
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS  VOL. 23,  NO. 1,  JANUARY 2017� 631

Manuscript received 31 Mar. 2016; accepted 1 Aug. 2016. Date of publication
15 Aug. 2016; date of current version 23 Oct. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2016.2598591

1077-2626 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
   See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Optimizing Hierarchical Visualizations with the
Minimum Description Length Principle

Rafael Veras and Christopher Collins

(a) (b) (c) (d)

Fig. 1. Display-optimized MDL tree cuts (top row) reveal important nodes while reducing clutter when compared to simple depth
thresholding (bottom row). These are Docuburst views of the book Gamer Theory, revealing occurrences of concepts in the book
using color. Concepts are organized into a semantic hierarchy. From left-to-right increasing numbers of nodes are revealed through
adjusting the tree cut parameter (top) or increasing the depth threshold (bottom). We can see that in (b, top) several important dark-
green nodes are revealed while unimportant nodes remain hidden. Figure (b, bottom) has twice as many nodes, but important nodes
remain hidden. These nodes are not revealed by the simple depth threshold until (d, bottom), where there are a significant number of
unimportant nodes also visible.

Abstract—In this paper we examine how the Minimum Description Length (MDL) principle can be used to efficiently select aggregated
views of hierarchical datasets that feature a good balance between clutter and information. We present MDL formulae for generating
uneven tree cuts tailored to treemap and sunburst diagrams, taking into account the available display space and information content of
the data. We present the results of a proof-of-concept implementation. In addition, we demonstrate how such tree cuts can be used to
enhance drill-down interaction in hierarchical visualizations by implementing our approach in an existing visualization tool. Validation
is done with the feature congestion measure of clutter in views of a subset of the current DMOZ web directory, which contains nearly
half million categories. The results show that MDL views achieve near constant clutter level across display resolutions. We also
present the results of a crowdsourced user study where participants were asked to find targets in views of DMOZ generated by our
approach and a set of baseline aggregation methods. The results suggest that, in some conditions, participants are able to locate
targets (in particular, outliers) faster using the proposed approach.

Index Terms—Hierarchy data, data aggregation, multiscale visualization, tree cut, antichain

For many years, the information visualization community followed
Shneiderman’s celebrated visual information-seeking “mantra” for de-
sign: “overview first, zoom and filter, details on demand” [27]. How-
ever, as datasets have grown (and small displays have become more
prevalent), “overview first” is increasingly challenging to achieve in
an effective way. Overviews of very large datasets are often too high-

• Rafael Veras and Christopher Collins are with University of Ontario
Institute of Technology. E-mail: rafael.verasguimaraes@uoit.ca;
christopher.collins@uoit.ca.

level or cluttered to reveal anything interesting. The task of iterative
exploration and sifting through the data is left to the analyst in the tra-
ditional model. This paper introduces a method for optimizing large
hierarchical visualizations to fit in constrained screen spaces, effec-
tively creating starting point overviews which are designed to balance
the goal of maximum information content with the challenge of reduc-
ing clutter and enhancing readability. The work is inspired by Keim’s
visual analytics process, which starts: “analyze first, show the impor-
tant” [13]. The critical “analyze first” step is addressed in our work to
shape the initial view of the data to reveal important data entities while
minimizing clutter, harnessing computing power to create data-driven
starting points for analysis. The display-optimized tree cut model we
present is parameterized to allow for interactive drill down, as well as
presentation of optimized overviews of data.

In addition to the challenge of providing optimized overviews for
very large datasets, in many situations, visualizations need to be adapt-
able to a variety of screen sizes. For example, consider an interactive

632  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 23,  NO. 1,  JANUARY 2017

visualization embedded as part of an online news story — one ver-
sion may be appropriate for a smart phone display, while another will
be appropriate for a large monitor. The situation is not as simple as
changing the zoom factor, or the flow of the webpage, but rather the
level of abstraction must adjust to make the visualization readable and
aesthetically pleasing across devices.

Many factors influence the ability of visualization systems to ef-
fectively display large amounts of data; in particular, the available
display size, which is determined by the physical constraints of the
screen, and the perceptual scalability of the visualization, which de-
pends on the choice of visual representation and layout [33]. Most
information visualizations become over-cluttered when the dataset is
large. Clutter reduction is an active area of research in information vi-
sualization, as elaborated by Ellis and Dix in their taxonomy of clutter
reduction methods [10]. Clutter is shown to have a negative impact on
visual search [12, 25, 30] and short term memory [20]. In a study of
orientation judgment, Baldassi et al. found that clutter causes an in-
crease in orientation judgment errors, and increase in perceived signal
strength and decision confidence on erroneous trials [5]. Rosenholtz
et al. [26] include the notion of performance in the very definition of
clutter: a state in which excess items, or their representation or orga-
nization, lead to degradation of performance at some task. Besides,
in some resource-constrained client environments (e.g., web browser),
the number of graphic primitives necessary to represent large data af-
fects rendering and, consequently, interactive tasks, such as selection
and filtering.

In visualizations of hierarchical data, one can take advantage of the
hierarchical structure to abstract data at varying levels, in order to re-
duce the level of clutter when the available space prevents depiction
of the full data. Visualizations that implement such strategy are called
multiscale visualizations [11] and deciding the appropriate level of ab-
straction for them is not trivial. Overly-detailed views have high clut-
ter, whereas overly-abstract views can hide important patterns. The
right level of abstraction depends on the dataset and the available dis-
play space; for example, large desktop displays afford more detail,
while mobile phones have not only less space, but also coarser inter-
action resolution due to the fat finger problem. In this paper, we refer
to this problem as the level of abstraction problem.

