diagrams:

D R V

D R V

r1

α

v

ω

r2 v

The diagram above states that the mapping v acts on a representa-
tion of the data to produce a visualization. The maps α and ω are
called data and visualization symmetries, respectively. An important
consequence of this formulation is the principle of unambiguous data
depiction. Consider a composition D

r1−→ R v−→ V. If a data symmetry
is applied on D, the only way for the diagram to commute is through
a visualization symmetry on V: D α−→ D

r1−→ R v−→ V ω−→ V. If α was not
the identity mapping then ω cannot be the identity mapping, or the
visualization is ambiguous. The principle of unambiguous data depic-
tion is satisfied if the following holds: ω = 1V ⇒ α = 1D, where 1D

and 1V are the identity mappings. Given a dataset and its correspond-
ing visualization, only the identity mapping on the data should result
in the same visualization. Thus, confusers are changes in the data that
are invisible to the viewer of a visualization.

Similarly, the correspondence principle states that changes in the
data are followed by changes of equivalent magnitude in the visual-
ization (α ∼= ω); that is, when an important change in data is not
followed by a salient change in the visualization, the principle has
been violated.
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Note that structure preserving mappings are formally defined in
other areas of mathematics. In vector spaces, for instance, linear maps
preserve addition and scalar multiplication. In category theory we
do not care about the specific ways in which structures are preserved
and this is convenient to study visualizations, because in visual data
analysis structure preservation is task-dependent.

Discriminability tests can be seen as computational tools to ver-
ify the principles described above. Given two distinct datasets we
can verify the principle of unambiguous data depiction by comput-
ing the similarity between the corresponding visualizations. Given
two datasets with known data distance, we can verify visual-data
correspondence by comparing the data distances with the perceived
visualization distances.

A scalability test as defined in the previous section is a test of
visual-data correspondence as a function of scale. It is also possible
to define scalability tests in terms of ambiguity tests: given a large
collection of datasets, we can search for pairs (α, ω) that violate the
ambiguity principle.

This mathematical representation of the visualization process and
its failures suggests that we can search for principle violations by vary-
ing α and testing ω. α can be varied with random sampling methods
or non-random methods such as a parameter sweep, and ω can be
tested with image similarity or information theory methods (Rigau
et al., 2008).

5.4 structural similarity index

The Structural Similarity Index (SSIM) was developed for quality as-
sessment of compressed images (Wang et al., 2004). Different than
previous measures (e.g., mean squared error, and peak signal-to-noise
ratio) that assumed that the perception of image quality depends on
the visibility of errors, SSIM assumes that image quality depends on
the preservation of structural information. As such, image quality
can be quantified by a general measure of structural similarity be-
tween the original image and the compressed images. While the error-
sensitivity paradigm tries to reproduce early-stage, low-level process-
ing of the human visual system, such as thresholding informed by
psychophysical experiments, the structural similarity paradigm tries
to emulate the hypothesized function of the overall human visual sys-
tem. This function consists in probing the structures of observed
objects. Figure 5.1 displays MSE and SSIM scores calculated between
an image and two distorted versions of it, one with random (salt and
pepper) noise and the other with distortion introduced by JPEG com-
pression. The MSE “prefers” the JPEG compressed image, despite it
clearly having lower quality. The SSIM is robust to distortions that
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(a) Original (b) Random noise
MSE=160

SSIM=0.79

(c) JPEG compressed
MSE=117

SSIM=0.71

(d) SSIM similarity maps

Figure 5.1: The mean squared error (MSE) scores the JPEG compressed im-
age (c) as the most similar (lower error value) to the original (a).
SSIM correctly scores the image distorted with random noise (b)
as the most similar (higher SSIM value). (d) displays the similar-
ity maps computed with SSIM, where gray is error.

do not compromise an image’s spatial structures, and correctly rates
the image with random noise as the most similar.

The SSIM is defined as the weighted product of luminance similar-
ity, contrast similarity, and structural similarity.

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (5.1)

where x ∈ RD and y ∈ RD are vectors (of the same size) containing
the grayscale pixel intensities of each image. The SSIM calculation
normalizes the images with respect to luminance in the contrast sim-
ilarity calculation, and then normalizes the images with respect to
contrast in the structural similarity step. This way, the similarity com-
ponents are made independent. We can think of equation 5.1 as a
pipeline (from left to right) where a feature is subtracted after it has
been the subject of a similarity assessment.

Luminance µ is the mean pixel intensity:

µx =
1
D

D

∑
i=1

xi (5.2)

and luminance similarity is defined as follows:

l(x, y) =
2µxµy

µx2 + µy2 (5.3)
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where x and y are vector representations of the images. Contrast
is estimated as the standard deviation of the pixel intensities. Note
that the standard deviation σ inherently subtracts the mean intensity
(luminance) from the signal.

σx =

√√√√ 1
D

D

∑
i=1

(xi − µx)2 (5.4)

Contrast similarity is defined analogously to luminance similarity:

c(x, y) =
2σxσy

σx2 + σy2 (5.5)

Finally, the structural similarity function operates on the signal nor-
malized by luminance and contrast: (x − µx)/σx. Readers familiar
with machine learning will recognize this operation as standardization,
which yields a z-score. The structural similarity is the correlation (in-
ner product) of these normalized vectors:

s(σx, σy) =
1

D− 1

D

∑
i=1

(xi − µx)

σx

(yi − µy)

σy
. (5.6)

The SSIM is then computed in a local fashion (per pixel) with a 3x3

Gaussian window. This yields a similarity map over the image. The
overall image similarity measure, a scalar value, is the mean similarity
of this map:

Mean-SSIM(X, Y) =
1
M

M

∑
j=1

SSIM(xj, yj) (5.7)

where M is the number of Gaussian windows, X and Y are the im-
ages, and xj and yj are the image patches defined by each of the M
windows. When zero-padding is used M = D. Despite the parent-
child relation, the acronym SSIM usually refers to Mean-SSIM, and
the distinction is rarely in effect. In this chapter, I follow this conven-
tion. When the context suggests SSIM is a scalar value, it refers to the
Mean-SSIM.

The SSIM is symmetrical, bounded, and has a unique maximum.
The index lies in the interval [−1, 1] and a comparison between two
identical images will always yield 1.

5.5 multiscale-ssim

Recall that the SSIM was created to measure the encoding quality of
natural images, which depends on the impact of imperfections intro-
duced by the encoding. Clearly, the perception of quality depends on
the viewing distance, given that some imperfections are only notice-
able at close inspection. In general, we can say that the perception of
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quality and similarity depends on the scale of the image, which varies
with viewing distance or image size. Recognizing the challenges of
assessing image quality at a single scale, Wang et al. (2003) proposed
Multi-Scale SSIM. This technique is a straightforward extension of
SSIM where the contrast and structural similarities are computed at
K image scales. The original image is subject to low-pass filtering and
downsampling by a factor of 2 in each of K− 1 steps.

MS-SSIM(X, Y) = l(x, y)α
K

∏
i=1

c(xi, yi)
βi s(xi, yi)

γi (5.8)

The weights indexed by i are adjusted according to the desired
relative importance of the scales to the similarity judgement. For
simplicity, and following Wang et al. (2003), I always set α = 1, and
β = γ within each scale:

MS-SSIM(X, Y) = l(x, y)
K

∏
i=1

(
c(xi, yi)s(xi, yi)

)wi
(5.9)

Throughout this chapter I will use vector notation to communi-
cate the scale parameters; for instance, in the parameter array W =

[w1, w2, ..., wn], w1 is the weight on the lowest scale (largest image),
while wn is the weight on the highest scale (smallest image).

5.6 comparing ssim and ms-ssim

To begin assessing the utility of SSIM as a measure of visualization
similarity I designed a small sanity test. I chose two visualizations
from the Vega-lite visualization gallery (Interactive Data Lab, 2018),
a bubble chart and a stream chart, and produced data perturbations
of different magnitudes. Then I measured the similarity between the
visualizations of the perturbed data and the original visualization.
These visualizations have encodings of different nature: point and
area. I added also a third set of visualizations, which consists of
plots of graphical models of password lists (Zheng et al., 2018). They
were chosen because they are dense representations that tend to form
distinct shapes.