Our display-optimized MDL tree cut technique can be applied to
any hierarchical dataset where there are quantitative data values asso-
ciated with the leaves of the tree. In this paper we will introduce the
mathematical foundation behind our general display-optimized tree
cut, and demonstrate the approach applied to two popular hierarchi-
cal visualization types — treemap and sunburst. Furthermore, we re-
port on multiple validation approaches: a crowdsourced study in which
we found that the tree cut approach provides for faster target finding
compared to traditional approaches, and a quantitative comparison of
clutter and information content across traditional techniques and our
display-optimized MDL treemaps.

1 RELATED WORK

In this section, we survey two areas: techniques for controlling clutter
in visualizations using aggregation and the use of tree cuts (also known
as antichains) to navigate large graph hierarchies.

1.1 Clutter Control

Based on the cartographic principle of constant information density
[28], VIDA is a system that automatically creates visualizations in
which density remains constant across zoom levels (z dimension) and
within each view (x and y dimensions) [31]. The display is divided
into regions, where the visual representation is modified (e.g., dots in-
stead of glyphs) to meet a target density value specified by the user.
Density measures are number of objects and number of vertices per
unit of display area.

ViSizer is a framework for resizing visualizations [32]. It employs
a sophisticated image warping technique that scales important regions
uniformly and deforms less important regions. The significance mea-
sure is a compound of Rosenholtz et al.’s perception-based clutter mea-

sure [25] and a degree of interest (DOI) function. ViSizer focuses on
non-space filling visualizations such as word clouds and scatterplots.

Chuah [7] employs a simple strategy for automatic aggregation in
histograms, and ordered radial and treemap visualizations: aggregate
neighboring objects whenever there is occlusion or they are too small
to be perceived. This approach works better where data items have an
intuitive order (e.g., time series, histograms, or file directories ordered
by name). Cui et al. [9] tackled the optimal level of abstraction prob-
lem, but focusing only on accuracy; that is, how well the abstracted
data represent the original dataset. They proposed two measures of
quality: the histogram difference measure and the nearest neighbor
measure, which were integrated into XmdvTool. As the measures do
not account for the visual quality of the resulting visualization, the user
determines the best view interactively, by tweaking the level of detail
and comparing the quality measure values. Likewise, based on aggre-
gation quality measures, Andrienko and Andrienko [2] allow users to
specify the desired level of abstraction in visualizations of movement
data (flow maps).

Koutra et al. [14] proposed a parameter-free method based on the
minimum description length to select the best (most succinct) sum-
mary for large graphs among a set of alternatives: cliques, stars,
chains, and bipartite cores.

Perhaps the closest to this proposal, Lamarche-Perrin et al. [15, 16]
introduce a method for selecting abstract representations of hierarchi-
cal datasets. In their work, a two-part information criteria consisting of
entropy and Kullback-Leibler divergence is used to select the tree cut
featuring the best balance between conciseness and accuracy. Their
procedure requires tuning a free weighting parameter that specifies the
relative importance of one criterion over the other. It does not account
for the available display space, so any adjustments to accommodate
small or big screens need to be done manually by tuning the afore-
mentioned weighting parameter.

1.2 Tree Cuts or Antichains

Tree cuts, also known as antichains, have been widely used in the ex-
ploration of large graphs and hierarchies. SentireCrowds [6] and The-
meCrowds [3] employ a maximal antichain selection method to ab-
stract a hierarchy of topics visualized as a treemap. That method is
based on matching node scores resulting from user queries. Grouse-
Flocks [4] reduces the complexity of interacting with large graphs by
letting users manipulate cuts of superimposed aggregate hierarchies.
Users can adjust the cut level of abstraction by performing topology-
preserving operations involving merging and deletion of aggregates.
In order to ensure the abstracted hierarchy view remains under the dis-
play capacity, ASK-GraphView [1] parametrizes clustering with max-
imum antichain size. In ASK-GraphView and GrouseFlocks the hi-
erarchies are not part of the data, but created by an algorithm. This
allows great flexibility to modify the hierarchy structure around dis-
play constraints. In this work, we focus on “rigid” hierarchies, where
classes carry domain specific relevance and, thus, cannot be merged or
deleted without cost to interpretation.

2 THEORETICAL FOUNDATIONS

Suppose a set of measurements D = (x1,y1), ..,(xn,yn) was collected
as part of an experiment and we were asked to send this data over a
network where the transmission cost is high. Among the countless
possible ways of encoding the data, it is in our best interest choosing a
scheme that allows for the shortest message. In this scenario, the code
length for sending the raw data, assuming that encoding a number has
a fixed cost of b bits is:

L(D) =
n

∑
i=1

{
L(xi)+L(yi)

}
= 2nb. (1)

If the relation between x and y can be described by a polynomial
model (or any other model), it might be possible to reduce significantly
the code length. As an example, let’s examine the polynomial case. A

0

10

20

30

40

50

60

20 40 60 80 100
x

y

model

fit1

fit2

fit3

fit4

fit5

fit6

fit7

fit8

∑L(âk) ∑L(ri|θ̂) total

1 128 640 768
2 192 640 832
3 256 512 768
4 320 128 448
5 384 192 576
6 448 192 640
7 512 128 640
8 576 0 576

Fig. 2. On the left, a series of polynomials ranging from order 1 to 8
fitted to a 10-point data set. On the right, the cost of encoding (in bits)
the two parts of each polynomial model.

polynomial regression model has the following form:

ŷ =
p

∑
k=0

âkxk + ε. (2)

So the code length of the data as seen through a fitted polynomial
model θ̂ is:

L(θ̂ ,D) =
n

∑
i=1

L(xi)+
p

∑
k=0

L(âk)+
n

∑
i=1

L(ri | θ̂), (3)

where âk is the k-th parameter of the polynomial and ri is the i-th
residual. Namely, the equation above is a sum of the cost of encoding
the model and the cost of encoding the data conditioned on the model
(residuals). Note that the cost of sending the vector x is constant across
all models. As a polynomial might not fit the data perfectly, it is neces-
sary to send the model residuals, so that the receiver is able to recon-
struct D accurately. However, depending on our tolerance to errors,
we might be willing to ignore residuals smaller than a fixed threshold.
The better the fit, the more economical is the description of the resid-
uals. Overall, it is only worth representing our data with a polynomial
model if we can find a model whose code length overhead is smaller
than the code length of vector y:

∑L(yi)> ∑L(âk)+∑L(ri|θ̂). (4)

To illustrate this notion, consider the ten data points depicted in Fig-
ure 2, left. We fitted to this data a family of polynomials of increasing
order and compared the cost of representing the data with each of them
in a setting where any number is represented with 64 bits, and residu-
als smaller than 0.5 are ignored. Figure 2, right, shows the cost of each
fitted polynomial from order 1 to 8. It is clear that the more parameters
a model has, the better is its fit. However, the model that provides the
shortest description is that featuring the best balance between good-
ness of fit and complexity. In our example, this model is the 4th order
polynomial, which also satisfies (4), as the cost of encoding y in the
naive scheme is 640 bits.

In this example, we used information theoretic tools to determine
the model that most concisely captures the regularities in the data. The
criterion we employed is a simplification of the Minimum Description
Length (MDL) Principle, which we describe formally in the following
subsection. MDL is a powerful approach to model selection that has
been used to solve a large variety of problems, including polynomial
regression, Gaussian density mixtures and Fourier series regression
[17], and applied problems such as image segmentation [18], learning
word association norms [19] and learning decision trees [22].

2.1 Minimum Description Length
Proposed by Rissanen, MDL is an information criterion used for
model selection in statistics [23]. The principle is based on the follow-
ing notion: given a set of observed data and a family of fitted models,
the best model should provide the shortest encoding of the data. The

description length of a model is calculated as a sum of two parts: the
length of the binary codes that describe a) the model parameters, and
b) the data residuals [18]. More formally, the MDL criterion can be
written as:

L(θ̂ ,x) = L(θ̂)+L(x | θ̂), (5)

where θ̂ is a parameter vector, x is the data, and L(θ̂) and L(x | θ̂) are
the parameter description length (a) and the data description length
(b), respectively.

Unlike in the polynomial example, where we used computer-
oriented calculations for the code length, MDL is concerned with op-
timal code length. That is, with MDL, we do not care about how a
model is encoded in practice as much as we care about how concisely
it can be encoded in theory. Let A be an alphabet and α be any of the
symbols in A. If the probability p(α) of occurrence of α ∈ A is known,
then in the optimal encoding scheme for A the length of α is:

LOPT (α) =− log2 p(α). (6)

This result is important because often the likelihood function of the
model θ̂ is known, so the data description length (number of bits to
encode the residuals) follows from (6):

L(x | θ̂) =− log2 p(x | θ̂). (7)

For instance, in our polynomial example we could leverage the fact
that, as per the regression model assumption, the residuals are approx-
imately normally distributed, and use the log of the Gaussian likeli-
hood, given by (n/2)log2(RSS/n), as L(x | θ̂), where RSS is the resid-
ual sum of squares.

Frequently, the probability distribution of the model parameters
(usually, a vector of integer or real numbers) is not given; in this case,
Rissanen [23] proposes a universal prior probability distribution or,
equivalently, a coding system, for integers. Rissanen demonstrated
that the optimal code length for such integers with unknown probabil-
ity function can be achieved with his coding system and approximated
to log2n. Therefore, we can estimate the description length of arbitrar-
ily complex models, as long as their parameters can be described as
arrays of integers or real numbers.

Let’s assume θ̂ is a vector of real numbers, which can be encoded by
representing the integer and fractional parts separately. The fractional
part needs to be truncated to a pre-defined binary precision ρ , since
the binary representation of many numbers can be infinite. Thus, the
number of bits to encode θ̂ is:

L(θ̂) =
k

∑
i=1

log2�θ̂i�+ kρ, (8)

where k is the number of parameters in the model.
Note that the choice of the precision ρ is of major importance.

Choosing fewer bits to encode the fractional parts yields a small L(θ̂),
but at the expense of L(x | θ̂), as the residuals will be larger. A finer
precision reduces the residuals, as the encoded values will be closer to
the true estimates, but increases the cost of encoding the parameters. In
order to minimize the description length, we need to optimize the pre-
cision. Rissanen [24] shows that if the model parameters are estimated
from n data points using Maximum Likelihood Estimation (MLE) and
n is large, the optimal precision ρ is approximately (log2 n)/2. Thus,
(8) can be rewritten as:

L(θ̂) =
k

∑
i=1

log2�θ̂i�+
k
2

log2 n. (9)

With the expressions for data and parameter description length, (5)
can be written in more detail as:

L(θ̂ ,x) =
k

∑
i=1

log2�θ̂i�+
k
2

log2 n− log2 p(x | θ̂). (10)

VERAS AND COLLINS: OPTIMIZING HIERARCHICAL VISUALIZATIONS WITH THE MINIMUM DESCRIPTION LENGTH PRINCIPLE� 633

visualization embedded as part of an online news story — one ver-
sion may be appropriate for a smart phone display, while another will
be appropriate for a large monitor. The situation is not as simple as
changing the zoom factor, or the flow of the webpage, but rather the
level of abstraction must adjust to make the visualization readable and
aesthetically pleasing across devices.

Many factors influence the ability of visualization systems to ef-
fectively display large amounts of data; in particular, the available
display size, which is determined by the physical constraints of the
screen, and the perceptual scalability of the visualization, which de-
pends on the choice of visual representation and layout [33]. Most
information visualizations become over-cluttered when the dataset is
large. Clutter reduction is an active area of research in information vi-
sualization, as elaborated by Ellis and Dix in their taxonomy of clutter
reduction methods [10]. Clutter is shown to have a negative impact on
visual search [12, 25, 30] and short term memory [20]. In a study of
orientation judgment, Baldassi et al. found that clutter causes an in-
crease in orientation judgment errors, and increase in perceived signal
strength and decision confidence on erroneous trials [5]. Rosenholtz
et al. [26] include the notion of performance in the very definition of
clutter: a state in which excess items, or their representation or orga-
nization, lead to degradation of performance at some task. Besides,
in some resource-constrained client environments (e.g., web browser),
the number of graphic primitives necessary to represent large data af-
fects rendering and, consequently, interactive tasks, such as selection
and filtering.