Figure 5.2 shows the mean squared errors (MSE) computed on the
dataset pairs, and both MS-SSIM and SSIM computed on the corre-
sponding visualization pairs. The MSE summarizes the differences in
values from one dataset to the other. In this experiment, it represents
the baseline or true dataset difference. Most charts of unaggregated
data where clutter is not an issue should allow us to recover, with
some effort, the MSE between two datasets by mapping the visual
marks back to data values and computing the measure. In fact, there



84 discriminability

b)
M

SE = 5.63e+09
SSIM

 = 0.875
M

S-SSIM
 = 0.743

g)
M

SE = 1.92e+05
SSIM

 = 0.710
M

S-SSIM
 = 0.765

l)
SSIM

 = 0.279
M

S-SSIM
 = 0.408394

a)

e)i)

c)
M

SE = 8.03e+09
SSIM

 = 0.815
M

S-SSIM
 = 0.698

h)
M

SE = 2.16e+05
SSIM

 = 0.683
M

S-SSIM
 = 0.760

k)
SSIM

 = 0.277
M

S-SSIM
 = 0.415

d)
M

SE = 4.76e+10
SSIM

 = 0.803
M

S-SSIM
 = 0.533

f)
M

SE = 5.59e+04
SSIM

 = 0.744
M

S-SSIM
 = 0.790

j)
SSIM

 = 0.248
M

S-SSIM
 = 0.425

Figure
5.2:D

ata
and

im
age

sim
ilarity

m
easures:

M
ean-Squared

Error
(M

SE),
Structural

Sim
ilarity

Index
(SSIM

),
and

M
ulti-scale

SSIM
(M

S-SSIM
).

Leftm
ost

im
ages

in
each

row
are

the
references.

Top:
globaldeaths

from
naturaldisasters

(Vega-lite
gallery)

and
sim

ulated
perturbations.

M
iddle:

unem
ploym

ent
across

industries
(Vega-lite

gallery)
and

sim
ulated

perturbations.
Bottom

:
graphicalm

odels
of

passw
ords

(Z
heng

et
al.,

2
0

1
8).M

SE
is

inversely
proportionalto

sim
ilarity.M

S-SSIM
w

eights:[
0.

1,
0.

1,
0.

1,
0.

2,
0.

5].



5.7 limitations 85

are tools designed with the specific purpose of extracting data from
existing visualizations (Harper and Agrawala, 2014; Méndez et al.,
2016).

The SSIM produced similarity rankings that mirror the MSE rank-
ings in the bubble chart and stream chart cases: larger SSIM values
should correspond to lower MSE values. In the dense graph case the
true data similarity is unknown, so I’ll resort to a qualitative assess-
ment. It is rather clear that two of the plots feature an extremely
dense central region that forms a solid red blob, while the other two
plots, including the reference plot, feature a more well-distributed
pattern. The output of the SSIM comparisons indicates that this no-
tion is not captured by the measure; the graph that is most similar to
the reference received the lowest similarity score.

It appears that the similarity of plots is judged at different scales de-
pending on the kind of plot. For instance, dense graphs form distinct
global shapes that override local similarity comparisons. Other visu-
alizations, such as scatterplots, may or may not form global shapes.
When a global shape is not formed, the similarity judgement is done
at a lower level, by scanning the scene in search of differences, a pro-
cess that is well captured by the windowed calculation of SSIM.

MS-SSIM is built on the premise that viewing conditions determine
the right scale. I instead posit that at identical viewing conditions
the scale in which similarity judgements varies with the chart type.
As such, I customized the weights as following, so as to give more
importance to features at the highest scales: [0.1, 0.1, 0.1, 0.2, 0.5].
The resulting scores (Figure 5.2) reflect the correct similarity ordering
of the dense graphs. As a bonus, the MS-SSIM scores also comply
with the correct data MSE ranks for the stream charts and bubble
charts.

5.7 limitations

Fundamental limitations arise when the SSIM is applied to data plots.
In natural images every pixel counts towards a similarity judgement,
although some extensions of the SSIM recognize that some regions
matter more than others and attempt to weigh their importance based
on saliency (Moorthy and Bovik, 2009), recognized objects (Ninassi et
al., 2007), and information theoretic measures (Wang and Li, 2011). In
data plots, this characteristic manifests adversely as a hypersensitiv-
ity to visual accessories, such as grids and labels. Figure 5.3 displays
scatterplots of the Iris dataset that feature a grid. Note how the SSIM
values do not correspond to the visual similarity of the plots. Upon
close inspection we see that the grids, which are not consistently po-
sitioned, contribute disproportionately to the measurement.
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a) b)
SSIM: 0.586

c)
SSIM: 0.598

d)
SSIM: 0.705

Figure 5.3: Bottom: SSIM measurements relative to (a). Top: Local SSIM
values (brighter is higher).

a) b)
SSIM: 0.821

c)
SSIM: 0.772

d)
SSIM: 0.999

Figure 5.4: Iris dataset without grid. SSIM measurements relative to (a).

In the context of the proposed use of the measure, the discrim-
inability tests, the tester has control over the production of the im-
ages, so the hypersensitivity problem can be completely disregarded
if we assume that for testing purposes, the plots are generated with-
out grids, labels, and other accessories. Of course this entails that
the viewer is capable of separating the accessories from the data map-
ping when performing a similarity judgement and that such acces-
sories do not hinder the discriminability of the visualizations. That
is, by removing the accessories, we artificially make the views less
cluttered. This brings us to an important point regarding the target
of discriminability tests and, consequently, the similarity measures:
they are not intended to measure and test the clutter levels of the
visualization; instead, the tests target the discriminability of the map-
ping, which precedes concerns with clutter due to labels, grids, and
other annotations. Clutter is only a factor when it arises from the
data-visual mapping.

Better measurements are achieved by simply turning the grid off
(Figure 5.4). However, this figure illustrates a more complicated limi-
tation. The scatterplot labelled (d) is a clone of (a) that had the color
mapping inverted (blue became green, and vice-versa), therefore, (d)
in fact depicts the most different dataset to (a), contrary to the SSIM
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value, which places it as the most similar to (a). The SSIM operates
on grayscale images and it is not capable of capturing changes in hue.

The color limitation does not affect color encodings of numerical,
continuous data attributes, which employ color schemes that vary
luminance and saturation, such as the Viridis color scheme. It affects
exclusively visualizations that use categorical color mappings, which
normally use nearly equiluminant color palettes. In the next section I
propose a modification to SSIM that addresses its “color blindness”.

5.8 color-sensitive ssim

Green

Blue

Orange

Background

SSIM

a) b)
CS-SSIM: 0.586

c)
CS-SSIM: 0.284

d)
CS-SSIM: 0.492

Figure 5.5: Color-sensitive SSIM applied to Iris scatterplots. On top, the
decomposition of the similarity measure into color layers and
background. Similarity is encoded with brightness (more simi-
lar is lighter).

The basic idea behind my modification of the SSIM is to segment
the image in a manner that produces independent layers, each of
which stores objects of a single hue, then average the layer-wise sim-
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ilarities. This strategy exploits the fact that categorical color palettes
are often designed to maximize the perceptual distance between the
colors. For instance, if we know that the color palette has 3 values,
a segmentation of the image based on 3 regions of the hue spectrum
of equal size is likely to yield the object segregation that we need
for computing the correct similarity. The color-sensitive SSIM is thus
defined as:

CS-SSIM(x, y) =
L

∑
k=1

SSIM(xk, yk)

L
, (5.10)

where L is the number of layers. For convenience, I obtain the HSV
representation of the images, which allows the color segmentation to
take place on a single dimension (hue). The color layers are defined
as follows:

xki =

{
xi, if hka < xi < hkb

z, otherwise,
(5.11)

where xki is a pixel in layer k, hka and hkb are the upper and lower
hue bounds that define layer k, and z is the background color. As a
result, each layer is obtained by replacing every irrelevant pixel with
the background value.

Remember that the SSIM is computed locally with a Gaussian win-
dow followed by pooling. Pooling the local SSIM ad-hoc in each layer
would result in overrepresentation of the background; instead, the
background is cancelled by computing the pooling step as a weighted
mean with the following weights:

λkj = 1(xkj 6= z ∨ ykj 6= z) (5.12)

The indicator function above works as a boolean mask that can-
cels overlapping background pixels. The weights are applied to the
calculation of the mean in Equation 5.7:

Mean-CS-SSIM =
1
L

L

∑
k=1

1

∑M
j=1 λkj

M

∑
j=1

SSIM(xj, yj)λkj (5.13)

While the effect of the background is undesirable in the layerwise
comparisons, the background should be taken into account; therefore,
I define a separate layer for the background. As such, L = |C| + 1,
where C is the color palette. Figure 5.5 illustrates the application of
CS-SSIM on the downsampled Iris scatterplots (scale .25).