In visualizations of hierarchical data, one can take advantage of the
hierarchical structure to abstract data at varying levels, in order to re-
duce the level of clutter when the available space prevents depiction
of the full data. Visualizations that implement such strategy are called
multiscale visualizations [11] and deciding the appropriate level of ab-
straction for them is not trivial. Overly-detailed views have high clut-
ter, whereas overly-abstract views can hide important patterns. The
right level of abstraction depends on the dataset and the available dis-
play space; for example, large desktop displays afford more detail,
while mobile phones have not only less space, but also coarser inter-
action resolution due to the fat finger problem. In this paper, we refer
to this problem as the level of abstraction problem.

Our display-optimized MDL tree cut technique can be applied to
any hierarchical dataset where there are quantitative data values asso-
ciated with the leaves of the tree. In this paper we will introduce the
mathematical foundation behind our general display-optimized tree
cut, and demonstrate the approach applied to two popular hierarchi-
cal visualization types — treemap and sunburst. Furthermore, we re-
port on multiple validation approaches: a crowdsourced study in which
we found that the tree cut approach provides for faster target finding
compared to traditional approaches, and a quantitative comparison of
clutter and information content across traditional techniques and our
display-optimized MDL treemaps.

1 RELATED WORK

In this section, we survey two areas: techniques for controlling clutter
in visualizations using aggregation and the use of tree cuts (also known
as antichains) to navigate large graph hierarchies.

1.1 Clutter Control

Based on the cartographic principle of constant information density
[28], VIDA is a system that automatically creates visualizations in
which density remains constant across zoom levels (z dimension) and
within each view (x and y dimensions) [31]. The display is divided
into regions, where the visual representation is modified (e.g., dots in-
stead of glyphs) to meet a target density value specified by the user.
Density measures are number of objects and number of vertices per
unit of display area.

ViSizer is a framework for resizing visualizations [32]. It employs
a sophisticated image warping technique that scales important regions
uniformly and deforms less important regions. The significance mea-
sure is a compound of Rosenholtz et al.’s perception-based clutter mea-

sure [25] and a degree of interest (DOI) function. ViSizer focuses on
non-space filling visualizations such as word clouds and scatterplots.

Chuah [7] employs a simple strategy for automatic aggregation in
histograms, and ordered radial and treemap visualizations: aggregate
neighboring objects whenever there is occlusion or they are too small
to be perceived. This approach works better where data items have an
intuitive order (e.g., time series, histograms, or file directories ordered
by name). Cui et al. [9] tackled the optimal level of abstraction prob-
lem, but focusing only on accuracy; that is, how well the abstracted
data represent the original dataset. They proposed two measures of
quality: the histogram difference measure and the nearest neighbor
measure, which were integrated into XmdvTool. As the measures do
not account for the visual quality of the resulting visualization, the user
determines the best view interactively, by tweaking the level of detail
and comparing the quality measure values. Likewise, based on aggre-
gation quality measures, Andrienko and Andrienko [2] allow users to
specify the desired level of abstraction in visualizations of movement
data (flow maps).

Koutra et al. [14] proposed a parameter-free method based on the
minimum description length to select the best (most succinct) sum-
mary for large graphs among a set of alternatives: cliques, stars,
chains, and bipartite cores.

Perhaps the closest to this proposal, Lamarche-Perrin et al. [15, 16]
introduce a method for selecting abstract representations of hierarchi-
cal datasets. In their work, a two-part information criteria consisting of
entropy and Kullback-Leibler divergence is used to select the tree cut
featuring the best balance between conciseness and accuracy. Their
procedure requires tuning a free weighting parameter that specifies the
relative importance of one criterion over the other. It does not account
for the available display space, so any adjustments to accommodate
small or big screens need to be done manually by tuning the afore-
mentioned weighting parameter.

1.2 Tree Cuts or Antichains

Tree cuts, also known as antichains, have been widely used in the ex-
ploration of large graphs and hierarchies. SentireCrowds [6] and The-
meCrowds [3] employ a maximal antichain selection method to ab-
stract a hierarchy of topics visualized as a treemap. That method is
based on matching node scores resulting from user queries. Grouse-
Flocks [4] reduces the complexity of interacting with large graphs by
letting users manipulate cuts of superimposed aggregate hierarchies.
Users can adjust the cut level of abstraction by performing topology-
preserving operations involving merging and deletion of aggregates.
In order to ensure the abstracted hierarchy view remains under the dis-
play capacity, ASK-GraphView [1] parametrizes clustering with max-
imum antichain size. In ASK-GraphView and GrouseFlocks the hi-
erarchies are not part of the data, but created by an algorithm. This
allows great flexibility to modify the hierarchy structure around dis-
play constraints. In this work, we focus on “rigid” hierarchies, where
classes carry domain specific relevance and, thus, cannot be merged or
deleted without cost to interpretation.