This layerwise strategy is conceptually simple and well-founded,
as the semantics of SSIM are preserved. The only difference is that
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we decompose the image into as many layers as the number of hues.
In cases where a uniform division of the hue spectrum does not yield
a good color segmentation, the algorithm can be easily adapted to
accept a list of hues and threshold band. The problem with this strat-
egy is that it can only be used to compare visualization encodings
that share a categorical color mapping.

For instance, suppose we would like to compare the discriminabil-
ity afforded by a force-directed layout with that of a spectral layout.
We simulate a number of datasets and calculate their average pair-
wise similarity under each layout. If both representations use a cate-
gorical color encoding, these averages are comparable and we can use
them to decide which layout produces the most discriminable images.
However, if one of the encodings uses a continuous color map, there
are two obvious options, none of which is well-founded:

1. Calculate CS-SSIM on the visualization with continuous color
mapping.

2. Calculate SSIM on the visualization with continuous color map-
ping and compare it with the CS-SSIM computed on the visual-
ization with categorical color mapping.

In the next section, I discuss a second strategy for computing simi-
larity in color images.

5.9 ssim on yuv color space

Considering that in the next sections I will be investigating the dis-
criminability of a broad set of encodings with various color mappings,
it is important to establish a more general use of SSIM that can accom-
modate both categorical and continuous color mappings.

My goal is to introduce some sensitivity to color by using a color
space where color components are represented independently from
luminance. The YUV color space is well aligned with this goal. It
consists of a luminance component (Y), and two chrominance compo-
nents (UV). Black and white images use only the Y component.

I compute the SSIM on the YUV space by simply averaging the
similarities computed in each color space component (Y, U, and V)
independently. The original SSIM is equivalent to the computation
on the Y channel (black and white). The computations on U and V
can be interpreted as an assessment of the similarity existing in color
structure.

In the pathological example depicted in Figure 5.6, where two
groups had their color swapped, this strategy is enough to prevent
the visualizations from being scored identical. However, it preserves
SSIM’s characteristic of being driven by spatial structure. In a data
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(a)

(b)

(c) SSIM = 0.968

Figure 5.6: SSIM applied on YUV image representations. (a) and (b) are
images in their original form, and decomposed into Y, U, and V
channels of the YUV color space. (c) is the similarity map result-
ing from averaging the similarities computed on each channel
independently. Note how the color difference in the original
images appears in the final similarity map.

analysis context, there are two plausible readings for the change be-
tween images 5.6a and 5.6b. On one hand, the green and blue points
could have all been translated across the plane; on the other hand, the
points could have remained still and changed the values mapped by
color. Assuming the former reading implies very low similarity be-
tween these datasets, the SSIM on YUV cannot be expected to capture
it, as the CS-SSIM does. The CS-SSIM between the color-swapped
scatterplots is 0.492, while the SSIM on YUV is 0.968. Thus, SSIM
on YUV is more compatible with the second reading, which implies
higher similarity.

However, note that the evidence for the correct interpretation and
level of similarity in this case is lacking, so I do not treat any of these
behaviors as limitations. I choose to work with SSIM on YUV when
color is involved because it is more applicable to a wide range of
visualizations. It does not require additional parameters (e.g., color
palette, number of colors) and it yields comparable scores regardless
of the color map used.
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Figure 5.7: Spatial arrangement interface used to collect human similarity
judgements of a set of scatterplots. Study participants were in-
structed to position images into groups according to perceived
similarity, and then explicitly delineate group boundaries.

5.10 empirical validation

Scatterplot Similarity

In this section, I compare SSIM judgements with empirical similarity
judgements. My goal is to test if a parameterization of SSIM is capa-
ble of approximating empirical judgements for a certain visualization
type. A positive result in this validation should indicate that other
parameterizations can help us approximate judgements for other vi-
sualization types, assuming that the judgments will vary mostly with
respect to scale and the use of color. If instead we find that no pa-
rameter set can approximate well empirical judgements, that should
prompt discussion about what factors are involved in similarity per-
ception of data plots. This applies in particular to spatial encodings.
If a measure that stems from pixel correlation cannot be tuned to
model human similarity judgements, then what visual features are
people taking into account?

For this analysis I chose the data collected by Pandey et al. (2016),
which consists of human similarity judgements (13 participants) for
a set of 247 single-color scatterplots. The scatterplots were produced
from 84 real-world datasets, and were selected to maximize diver-
sity using the scagnostics descriptors of scatterplot shape (Wilkinson
and Wills, 2008). The similarity judgements were collected with a
spatial arrangement interface (Figure 5.7) in which scatterplot thumb-
nails are displayed in an “image carousel” and can be dragged and
dropped into a large, initially empty, canvas. Participants were in-
structed to arrange the scatterplots into groups according to their
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similarity, and then explictly mark the boundaries of each group, and
finally, assign labels to them. They were told not to worry about
within-group or between-group distances; that is, only group mem-
bership mattered.

Pandey et al. (2016) calculated the consensus distances for each
pair of plots as the complement of their probability of co-occurrence
averaged across participants:

di,j =
1
N

N

∑
k=1

(
1−

ci,j

min(ci, cj)

)
k

(5.14)

where N is the number of participants, ci,j is the number of clus-
ters that contain both plots i and j, and ci and cj are the number
of clusters that contain the plots i and j, respectively. Note that the
interface allowed participants to assign plots to multiple groups. A
hierarchical clustering of the plots based on the consensus percep-
tual distance matrix was calculated, and it is displayed in Figure 5.8a.
This process was repeated with similarity judgements derived from
scagnostics scores, the analytical similarity method under scrutiny.
The authors used correlation between the pairwise distances to as-
sess the correspondence of scagnostics to empirical judgements, and
concluded that, with r < 0.26, scagnostics is not a good match.

I consider this comparison method inappropriate because partici-
pants were explicitly instructed to disregard distances and the dis-
tance calculation above, based on probability of co-occurrence, does
not capture fine-grained distance information. For instance, sup-
pose all participants are 100% consistent, and there is a single non-
overlapping clustering. In such case, the plot distances are either 1

or 0, and no information is learned about the distances between clus-
ters. With scagnostics, the Euclidean distance is computed for a pair
of plots based on the numerical feature vectors that are the output
of scagnostics. The matrix holds distance information irrespective of
cluster membership. In summary, the data collection procedure of
Pandey et al. does not yield 2D embeddings but cluster assignments.
For this reason, set membership, not matrix correlation, should be
taken as a measure of correspondence.

Here, I compare SSIM and empirical judgements using cluster qual-
ity measures, which are traditionally used to quantify the agreement
between two independent label assignments on the same dataset. I se-
lected the following measures, all of which assume the ground truth
is known: adjusted mutual information (AMI), normalized mutual
information (NMI), Rand Index (RI), and Adjusted Rand Index (ARI).
A summary of the measures’ properties is provided in Appendix A,
Table A.1. All measures except RI assign values close or equal to 0

to random clusterings and assign 1 to perfect clustering (relative to
the ground truth). Change adjusted measures (AMI and ARI) do not



5.10 empirical validation 93

(a) Empirical scatterplot clustering.

(b) MS-SSIM scatterplot clustering.

Figure 5.8: Empirical and MS-SSIM clusterings of the scatterplots from the
study of Pandey et al. MS-SSIM parameters were tuned to the
empirical data via gradient descent.
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Table 5.1: Cluster quality measures for clusterings of 247 scatter plots based
on MS-SSIM. The quality measures are relative to the clustering
based on human similarity judgements reported by Pandey et al.
(2016). Each row corresponds to a parameter set (w1..w5). The pa-
rameters in the first row were obtained through gradient descent.

w1 w2 w3 w4 w5 ARI RI AMI NMI

0.32 0.73 0.82 1.00 1.00 0.20 0.90 0.35 0.51
0.10 0.10 0.10 0.30 0.40 0.16 0.86 0.30 0.46

0.10 0.20 0.20 0.20 0.30 0.13 0.83 0.25 0.42

0.10 0.15 0.15 0.30 0.30 0.10 0.81 0.22 0.40

0.20 0.20 0.20 0.20 0.20 0.13 0.81 0.24 0.42

0.40 0.20 0.20 0.10 0.10 0.13 0.81 0.26 0.44

exhibit a dependency between the number of clusters and the num-
ber of samples; such dependency could boost the score of random
clusterings that have many groups.