2 THEORETICAL FOUNDATIONS

Suppose a set of measurements D = (x1,y1), ..,(xn,yn) was collected
as part of an experiment and we were asked to send this data over a
network where the transmission cost is high. Among the countless
possible ways of encoding the data, it is in our best interest choosing a
scheme that allows for the shortest message. In this scenario, the code
length for sending the raw data, assuming that encoding a number has
a fixed cost of b bits is:

L(D) =
n

∑
i=1

{
L(xi)+L(yi)

}
= 2nb. (1)

If the relation between x and y can be described by a polynomial
model (or any other model), it might be possible to reduce significantly
the code length. As an example, let’s examine the polynomial case. A

0

10

20

30

40

50

60

20 40 60 80 100
x

y
model

fit1

fit2

fit3

fit4

fit5

fit6

fit7

fit8

∑L(âk) ∑L(ri|θ̂) total

1 128 640 768
2 192 640 832
3 256 512 768
4 320 128 448
5 384 192 576
6 448 192 640
7 512 128 640
8 576 0 576

Fig. 2. On the left, a series of polynomials ranging from order 1 to 8
fitted to a 10-point data set. On the right, the cost of encoding (in bits)
the two parts of each polynomial model.

polynomial regression model has the following form:

ŷ =
p

∑
k=0

âkxk + ε. (2)

So the code length of the data as seen through a fitted polynomial
model θ̂ is:

L(θ̂ ,D) =
n

∑
i=1

L(xi)+
p

∑
k=0

L(âk)+
n

∑
i=1

L(ri | θ̂), (3)

where âk is the k-th parameter of the polynomial and ri is the i-th
residual. Namely, the equation above is a sum of the cost of encoding
the model and the cost of encoding the data conditioned on the model
(residuals). Note that the cost of sending the vector x is constant across
all models. As a polynomial might not fit the data perfectly, it is neces-
sary to send the model residuals, so that the receiver is able to recon-
struct D accurately. However, depending on our tolerance to errors,
we might be willing to ignore residuals smaller than a fixed threshold.
The better the fit, the more economical is the description of the resid-
uals. Overall, it is only worth representing our data with a polynomial
model if we can find a model whose code length overhead is smaller
than the code length of vector y:

∑L(yi)> ∑L(âk)+∑L(ri|θ̂). (4)

To illustrate this notion, consider the ten data points depicted in Fig-
ure 2, left. We fitted to this data a family of polynomials of increasing
order and compared the cost of representing the data with each of them
in a setting where any number is represented with 64 bits, and residu-
als smaller than 0.5 are ignored. Figure 2, right, shows the cost of each
fitted polynomial from order 1 to 8. It is clear that the more parameters
a model has, the better is its fit. However, the model that provides the
shortest description is that featuring the best balance between good-
ness of fit and complexity. In our example, this model is the 4th order
polynomial, which also satisfies (4), as the cost of encoding y in the
naive scheme is 640 bits.

In this example, we used information theoretic tools to determine
the model that most concisely captures the regularities in the data. The
criterion we employed is a simplification of the Minimum Description
Length (MDL) Principle, which we describe formally in the following
subsection. MDL is a powerful approach to model selection that has
been used to solve a large variety of problems, including polynomial
regression, Gaussian density mixtures and Fourier series regression
[17], and applied problems such as image segmentation [18], learning
word association norms [19] and learning decision trees [22].

2.1 Minimum Description Length
Proposed by Rissanen, MDL is an information criterion used for
model selection in statistics [23]. The principle is based on the follow-
ing notion: given a set of observed data and a family of fitted models,
the best model should provide the shortest encoding of the data. The

description length of a model is calculated as a sum of two parts: the
length of the binary codes that describe a) the model parameters, and
b) the data residuals [18]. More formally, the MDL criterion can be
written as:

L(θ̂ ,x) = L(θ̂)+L(x | θ̂), (5)

where θ̂ is a parameter vector, x is the data, and L(θ̂) and L(x | θ̂) are
the parameter description length (a) and the data description length
(b), respectively.

Unlike in the polynomial example, where we used computer-
oriented calculations for the code length, MDL is concerned with op-
timal code length. That is, with MDL, we do not care about how a
model is encoded in practice as much as we care about how concisely
it can be encoded in theory. Let A be an alphabet and α be any of the
symbols in A. If the probability p(α) of occurrence of α ∈ A is known,
then in the optimal encoding scheme for A the length of α is:

LOPT (α) =− log2 p(α). (6)

This result is important because often the likelihood function of the
model θ̂ is known, so the data description length (number of bits to
encode the residuals) follows from (6):

L(x | θ̂) =− log2 p(x | θ̂). (7)

For instance, in our polynomial example we could leverage the fact
that, as per the regression model assumption, the residuals are approx-
imately normally distributed, and use the log of the Gaussian likeli-
hood, given by (n/2)log2(RSS/n), as L(x | θ̂), where RSS is the resid-
ual sum of squares.

Frequently, the probability distribution of the model parameters
(usually, a vector of integer or real numbers) is not given; in this case,
Rissanen [23] proposes a universal prior probability distribution or,
equivalently, a coding system, for integers. Rissanen demonstrated
that the optimal code length for such integers with unknown probabil-
ity function can be achieved with his coding system and approximated
to log2n. Therefore, we can estimate the description length of arbitrar-
ily complex models, as long as their parameters can be described as
arrays of integers or real numbers.

Let’s assume θ̂ is a vector of real numbers, which can be encoded by
representing the integer and fractional parts separately. The fractional
part needs to be truncated to a pre-defined binary precision ρ , since
the binary representation of many numbers can be infinite. Thus, the
number of bits to encode θ̂ is:

L(θ̂) =
k

∑
i=1

log2�θ̂i�+ kρ, (8)

where k is the number of parameters in the model.
Note that the choice of the precision ρ is of major importance.

Choosing fewer bits to encode the fractional parts yields a small L(θ̂),
but at the expense of L(x | θ̂), as the residuals will be larger. A finer
precision reduces the residuals, as the encoded values will be closer to
the true estimates, but increases the cost of encoding the parameters. In
order to minimize the description length, we need to optimize the pre-
cision. Rissanen [24] shows that if the model parameters are estimated
from n data points using Maximum Likelihood Estimation (MLE) and
n is large, the optimal precision ρ is approximately (log2 n)/2. Thus,
(8) can be rewritten as:

L(θ̂) =
k

∑
i=1

log2�θ̂i�+
k
2

log2 n. (9)

With the expressions for data and parameter description length, (5)
can be written in more detail as:

L(θ̂ ,x) =
k

∑
i=1

log2�θ̂i�+
k
2

log2 n− log2 p(x | θ̂). (10)

634  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 23,  NO. 1,  JANUARY 2017

L(A) < L(B)
L(A | S) > L(B | S)

Fig. 3. An illustration of two tree cuts. More abstract cuts have lower
parameter description length, but higher data description length.