I compared clusterings based on the multiscale version of SSIM
parameterized with six naively defined weight vectors, chosen man-
ually to represent different weight balancing strategies, plus one spe-
cial weight vector tuned via gradient descent. The weight vectors
are presented in Table 5.1, ordered by importance on the finest scales.
The parameter set in bold was obtained with the tuning approach
described in detail in the next section. The clustering method was
fixed to hierarchical clustering under the Ward agglomeration strat-
egy, with even-height tree cuts that yielded 20 clusters (the same num-
ber of clusters in the ground truth, although none of the quality mea-
sures requires an equal number of clusters).

The results can be seen in Table 5.1. The parameters found through
gradient descent achieved the best fitness to the empirical clustering,
as observed in all of the quality scores. The plot arrangement result-
ing from clustering with this best MS-SSIM parameter set is presented
in Figure 5.8b, and the corresponding dendrogram in Figure 5.9. The
fitted parameters and the plot arrangement comparison tells us much
about the protocol used to collect the empirical measurements. First,
the participants had only the chance of interacting with thumbnails,
forcing them to make high-level perceptual judgements. This fact
is expressed in the weights discovered with gradient descent, which
clearly emphasize coarser judgements.

Second, distances were not taken into account. The MS-SSIM clus-
tering imposes a partition between dense and sparse plots (around
cluster 13), while the empirical clusters have a fuzzier organization.
In addition, some pairs of plots that are very similar are distant in
the empirical arrangement. In fact, even if the participants were in-
structed to optimize distances, the procedure consisted in the orga-
nization of 247 scatterplots in a plane, and that would likely have
discouraged participants from doing fine-grained adjustments: in ad-
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Figure 5.9: Dendrogram representation for the MS-SSIM clustering of
Pandey et al’s scatterplots. Each row in the bottom represents
an empirical cluster, with each dot representing a plot. Dots
are aligned with the dendrogram, allowing us to observe how
the empirical clusters are disrupted by the dendrogram arrange-
ment. If the clusterings were identical, all dots in each row
would be adjacent. Rows are ordered according to leftmost
match with dendrogram.
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dition to much energy being spent, the size of the canvas, in turn
limited by the display size, would be a bottleneck.

These limitations prevent me from taking these empirical judge-
ments as an absolute ground truth. The most important difficulty
arises from the cognitive interaction problem (Wang et al., 2003), by
which different user goals can result in very different judgements.
Participants were not instructed to cluster plots based on dataset simi-
larity. In a real-world scenario, analysts are making judgements about
the data, with the visualization being a proxy. Some pairs of plots
that bear some visual resemblance (in terms of shape) and are in the
same empirical cluster, are unlikely to have been found similar if the
question was about the underlying data. For instance, and
have both a T-like shape, but represent very different relationships
between the variables. We can attribute much of the difference be-
tween the clusterings to this misalignment of goals. Empirical cluster
number #5, the one whose elements are spread the most across SSIM
clusters, comprises elements with wildly distinct data patterns, but
similar density. Density-based agglomeration is still present in the
SSIM clustering, but divided according to the position of the point-
cloud. Likewise, empirical cluster #11 has plots with similar amount
of ”ink“ but very different spatial arrangements; it is also divided in
several pieces in the MS-SSIM clusterings.

5.11 tuning

In this section I describe the development of a tuning procedure for
the multi-scale SSIM. The goal of this procedure is to adjust the scale
weights so as to minimize the discrepancy between SSIM similarity
and a set of empirical judgements. As no hypothesis is being tested,
the procedure is relatively free from bias, and these empirical judge-
ments can be performed by a designer, by a group of colleagues, or
deployed on Mechanical Turk.

I assume a visualization designer or engineer in her testing work-
flow should be able to determine whether or not her similarity judge-
ments suffice. For instance, if the product is being designed for a
broad audience and analytical needs, then judgements from a large
sample are advised. If the product is being designed for a specific
audience in a narrow problem domain, then the designer has access
to the audience and can collect judgements, or has learned enough to
the extent she can perform the judgements on their behalf, knowing
that the audience’s interpretation of the visualization will not deviate
significantly from the expectation.

For the tuning, I used a stochastic numerical gradient descent algo-
rithm, whose code is presented in Appendix B, Listing B.1. The al-
gorithm, at each iteration, evaluates the gradient of the loss function
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Figure 5.10: Regularization loss function used for gradient descent tuning
of MS-SSIM parameters.

with respect to the current parameters, then updates the parameters
in the directions that reduce the loss.

Let’s define a dataset of images xi ∈ RD, and a similarity function
s : RD × RD → R1. With the multi-scale SSIM, s has the following
form:

s(xi, xj) = MS-SSIM(xi, xj, W) (5.15)

The above equation can be read as the similarity of xi and xj given
the vector of weights W, which determines the importance of each
scale to the overall similarity score, as seen in Section 5.5. Next, let’s
the define a binary function that takes an image triplet (xi, xj, xk) and
decides whether xi is more similar to xj than xi is to xk:

f (xi, xj, xk) = 1(s(xi, xj, W) ≥ s(xi, xk, W)) (5.16)

This equation embodies a triplet matching task and enables the def-
inition of a loss function for comparison of SSIM scores with a ground
truth that is independent of the protocol used to collect the ground
truth judgements. For example, the judgments could be collected us-
ing triplet matching, triplet discrimination, spatial arrangement, or
pairwise ratings on a Likert scale. Compare that with a loss function
based on distances, such a matrix correlation: unless the judgement
protocol yields a spatial embedding, the comparison with SSIM, or
any other analytical measure, would be difficult.
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Table 5.2: Kim and Heer’s experiment was divided into four tasks. Q1 is a
continuous variable.

Read value What is the Q1 of the data point A?
Compare value Which data point has more/less Q1?

Find maximum
Which state has the data point with the
highest Q1?

Compare averages
Considering all data points for the State,
which of the following two States has greater
average Q1?

The loss function is defined as follows, where fijk is an abbreviation
for f (xi, xj, xk, W), the SSIM binary label, and Yijk is the ground truth
label:

Lijk(W) = ∑
fijk 6=Yijk

(
s(xi, xj, W)− s(xi, xk, W)

)2
+ R(W) (5.17)

The loss defined in the equation above is composed of two terms,
the data loss and the regularization loss. The data loss is simply
the squared difference between the similarity scores when they are
wrong. For instance, if s(xi, xj, W) = 0.8, s(xi, xk, W) = 0.6, and the
ground truth is s(xi, xj, W) < s(xi, xk, W), that is, Yijk = 0, then the
loss is 0.22. The regularization loss (or penalty) is a function of the
weights and embeds our preference for weights in a certain range. In
this case, the weights need to be between 0 and 1. The regularization
loss has the following form:

R(W) =
|W|

∑
i=1

(Wi)
α−1(1−Wi)

α−1 (5.18)

where α is a parameter that controls the steepness of the penalty as
the values approach 0 or 1. In Figure 5.10, the shape of this function
is depicted with α = 0.5.

5.12 discriminability of basic encodings

In Section 5.10 I presented a validation of the MS-SSIM against an em-
pirical study of scatterplot similarity. It was useful for understanding
the extent to which we can expect human similarity judgements to
match MS-SSIM scores, but it did not shed light on the usefulness
of discriminability as a quality criterion. We do not know if discrim-
inability scores derived from similarities have any relationship to the
effectiveness of visualizations. In this section I seek to fill this gap.

Fortunately, there are a few empirical studies of the effectiveness of
visualization encodings. I will base my investigation on the most re-
cent of these studies, which has all materials publicly available (Kim
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Figure 5.11: Error rates and completion time (log-transformed) for each
encoding, along with 95% confidence intervals. Reproduced,
with permission, from the paper of Kim and Heer (2018).

and Heer, 2018). As a plus, this study focused on the effect of data
scale and distribution on performance, so it aligns with my interest
in scalability. Kim and Heer (2018) tested the effectiveness of twelve
trivariate encodings, shown in Figure 5.12, where Q1 and Q2 are nu-
merical, continuous variables, and N is a categorical variable..

The data consists of 2016 U.S. monthly weather measurements,
which are published as part of the Global Historical Climatology
Network-Daily Database (GHCN) (Menne et al., 2012), and contains
the categorical variables State and Month, and the following numeri-
cal variables: Maximum Temperature, Minimum Temperature, Aver-
age Wind Speed, Wind Direction, Strongest Gust Speed, Precipitation,
Snowfall, and Snow Depth.