Equation 10 embodies the fundamental trade-off between concise-
ness and accuracy that defines the MDL principle. Models with more
parameters will achieve better accuracy (high likelihood) at the ex-
pense of simplicity. In fact, if we set L(θ̂) constant, MDL falls back
to MLE, selecting the model that offers the best fit to the data. In
that sense, L(θ̂) can be thought of as a safeguard against over-fitting.
Likewise, over-concise models have low accuracy, being just as un-
desirable. Minimization of the description length tends to select the
model featuring the best balance between these criteria. In the infor-
mation theoretic interpretation, the selected model corresponds to the
best compression of the data.

2.2 MDL Tree Cut Model
Having laid out the general formulation of the MDL principle, in this
section we explain the tree cut model, which is an important building
block for our abstraction approach. The tree cut model is a general-
ization method based on MDL, originally developed for the linguistic
problem of automatic acquisition of case frame patterns from large
corpora [19].

Consider a tree structure representing the hierarchical relation be-
tween abstract classes, e.g., IS-A, part of, instance of. The degree of
abstraction grows towards the root. Assume that only the leaves are
observable (countable), and the internal nodes accumulate the counts
of their children. L is the set of all leaves. A dataset S is a multiset
of observations, each representing one occurrence of a leaf l ∈ L, with
l ∈ S denoting the inclusion of l in S as a multiset. We denote the
dataset size by |S|, the total number of observations.

A tree cut is any set of tree nodes that exhaustively covers the leaf
nodes. Graphically, it can be represented by a path crossing the tree
lengthwise, as in Figure 3. Nodes along the cut represent the subtrees
dominated by them and are assigned each a probability value. De-
pending on how regular is our data S, a concise way to transmit it over
an arbitrary channel to a receiver who has knowledge of the tree is to
send a tree cut. The receiver then estimates the value of each leaf based
on the value of the node representing it in the cut. In other words, a
cut is a model of the data, carrying estimates of the observed values.
The residuals are sent separately, in the MDL fashion, as discussed in
Section 2.1.

A tree cut model M is defined as the tuple (Γ , θ̂), where Γ =

[C1,C2, ...,Ck] and θ̂ = [P̂(C1), P̂(C2), ..., P̂(Ck)]: the vector of nodes
(classes) and their parameters (estimated probabilities), respectively.
The probability P̂(C) of a class is estimated by MLE, as follows:

P̂(C) =
f (C)

|S|
, (11)

where f (C) is the accumulated count of the class C. The estimated
probability of each of the leaves under a class is obtained by normal-
ization of the class probability over the number of leaves C under the
class:

P̂(l) =
P̂(C)

|C|
. (12)

Note that behind this formula is the assumption of uniform probabil-
ity. This means the probabilities (or frequencies) of the leaves under
a cut are smoothed, reflecting the decrease in uncertainty when data is
represented by abstract models.

As discussed in the previous section, the data description length is
the log of the likelihood of the data:

L(S |Γ , θ̂) =−∑
l∈S

log2 P̂(l). (13)

The minimum data description length is held by the deepest tree cut
model, comprised of all leaves, which features no better abstraction
than the raw data. The cost of encoding the parameters θ̂ of the model,
an array of real numbers, is given by (9). Note that, Li & Abe omit
the first term in (9), namely, the cost of encoding the integer part of
the parameters, because the model parameters are probabilities; hence,
the cost of encoding the integer parts is always 0. In summary, Li and
Abe’s tree cut model minimizes the following information criterion:

L(θ̂ ,S) =
k
2

log2 |S|−∑
l∈S

log2 P̂(l). (14)

To be more precise, in addition to the probabilities θ̂ , a receiver
would also need to know the classes Γ to decode the data correctly.
Since the number of possible cuts in a tree is finite, in theory we could
use an index to inform Γ , as part of the coding scheme. As such
indexes would be equally probable a priori, their code length would
be constant for all models and so, can be safely ignored. For sake of
model selection, all we need to account for is the cost of encoding θ̂
and (S | θ̂).

Li and Abe provided an efficient and simple bottom up algorithm,
based on dynamic programming, that is guaranteed to find the tree cut
whose description length is minimal [19]. In the rest of this paper,
we present different ways to calculate parameter and data description
lengths, but the same algorithm is used for minimization.

3 MDL DRILL-DOWN

In this section, we experiment with using the tree cuts selected by Li
and Abe’s approach to inform which nodes should be abstracted in
views of a hierarchical dataset. Since such cuts are generated with no
consideration of the available display size, we adapt the method by
introducing a weighting parameter that determines the relative impor-
tance of fitness to the data over clutter. An increase in weight results
in a deeper tree cut. In our proof-of-concept, the user can manipulate
this parameter seamlessly through conventional drill-down to increase
the level of detail of the view.

We chose to implement the technique on Docuburst, an open-source
document visualization tool [8]. Docuburst displays a sunburst repre-
sentation of the WordNet ontology where the size of nodes and cat-
egories (angular extent) is weighted by their occurrence in the input
document, allowing users to inspect which words and categories of
words are more prevalent in a document. The color of a node is based
on the non-cumulative count of uses of the corresponding word in the
document. In their future work section, Collins et al. discuss two
problems that could potentially be solved with uneven MDL tree cuts.
First, abstracting subtrees that have low relative importance. Second,
the top levels of WordNet are too abstract, as far as carrying little in-
formation about the document’s content.

Figure 1 features views of the book Gamer Theory, by McKen-
zie Wark. The most representative categories of the document are the
darkest (most frequent); for instance: game, entertainment, algorithm,
storyline, boredom, etc. In a full tree view, 6,302 nodes would be
rendered, which is likely enough to cause latency in a browser-based
visualization. Also, displaying this many nodes results in small, illeg-
ible labels and the need to interactively zoom and pan.

The tree cut resulting from minimizing Li and Abe’s information
criterion is shown in Figure 1(a). Nodes under the tree cut are hidden,
whereas nodes on or above the tree cut are visible. Unless the available
display size is limited, that view can be considered too abstract.

Following Wagner [29], we introduce a free weighting parameter W
to equation (14) as a means to control the importance of the data de-
scription length over the parameter description length and, as a result,
the tree cut depth:

L(θ̂ ,S) =
k
2

log2 |S|−W ∑
l∈S

log2 P̂(l) (W > 0). (15)

The semantics of increasing W is equivalent to that of drilling down;
the more weight applied to the data description length (residuals), the
more parameters (nodes) will be included in the model (tree cut), to
minimize the overall description length. Thus, weighted MDL tree
cuts can be useful to reveal details at a rate that is more compatible
with the distribution of values in the hierarchy. In order to illustrate
this concept, we mapped W to the drill-down action in Docuburst; that
is, when users roll the mouse wheel, W is incremented/decremented by
a predefined delta. Figure 1(b-d), top, shows the result of three sub-
sequent increments in W , starting from 1(a), top. In contrast, Figure
1(b-d), bottom, shows the result of three drill-down steps where a con-
ventional depth threshold is incremented. It is clear that, in only a few
steps, weighted MDL views allow access to most of the representa-
tive nodes in the document with much less clutter than using the depth
threshold or the full overview. In terms of number of nodes rendered
(a-d), the weighted MDL views cost 32, 387, 730, and 887 nodes;
while the depth threshold views cost 183, 808, 2202, 4199 nodes.

An important concern is choosing ∆W so that every increment re-
sults in a view that has significantly more information than the pre-
vious. In our tests, ∆W was defined empirically, and a value of 250
yielded good results for visualizing a variety of documents.

Weighted MDL views can be useful as a way to explore visualiza-
tions interactively, but the problem of optimizing the level of detail as a
function of the available display space before any user input remained
unsolved. Specifically, we needed a method capable of generating a
first view of the dataset that is as informative as possible within the
bounds of readability. Next section presents a satisfactory method.

4 DISPLAY-TAILORED TREE CUT MODELS

We begin this section with the consideration that hierarchical visual-
ization concerns, in general, the representation of tree cut models, in
the sense defined in Section 2.2. If we treat visualization techniques
(e.g., treemap, sunburst) as coding schemes and the views produced
with them as encoded tree cut models, we can select optimal views
using MDL criteria. In particular, we are interested in expressing pa-
rameter and data description lengths in a way that relates to clutter and
fitness in visualizations. We will focus on space-filling hierarchical
visualization techniques, as the connection to MDL is more obvious.

In a space-filling visual representation of a hierarchical dataset, the
pixel grid is divided into areas proportional to the data values. Areas
are recursively grouped in the visual space according to the hierarchy
topology, so that siblings are always adjacent. In addition, color and
labels can be used to convey the hierarchical structure.

A non-aggregated hierarchical visualization Vmax is an encoding of
the deepest tree cut model of a dataset. For example, in a treemap
without decorations (e.g., padding), Vmax fills the entire display space
with rectangles representing the tree leaves. Given the set Λ of visu-
alizations of S using a specific layout, each of which corresponds to a
tree cut of S, Vmax is the visualization that maximizes L(V):

Vmax = argmax
V∈Λ

(L(V)), (16)

where S denotes the dataset. Note that, for sake of simplicity, we make
no distinction in the notation between a visualization V and the tree cut
encoded by it.

In the information theoretic interpretation, if visualizations allowed
for lossless coding, Vmax would always minimize L(S |V) and pro-
vide the best fit to the data, corresponding to the model selected by
MDL when we set L(V) constant or, equivalently, to the model se-
lected by MLE. However, a space-filling visualization is a partial and
lossy coding system: partial because there exist some source symbols

that cannot be encoded (e.g., data points that map to subpixel areas);
lossy because it is possible that a pair of symbols share a code word
(e.g., data points that map to overlapping areas due to rounding).

Depending on the available display space, when the dataset is rela-
tively small, Vmax generally provides the best fit to the data, but when
the number of leaves is large, decoding of information is impacted,
due to the aforementioned limitations caused by display pixel reso-
lution. This is a key departure from Li and Abe’s method, where an
increase in the length of the model always yields an increase in fitness.
In other words, there is a limit on the model fitness to data achievable
by a space-filling visualization. The fact that Vmax does not necessarily
hold the minimum data description length can be denoted as follows:

L(S |Vmax)≥ min
V∈Λ

L(S |V), (17)

This inequality can be read as: the data description length of the
visualization of the deepest tree cut (Vmax) is not necessarily minimal.
As a result, before even considering the parameter description length,
we can observe that it pays off selecting treemaps more abstract than
Vmax when datasets are large relative to the available screen size.

4.1 Treemap

Let’s define the dataset S in more detail. S is a 2-tuple (L, f), where
L is the subset of classes that are tree leaves, and f is a function such
that for each l ∈ L, f (l) is the count of l.

Then the area of a leaf can be defined as the following composite
function with respect to the display area D (in pixels):

(A◦ f)(l) = A(f (l)) =
f (l)
|S|

D. (18)

Likewise, the area of an abstract class C is given by:

A(f (C)) = ∑
l∈C

A(f (l)), (19)

where l ∈ C is the set of tree leaves dominated by C. We call G =
(L,A ◦ f) the linearly transformed dataset using A ◦ f . Essentially, G
is the dataset with scores transformed to pixels. The probabilities of
the classes are estimated based on the encoded G. For conciseness, we
abbreviate A(f (C)) as A(C) in the rest of this section.