The stimuli of that experiment were produced by sampling from
GHCN and they were divided into 24 experimental conditions that
result from the crossing of the following factors: Cardinality (3, 10,
20), where cardinality is the number of categories N, #/Category (3,
30), EntropyQ1 (Low, High), and EntropyQ2 (Low, High). The specific
variables Q1 and Q2 were not factors; thus, they vary randomly across
stimuli. N is always a derived variable resulting from the conflation
of State and Month (as in TX-03), although in the stimuli it appears
simply as State; that is, participants are not exposed to Month.

Study participants were asked to perform tasks that involved ques-
tions about Q1. The tasks were of the following types: value tasks,
further split into read value and compare value; and summary tasks,
further split into find maximum and compare averages. Table 5.2
lists the question templates for each task. Error rates and completion
times were measured, and rankings of encodings were created based
on the error rates.
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Figure 5.13: Rankings of effectiveness divided by task and factor level.
Gaps labelled T and E represent statistically significant differ-
ences in completion time and error rate, respectively. Effec-
tiveness is calculated as mean error rate. Reproduced, with
permission, from the paper of Kim and Heer (2018).

The results of this experiment reveal that the effect of encoding on
error rates depends on the task and on the various factors manipu-
lated in the experiment (Figure 5.11); therefore, a different ranking of
encodings is created within each task group and factor level (Figure
5.13). Furthermore, the differences in error rate and completion time
for the encodings are not always statistically significant; for instance,
in summary tasks involving datasets with three and ten categories,
the ten best ranked encodings did not score significantly different
error rates.

Measuring Discriminability

These rankings of effectiveness are useful to visualization practition-
ers but they do not enhance our understanding of what drives the
effectiveness of a visualization. They are digestible guidelines, not el-
ementary quality criteria; as such, they only vaguely help us predict
what would work in a new visualization design. In their popular sci-
ence book, Cham and Whiteson (2017) argue that while decades ago
the periodic table of elements represented our best understanding of
the building blocks of matter, it contained clues that suggested that
the actual building blocks were smaller. Many elements shared com-
monalities and were grouped together, forming patterns that seemed
coincidental. Today we know that the relationships between elements
are driven by patterns in smaller particles: quarks and leptons. Yet,
patterns in the electrical charge of these particles, which today seem
entirely coincidental, suggest that something even more elementary
is behind them. Likewise, the fact that a more elegant explanation
exists for the visualization rankings is undisputed, but we currently
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a)

b)

c)

Figure 5.14: Images generated for the global discriminability test. a) Origi-
nal plot used by Kim and Heer. b) Plots depicting variations of
the original data, resulting from sampling from statistical mod-
els fitted to Kim and Heer’s data. Only the question variable
Q1 (WSF5 in this example) is simulated. c) The same simulated
data depicted using size encoding (size_y_x) for Q1.

only speculate the reasons why some encodings are better than oth-
ers. My goal here is to examine if discriminability can be considered
a good candidate for this explanation.

In the next sections I’ll report two experiments. The first experi-
ment is a global discriminability test, of the kind someone would run
without a specific task in mind. It generates a variety of datasets
then computes the average similarity across visualizations of these
datasets for each encoding being considered. In essence, it measures
the sensitivity of each encoding, or how much overall visual change
we can expect of each encoding, in average. The link to effectiveness
is in the assumption that the less sensitive an encoding, the harder
it is to decode information: reading and comparing values is more
difficult when the visual range is narrow.

The second experiment is task-specific. In Figure 5.13, we can see
that the rankings for the summary tasks (mean comparison and find
maximum) are somewhat different than the value rankings. In the
mean comparison tasks, participants are instructed to select the state
with the highest mean out of only two options. It is safe to assume
that in these tasks what matters is how easily people can segregate
the values of the two states in question and compare their values. In
experiment 2, I devise a scheme to test local discriminability.
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Table 5.3: Structure of the global discriminability experiment. Note how
encodings within each experimental condition are tested on the
same collection of 20 datasets. The datasets are different across
conditions.
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Experiment 1 - Global Discriminability

The experiment of Kim and Heer is structured as follows: 8 different
datasets were sampled from the GHCN records for each combination
of factors cardinality × #/category × entropyQ1 × entropyQ2 × encoding.
That is, within each condition, each encoding was tested with a dif-
ferent collection of datasets, all with similar characteristics (dictated
by the experimental condition). The datasets vary randomly in Q1,
Q2, and the specific data points and states that the questions center
on, in order to avoid a combinatorial explosion of conditions. In the
discriminability tests, I prioritized symmetry by testing all encodings
within a given experimental condition on the same datasets. Further-
more, Q1 and Q2 were not varied randomly; instead, they were a
factor in the experiment (between-encodings). These changes were
made because the scale of the test is not a problem here, so I can test
every possible cross between Q1, Q2, and the rest of the factors. In
summary, I created 20 datasets by simulation for every combination
of factors cardinality × #/category × entropyQ1 × entropyQ2 × Q1 ×
Q2. Table 5.3 demonstrates this structure.

In order to simulate data that are similar to the data used by Kim
and Heer (2018), I sampled values from generalized linear models
(GLMs) fitted to the GHCN data. The simulation consisted in ran-
domly drawing a dataset that matched the given experimental condi-
tion, then replacing its Q1 values by values sampled from the model.
The replacement step was repeated 20 times. The GLMs were fitted
as follows. Given a condition, all records in Kim and Heer’s data that
match Q1 were collected. Then a GLM was fitted to these records
with Q1 as the response variable and State as the covariate. Since
all datasets have low correlation, Q2 was omitted from the model;
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Figure 5.15: Global discriminability (Experiment 1). MS-SSIM weights pri-
oritizing coarsest scale. W = (0, 0, 0, 0, 1)

thus, the GLMs simply learn one distribution for each state. Figure
5.14 shows a reference dataset and simulated datasets visualized with
two different encodings.

For each encoding, pairwise similarity judgments were computed
with the MS-SSIM on the YUV representations of the images. Each
tuple (cardinality, #/category, entropyQ1 , entropyQ2 , Q1, Q2, encoding)
yields a discriminability score computed as the average pairwise sim-
ilarity between the 20 images. These scores are then aggregated to
produce scores per factor level, used in the rankings of encodings.
Three rankings were computed, each with different scale weights:
uniform (W = [1, 1, 1, 1, 1]), high-level (W = [0, 0, 0, 0, 1]), and low-
level (W = [1, 0, 0, 0, 0]). Figure 5.16 shows the three rankings using
the same color scheme as Kim and Heer’s rankings.

Results

The high-level ranking matches almost entirely the Value Task rank-
ing, with the only difference being the position of the pair of encod-
ings x_size_y/y_size_x; this difference disappears when we consider
that no statistically significant difference was found between the four
best ranked encodings for the Value Tasks. The uniform and low-level
rankings also match the Value Task rankings to a lesser extent. The
summary task ranking, which is characterized by a drop in the effec-
tiveness of the encodings x_y_color and y_x_color, and an increase in
the effectiveness of the encodings size_x_y and size_y_x is not matched
well by the discriminability rankings.

Furthermore, the boxplots in Figure 5.15 reveal a similar parti-
tion of encodings as the one found by Kim and Heer, with the first
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(c) Low-level ranking. W = (1, 0, 0, 0, 0)

Figure 5.16: Discriminability rankings for visualization encodings resulting
from Experiment 1, which measures global discriminability.
Each ranking was produced with different MS-SSIM weights.

four pairs of encodings exhibiting distinctively higher discriminabil-
ity compared to the two lowest encodings.
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(a) (b) (c) (d)

Figure 5.17: Pairs of colored scatterplots (y_x_color) with y values swapped
between two categories. a) and b) have 3 categories in total,
while c) and d) have 30 categories. These pairs are used to
measure the visual discriminability of two categories (other cat-
egories fixed) along one variable.

Experiment 2 - Local Discriminability

As mentioned earlier, we cannot expect a general test as the one pre-
sented in Experiment 1 to explain accurately the effectiveness of a
task that requires the comparison of two sections of a visualization,
because that experiment evaluated global discriminability. At first,
it seems reasonable to simply extract the data of the two categories
in question (the States in the weather data) and plot them indepen-
dently, each in its own plot, then measure their similarity. This could
produce good results for encodings where categories are spatially seg-
regated, after all, extracting and comparing the categories is what
people need to do in order to answer the mean comparison question.
However, we should not expect this strategy to match well the effec-
tiveness of encodings like x_y_color (the multi-category scatterplot),
where data for different categories share the same axes. In these en-
codings, it can be difficult, in human perception terms, to separate
categories if there are many of them and if the plot is crowded. A test
based on a procedure that isolates the categories in different layers
would ignore this difficulty.

In order to test the discriminability of the visual representations
of the two categories within the context of the whole plot I devised the
following testing scheme. Given a plot, a subset of two categories,
and the variable Q1 subject to the mean comparison, a second plot is
generated where the values of Q1 are swapped between the two cate-
gories. The values for Q2 in both categories remain fixed, as well as
all data points in all other categories. The similarity is then computed
on this pair of images, effectively measuring the visual similarity of
the two groups of data points in the context of the rest of the data.

This test did not employ statistical simulation. I modified the same
datasets that served as stimuli in Kim and Heer’s experiment, which
had 2,304 mean comparison tasks. In my experiment, each of these
datasets was modified once, resulting in 4,608 datasets. Discriminabil-
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ity was calculated as the average similarity (MS-SSIM on YUV) be-
tween source and modified datasets. As in the section above, I present
rankings that correspond to three very distinct MS-SSIM parameteri-
zations.

Figure 5.18: Local discriminability (Experiment 2). MS-SSIM weights prior-
itizing finest scale. W = (1, 0, 0, 0, 0)

Results

The local discriminability ranking resulting from Experiment 2 (Fig-
ure 5.19) correctly captures the main change observed in the Sum-
mary Tasks rankings: the encodings that map Q1 to size become
highly effective, while the multiclass scatterplot becomes ineffective.
While the rankings do not deviate drastically, this time the low-level
ranking is the one that matches better the Summary task ranking of ef-
fectiveness. This is not surprising, since the summary tasks require lo-
cal judgements. To be more precise, the summary judgements require
visual aggregation, but that cannot be considered a global judgement
because the question covers only two categories. In order words, we
expect the differences between two groups of points in a plot to dis-
appear if viewed from afar when in the context of more categories,
especially when the number of “distractor” categories increases. In
fact, this is exactly what we observe in the high-level ranking (Figure
5.19c), where size_y_x/size_x_y and x_y_color/x_y_color switch back
to their global discriminability ordering.
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(c) High-level ranking. W = (0, 0, 0, 0, 1)

Figure 5.19: Discriminability rankings for visualization encodings result-
ing from Experiment 2, which measures local discriminability.
Each ranking was produced with different MSSSIM weights.
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5.13 conclusions

The correspondence between the rankings of discriminability and em-
pirical effectiveness suggest that the effectiveness of the encodings is,
to a large extent, driven by encoding discriminability. The results
show that the discriminability tests based on MS-SSIM are useful as
tools to assess the discriminability of visualizations. While discrim-
inability has been a quality criterion in visualization for a long time, it
has been mainly confined to theoretical discussions. This work consti-
tutes the first methodical application of the discriminability criterion
to the evaluation of visualization encodings.

Fine grained changes in Kim and Heer’s rankings due to entropy
and scale were not matched by the discriminability rankings. This
suggests that discriminability cannot fully explain the rankings. This
is to be expected, since other factors are known to influence people’s
judgements. Among these factors are saliency and distortions in the
perception of brightness, contrast, length, and area (as described by
Steven’s law). But more importantly, discriminability seems to be
the strongest factor behind effectiveness in these experiments, as it
explains the majority of the patterns.

It is worth noting the limited scale of Kim and Heer’s experiment.
Although it can be considered a very large controlled experiment in-
volving human participants, it is tiny compared to what is possible
to accomplish using a computational measure like MS-SSIM. Namely,
to make the study amenable, data size, correlation, and entropies
were discretized into at most three levels. With discriminability tests,
if necessary, it is possible to construct a discriminability surface over
these dimensions.

Finally, the MS-SSIM score can be interpreted as an inverse mea-
sure of the strength of the visual difference generated by a visual en-
coding. The successive downsampling steps simulate the increase of
viewing distance. Intuitively, differences that are preserved at a large
distance are easy to read at normal viewing distance, and judgements
that depend on evaluating these differences are expected to be more
accurate with less difficulty.

5.14 summary

In this chapter, I examined the problem of automated evaluation of
visual encodings. I started by reviewing the current evaluation prac-
tice, and argued that a commonly narrow scope in the definition of
test data results in new visual encodings and techniques being un-
dertested. I also highlighted the low scalability and high cost of eval-
uation approaches that rely on human judgements, and pointed to
automated evaluation as a solution to improved the scale and cover-
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age of evaluation. I proposed discriminability tests as tools to evaluate
the quality of visualizations with a large collection of datasets with
varying characteristics. Such tests consist in simulating an array of
different datasets and scoring the discriminability of the correspond-
ing visualizations.

In order to guarantee the scalability of discriminability tests, I pro-
posed the use of an image similarity measure (SSIM) as a substitute
for human judgements. The appropriateness of SSIM for rating plot
similarity was evaluated in an experiment where SSIM scores for a set
of 247 scatterplots were compared with scores derived from empirical
data. The results revealed a notable overlap between the approaches,
suggesting SSIM could be used to replace human judgements.

Finally, I conducted an experiment to answer whether there is a
link between the discriminability and the effectiveness of visual en-
codings. I computed discriminability scores for several encodings
and compared them with empirical effectiveness measures published
in the visualization literature. My comparative analysis shows that
there is a large overlap between the discriminability computed with
SSIM and empirical effectivenes; in other words, the more discrim-
inable encodings tend to offer better support to tasks such as reading
values and comparing means.



6 F U T U R E W O R K

In this chapter I discuss how the research presented in the previous
chapters creates opportunities for new advances in the visualization
field. I pose questions that arise from technical challenges I encoun-
tered while developing this thesis and from the findings of my re-
search. Occasionally, I suggest concrete paths for investigating such
questions.

6.1 model selection

Model selection, the elegant and general statistical framework I used
in Chapter 3 to find good hierarchical views, is well suited to in-
formation visualization. In that chapter, data plots were defined as
statistical models of the data (whose parameters were encoded visu-
ally), and an information theoretic criterion was used to select the best
model-plot. This way of treating visualizations is intuitive only when
the data is very large. When the data is small, there is no penalty for
seeing a visualization as a faithful “reflection” of the data. It becomes
apparent that a visualization is a rough model when we can notice
various artifacts (e.g., overlap, clutter) that emerge with large scale
data.

Many visualization techniques that rely on feature extraction, such
as splatterplots, are difficult to use because of the need to manually
tune several parameters. However, under the model selection frame-
work these techniques could become powerful, because information
criteria could be used to automatically tune parameters. Compared
to guideline-based constraints for visualization selection (Moritz et
al., 2018), information criteria is more appropriate because it mea-
sures the fitness of a view to the data at hand. With guidelines, the
recommendations are based on coarse data descriptors, such as “low
entropy” and “high correlation”.

Nevertheless, expressing empirical perception results (possibly task-
specific) in information theoretic terms is difficult within the model
selection framework, and is a topic that merits further research. For
instance, how to integrate the knowledge acquired in Chapter 4, that
motion outlier detection is difficult under certain circumstances, into
an optimizer? To begin with, it is not clear which parameters should
be optimized, but suppose there exists a set of parameters that are
to be tuned to make animated scatterplots better overall. How can
we integrate the specific model we have for outlier detection into a

111
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criterion that accounts for other qualities (clutter, cluster detection
effectiveness, mean comparison effectiveness, etc.)?

In the application of knowledge from perception into other fields
lies another trap: the attempt to emulate the mechanisms of the brain
to make perception predictions. In my work, the model complexity
component of the information criterion (the other component was
fitness) consisted of a calculation that boils down simply to the num-
ber of elements in the screen. As shown in my validation using the
statistical saliency model, this was sufficient to control the level of
clutter. The SSIM score that I used in Chapter 5 is another example of
perceptual measure that is not based on the emulation of perceptual
processes; instead, it is designed to mimic the hypothesized function
of the human visual system while disregarding its modus operandis. It
is shown to outperform measures that reproduce at every step the
filters known by vision science (see Wang et al. (2003) for a review).

6.2 eliciting soft knowledge

Feature extraction techniques and visualization tuning approaches
that require a formal notion of data relevance face the challenge of
eliciting an appropriate representation of users’ knowledge, expecta-
tions, and goals. In the visualization literature, this has been referred
to as soft knowledge (Kijmongkolchai et al., 2017). In the technique
I proposed for hierarchy summarization, an important assumption
is made about users’ expectations of the data: the value (size) of an
aggregate category is expected to be proportional to the number of
children nodes. In other words, small subtrees are expected to have
smaller value than large subtrees. Moreover, the distribution of val-
ues within a subtree is expected to be uniform. Whenever categories
fail to meet this expectation, the algorithm pushes the visualization
to expose them. Therefore, the algorithm produces the desired effect
of exposing data that contradicts expectations.

While this expectation is customizable in my technique, in practice
we (the visualization community) do not know a good way to elicit it,
and it is not practical to ask users to “upload” a statistical model that
describes their expectations. Surprise Maps (Correll and Heer, 2017),
a technique that computes and highlights surprise in datasets, also
relies on models of expectation. The authors suggest a number of
default models, including uniform and Gaussian, but acknowledge
that selecting expectation models demands domain knowledge and
statistical expertise.

Ideally, some kind of interface would ask users about their prior
beliefs, or perhaps infer the beliefs of a group of users from their
collective interactions. A simpler way would consist in inferring an
expectation model from past or simulated data; but even then, this
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Figure 6.1: Illustration of semantic interaction. Left: Initial document em-
bedding. Grey points and links represent users interactions
moving points to new locations according to their own knowl-
edge. Right: New view resulting from model update, with users
soft knowledge integrated. ©2011 IEEE. Reprinted, with per-
mission, from A. Endert, C. Han, D. Maiti, L. House, C. North.
Observation-level interaction with statistical models for visual
analytics, 2011.

could not be construed as a trivial task. Endert proposed a method
where users update the parameters of a model by directly manipulat-
ing elements in a visualization (Endert et al., 2011, 2012). Their tech-
nique is particularly suited to 2D embeddings of a high-dimensional
data. In one example of what they call semantic interaction, an inter-
face displays a spatial embedding of large documents and lets users
correct individual document representations according to their own
similarity judgement (Figure 6.1). The model then updates to reflect
changes, effectively absorbing users’ soft knowledge.

With the approach of Endert et al. users could easily provide feed-
back to the hierarchy summarization model by collapsing and ex-
panding nodes; however, it is unlikely that updating individual pa-
rameters manually would suffice (the DMOZ hierarchy in Chapter 3

has more than half a million nodes/parameters). How can users state
comprehensive hypotheses, such as “I expect the value of health care
stocks to depend on their cash flow”, or “I expect the occurrence of
animal words to be highly skewed”?

6.3 error prediction

In Chapter 4, I used logistic regression models to analyze the data
collected in the motion outlier experiment. Each model estimates the
expected accuracy of an outlier detection task (speed or direction of
motion) given the visual features of an outlier. When the models
are used to make predictions, many design opportunities arise. The
accuracy predictions can inform visual interventions that boost the
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Figure 6.2: Illustration of a transition in the Gapminder dataset. Countries
are represented by bubbles; arrows indicate changes in countries’
values from one year (1981) to the next. In animated scatterplots
the positions are smoothly interpolated over time, creating the
perception of motion. The model learned in Chapter 4 predicts
that it is difficult to identify the motion outlier in this transition,
El Salvador (large arrow in the middle).

saliency of outliers only when they are likely to be missed. In this
section I will briefly discuss how such predictive models could be
used to make outliers more evident in animated scatterplots of the
popular Gapminder dataset.

Gapminder is a foundation that aggregates world development
data published by multiple organizations, such as the United Nations.
Each dataset distributed by Gapminder features a numerical indica-
tor of development for every country and year, and can be joined to
form richer multivariate datasets. This data has motivated several
studies in information visualization. Part of the research is dedicated
to techniques that enable better tracking of countries of interest (Hu
et al., 2016; Kondo and Collins, 2014), while the other part is made of
contributions that help users observe large structures (Collins et al.,
2009b) and trends (Robertson et al., 2008).

Gapminder scatterplots usually encode two numerical indicators
in the axes, continent as color, and population as size. They are ani-
mated across years, smoothly displaying changes in all variables over
time. Since the axes are often correlated (as in life expectancy and
GDP), a bubble cloud tends form. Figure 6.2 demonstrates how out-
lying changes in a data point can hide within a bubble cloud. In this
example, El Salvador is by far the point that moves the most, but has
rather average features otherwise, a fact that does not contribute to
make it a global outlier. In this thesis, I offered evidence that suggests
that only global outliers are likely to be properly identified.

In order to make a prediction with the logistic model, all we need
is a measure of the saliency of the outlier in each considered visual
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Table 6.1: Speed and direction of motion outliers with lowest predicted
probability of detection (p) in a time-varying scatterplot of Gap-
minder.

Speed Direction
Rank Year Country p Year Country p

1 1965 China 0.08 1998 Turkey 0.11

2 2008 Zambia 0.1 1993 Venezuela 0.11

3 1999 Liberia 0.1 2008 Paraguay 0.12

4 2000 Liberia 0.18 1999 Chad 0.14

5 2010 Zimbabwe 0.21 1991 Cent. Afr. Rep. 0.15

6 2007 Zambia 0.24 1987 Malawi 0.15

7 1984 Chad 0.26 1997 Zambia 0.15

8 2009 Botswana 0.31 1986 Nigeria 0.15

9 2003 Chad 0.38 1994 Sierra Leone 0.16

10 2001 Liberia 0.4 1989 Congo 0.17

11 1981 El Salvador 0.44 1984 Costa Rica 0.21

12 1987 Chad 0.5 1971 Niger 0.21

13 1976 Guatemala 0.5 1977 Zambia 0.21

14 1979 Nicaragua 0.5 1962 Norway 0.22

15 1963 Mauritania 0.53 1973 Rwanda 0.22

Figure 6.3: Based on predictions from an empirical model, motion traces
are deployed when outliers are in saliency deficit. This visual
intervention is intended to boost saliency, making outliers easier
to detect.
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channel; namely x, y, color, size, direction, and speed. Given these
values, the model calculates a probability. We can then establish a
threshold under which the probability is considered unsatisfactory,
and a visual intervention is introduced to boost the saliency of the
outlier. This saliency boosting strategy should increase the probabil-
ity of an outlier being detected; moreover, it allows interventions to
be deployed only when necessary. Using this strategy, I calculated
the probability of correct outlier detection for every year transition
in Gapminder between 1960 and 2011. The axes are life expectancy
(y) and GDP/capita (x). From this calculation, I ranked the most
saliency-deficited outliers (Table 6.1).

In the context of a large animated scene, the points in Table 6.1 can
be interpreted as local outliers that are hard to detect (low probability
of detection). The saliency of these motions can be improved in many
ways, and ultimately, it is up to the designer to find a suitable visual
accessory. To illustrate the potential of this approach, I have explored
one option, the use of visual traces to boost low saliency motions.
In Figure 6.3 visual traces are applied to outliers in saliency deficit
during the animation.

Note that this approach is limited in that traces are not helpful
when motion is an outlier because of low speed (little movement).
Similarly, direction outliers which do not move very far between
scenes will also not be enhanced much by the trace. In these cases,
another type of highlight may be more appropriate, such as radiating
rings.

This prototype illustrates a kind of dynamic interface that adjusts
depending on predictions from an empirical model. This direction
of research is interesting because it can improve the effectiveness of
visualizations that are known to not support well certain tasks, but
are very familiar to certain user groups. The animated scatterplot is
serves as an example.

6.4 understanding similarity

In Chapter 5, I demonstrated how clusterings of scatterplots based on
the Structural Similarity Index (SSIM) share information with human-
made clusterings. In my preliminary tests of the SSIM, I discussed
how the similarity of certain visualizations (e.g., graphs) tends to be
judged at a different level of detail than other visualizations (e.g.,
scatterplots), even though they are based on the same visual marks.
The multi-level SSIM scores that I computed support this hypothe-
sis: the correct similarity ranking of graphs required heavier weights
on coarser features. This brief analysis, however, was based on my
own judgement of similarity. A better indication that SSIM can be
used to study the granularity of plot similarity judgements is the
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Figure 6.4: Plots lined up for visual inference. Five of these plots display
simulated data under the null hypothesis. Only one of them
displays real data (number 7*5 - 4*8). The visual inference tasks
consists in finding the real data plot. The easiness of this task is
indicative of confidence in rejecting the null-hypothesis. The vi-
sual inference framework relies heavily on similarity judgement.
©2010 IEEE. Reprinted, with permission, from H. Wickham, D.
Cook, H. Hofmann, and A. Buja. Graphical inference for infovis,
2010.

fact that, in my experiments, the best match between SSIM and hu-
man clusterings of scatterplots was achieved with a coarser weighting,
which matches the granularity of subjects’ judgements. How can we
know this ground truth granularity? Subjects were primed to make
coarse assessments because the scatterplots were shown as thumb-
nails; moreover, the verbal descriptors elicited by Pandey et al. (2016)
corroborate the high level of abstraction.

The hypothesis that human similarity judgements vary with visual
encoding begs more investigation. A pair of visualizations could have
very distinct values when examined closely, but be very similar when
judged with “distant eyes”. This is not necessarily a problem, but
it can be one when it is assumed that only a single similarity judge-
ment is possible. The visual inference framework seems particularly
vulnerable to this problem. Visual inference is a method intended to
be an alternative or at least a complement to null-hypothesis testing.
It proposes the use of visual representations to gauge the plausibility
of the null hypothesis as follows: a) plot the observed data; b) sam-
ple multiple datasets from a null model; c) plot the null datasets; d)
rate the visual similarity between null and observed data 6.4. When
observed data can easily be distinguished from null data, the null
hypothesis can be rejected.

The success of visual inference depends, thus, on the appropriate-
ness of the visual encoding. Among other things, it should not allow
for ambiguous similarity judgements. The choice of visual encoding
follows the same basis upon which a statistical test is chosen: statisti-
cal power, or the probability of rejecting the null hypothesis when it
is false. Hofmann et al. (2012) conducted a user study that compared
the power of four statistical charts for depicting univariate distribu-
tions (boxplot, histogram, density, and dotplot). They concluded that
dotplots were the best; however, the experiment did not shed light
on the reason behind the differences in power. Can we understand
the reason better by analysing which features are taken for similarity
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judgement in each chart? Could the reason be that some charts tend
to be less discriminable at some level? Do people actually judge the
features we assume they judge?

In summary, a deep understanding of how plot similarity is rated
will inform appropriate visual methods for comparison of data, and
free us from the need to run experiments to test specific visualiza-
tions.

6.5 exposing ambiguity

My research on measuring plot similarity with SSIM (Chapter 5) opens
possibilities for the study of ambiguity in visualizations. Graph visu-
alizations, for example, often employ edge bundling to reduce clutter.
In doing so, ambiguity is traded for legibility, as changes in node con-
nections can hide within bundles. The extent to which a visualization
is ambiguous is unknown to the user. In order to make this infor-
mation available, a tool would need to display all different datasets
that yield a certain image, or some strategy to that effect. Given a
visualization, the user asks how many distinct datasets could have
generated this visualization?

The difficulty lies in how to discover these datasets. We have re-
cently seen many generative neural networks that learned how to
generate data, compose text, images, and videos. So it seems possible
that, given a reference dataset, a neural network can be taught how
to generate derived data that yields the same visualization. These
models could be trained for each visualization type. However, a plot
does not need to be identical pixel-by-pixel to be judged identical,
so classic non-perceptual loss functions, such as l1 and l2 norms, are
probably not up to the task. It is not practical either to collect human
ratings.

Encouragingly, Zhao et al. (2017) recently demonstrated that SSIM
and multi-scale SSIM are differentiable and suited to serve as loss
functions for neural network training. Their results show that their
SSIM-based loss function outperforms l1 and l2 norms in various im-
age reconstruction problems. Furthermore, these loss functions were
made readily available as plugins for the open source neural network
framework Caffee.

Therefore, the foundations are laid to an exciting direction in visu-
alization research. The value of this application lies in offering to the
analyst tools for inspection of the visual methods used, and a better
understanding of their reliability, in the same vein as meta-analyses
exist for statistical methods.
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6.6 summary

In summary, this chapter discussed the following future research di-
rections:

model selection Information-theoretical model selection is a promis-
ing framework for automatic parameter tuning of visualizations.

soft knowledge elicitation Interfaces for eliciting soft knowledge
are necessary to enable feature extraction and more informative
overviews of large data.

error prediction Predictive empirical models can support dynamic
interfaces that deploy visual accessories to avoid errors.

understanding similarity Multi-scale similarity measures can be
employed to study how users read charts and make comparison
judgements.

ambiguity The ambiguity of visual encodings and its relation to scal-
ability merits research. In particular, tools that can inform the
level of ambiguity of a chart could help users adjust the confi-
dence of decisions based on visual analysis.





7 C O N C L U S I O N

This thesis presented three case studies that address quality and scala-
bility problems of visual encodings in information visualization. These
studies cover a wide range in the spectrum from application to foun-
dational visualization research, which can be seen in their outcomes.
I contributed an algorithm for tuning a specific visualization type, a
user study that answers a question about a broad class of visualiza-
tions, and a method for evaluating a quality criterion that applies to
all visualizations.

We see everywhere signs that information visualization is and will
remain extremely important in the communication of data-driven in-
sights. But it faces the challenge of remaining relevant in the ex-
ploratory phase of data analysis. The sheer scale and complexity of
data that machine learning engineers deal with demands solutions
that are designed and tested to be robust on the limit.

The cost of finding a good visual encoding and parameterizing it
is high, and it discourages analysts to use visualization as a method
to discover patterns in the data. In this thesis I proposed an auto-
mated approach for finding good views of the data that reduces this
parameterization cost. The core of this approach consists in treating
a data view as a message and scoring its information theoretic prop-
erties. As a method to find the a good view of a dataset, I consider
this approach to be more promising than approaches that rank visual
encodings based on coarse characteristics of the dataset.

However, I acknowledge the technical difficulty in designing these
information criteria, especially with respect to modelling perceptual
scalability. We are far from understanding well all perceptual phe-
nomena that affect our ability to make sense of visually encoded
data. This motivated me to break new ground in understanding how
saliency influences our perception of data properties in multivariate
visualizations. In my discussion of future work, I pointed to a use
of the model resulting from this research not to find an optimal view,
but to dynamically fix weaknesses according to effectiveness predic-
tions.

Finally, I addressed the problem of evaluation. In order to invent
scalable, robust visualizations, we need better evaluation methods.
And to design better methods, we need a better understanding of
the roots of effectiveness in visualization, and a way to verify them
at a low cost. This points to automation of at least part of visual-
ization evaluation. Empirical research on fundamental visualization
questions enables the creation of models that synthesize knowledge
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of how humans interact with visualization. This knowledge should
be put to use in a way that reduces our reliance on costly user studies.
Here I proposed a general method for scoring discriminability, a ba-
sic quality property of visualizations that impacts their effectiveness.
In the future, methods should be created to verify other properties. A
stack of quality measures will help designers iterate faster and deliver
custom solutions that are based on strong evidence.

7.1 summary of contributions

The contributions from the three case studies discussed in this thesis
are:

mdl treecuts A technique for summarization of hierarchies for vi-
sualization purposes. The treecuts are the result of a pruning
strategy that balances information loss and clutter, and takes
into account the specifics of the underlying data and the avail-
able display space.

saliency deficit An empirical study of the effect of saliency (and
the lack thereof) on the effectiveness of animated scatterplots.
The results indicate that accurate motion outlier detection in
multivariate animated scatterplots depends on task-irrelevant
features.

discriminability tests A method based on a perception-motivated
image similarity measure for rating the discriminability of a vi-
sual encoding given a collection of datasets. Results of the test
on classic visual encodings are shown to correlate with empiri-
cal effectiveness rankings.
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Listing B.1: Numerical gradient descent algorithm

1 function(loss_funct, n_iter=20,

2 init=c(.1, .1, .1, .3, .4),

3 h=0.01, stepsize=0.01){

4

5 f = loss_funct

6 x = init

7

8 while (n_iter > 0){

9 fx = f(x) # eval function w/ current weights

10

11 grad = rep(0, length(x)) # store the gradient

12

13 for (i in 1:length(x)) {

14 # evaluate function at x+h

15 xh = x

16 xh[i] = x[i] + h

17 fxh = f(xh)

18

19 # compute the partial derivative

20 grad[i] = (fxh - fx) / h

21 }

22

23 # follow the gradient

24 x = params - stepsize * grad

25

26 n_iter = n_iter - 1

27 }

28

29 return(x)

30 }
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