A treemap encodes such areas as a vector of rectangle coordinates
R = [R1,R2, ...,Rk]. Formally, we describe a treemap as a 2-tuple
T̂ = (Γ ,(R |D)). Given D, we can refer to any point in the grid with an
integer index 1 ≤ i ≤ D. Thus, to transmit Ri, we need only two inte-
gers, corresponding to the indexes of the top left and bottom right cor-
ners. Since the index space is finite and the indexes are equally likely,
we can use Rissanen’s universal prior to arrive at L(i) = log2(D). The
parameter description length is then:

L(R) = 2k log2 D. (20)

Equation 20 gives an approximation of the optimal number of bits
necessary to transmit the parameters of a treemap, ignoring any factors
that are constant across all treemaps. For the sake of simplicity, we
consider a treemap with no colors or labels.

Since the pixel grid imposes a limited precision on the representa-
tion of areas, we approximate the encoded area of C in the treemap by
rounding A(C):

A′(C) = �A(C)+1/2�. (21)

Note that A′(C) does not account for precision lost by the fact that
A(C) has to be decomposable into exactly two factors. P̂(C) is esti-
mated simply as the ratio between the encoded class area and the total
display area:

P̂(C) =
A′(C)

D
. (22)

VERAS AND COLLINS: OPTIMIZING HIERARCHICAL VISUALIZATIONS WITH THE MINIMUM DESCRIPTION LENGTH PRINCIPLE� 635

L(A) < L(B)
L(A | S) > L(B | S)

Fig. 3. An illustration of two tree cuts. More abstract cuts have lower
parameter description length, but higher data description length.

Equation 10 embodies the fundamental trade-off between concise-
ness and accuracy that defines the MDL principle. Models with more
parameters will achieve better accuracy (high likelihood) at the ex-
pense of simplicity. In fact, if we set L(θ̂) constant, MDL falls back
to MLE, selecting the model that offers the best fit to the data. In
that sense, L(θ̂) can be thought of as a safeguard against over-fitting.
Likewise, over-concise models have low accuracy, being just as un-
desirable. Minimization of the description length tends to select the
model featuring the best balance between these criteria. In the infor-
mation theoretic interpretation, the selected model corresponds to the
best compression of the data.

2.2 MDL Tree Cut Model
Having laid out the general formulation of the MDL principle, in this
section we explain the tree cut model, which is an important building
block for our abstraction approach. The tree cut model is a general-
ization method based on MDL, originally developed for the linguistic
problem of automatic acquisition of case frame patterns from large
corpora [19].

Consider a tree structure representing the hierarchical relation be-
tween abstract classes, e.g., IS-A, part of, instance of. The degree of
abstraction grows towards the root. Assume that only the leaves are
observable (countable), and the internal nodes accumulate the counts
of their children. L is the set of all leaves. A dataset S is a multiset
of observations, each representing one occurrence of a leaf l ∈ L, with
l ∈ S denoting the inclusion of l in S as a multiset. We denote the
dataset size by |S|, the total number of observations.

A tree cut is any set of tree nodes that exhaustively covers the leaf
nodes. Graphically, it can be represented by a path crossing the tree
lengthwise, as in Figure 3. Nodes along the cut represent the subtrees
dominated by them and are assigned each a probability value. De-
pending on how regular is our data S, a concise way to transmit it over
an arbitrary channel to a receiver who has knowledge of the tree is to
send a tree cut. The receiver then estimates the value of each leaf based
on the value of the node representing it in the cut. In other words, a
cut is a model of the data, carrying estimates of the observed values.
The residuals are sent separately, in the MDL fashion, as discussed in
Section 2.1.

A tree cut model M is defined as the tuple (Γ , θ̂), where Γ =

[C1,C2, ...,Ck] and θ̂ = [P̂(C1), P̂(C2), ..., P̂(Ck)]: the vector of nodes
(classes) and their parameters (estimated probabilities), respectively.
The probability P̂(C) of a class is estimated by MLE, as follows:

P̂(C) =
f (C)

|S|
, (11)

where f (C) is the accumulated count of the class C. The estimated
probability of each of the leaves under a class is obtained by normal-
ization of the class probability over the number of leaves C under the
class:

P̂(l) =
P̂(C)

|C|
. (12)

Note that behind this formula is the assumption of uniform probabil-
ity. This means the probabilities (or frequencies) of the leaves under
a cut are smoothed, reflecting the decrease in uncertainty when data is
represented by abstract models.

As discussed in the previous section, the data description length is
the log of the likelihood of the data:

L(S |Γ , θ̂) =−∑
l∈S

log2 P̂(l). (13)

The minimum data description length is held by the deepest tree cut
model, comprised of all leaves, which features no better abstraction
than the raw data. The cost of encoding the parameters θ̂ of the model,
an array of real numbers, is given by (9). Note that, Li & Abe omit
the first term in (9), namely, the cost of encoding the integer part of
the parameters, because the model parameters are probabilities; hence,
the cost of encoding the integer parts is always 0. In summary, Li and
Abe’s tree cut model minimizes the following information criterion:

L(θ̂ ,S) =
k
2

log2 |S|−∑
l∈S

log2 P̂(l). (14)

To be more precise, in addition to the probabilities θ̂ , a receiver
would also need to know the classes Γ to decode the data correctly.
Since the number of possible cuts in a tree is finite, in theory we could
use an index to inform Γ , as part of the coding scheme. As such
indexes would be equally probable a priori, their code length would
be constant for all models and so, can be safely ignored. For sake of
model selection, all we need to account for is the cost of encoding θ̂
and (S | θ̂).

Li and Abe provided an efficient and simple bottom up algorithm,
based on dynamic programming, that is guaranteed to find the tree cut
whose description length is minimal [19]. In the rest of this paper,
we present different ways to calculate parameter and data description
lengths, but the same algorithm is used for minimization.

3 MDL DRILL-DOWN

In this section, we experiment with using the tree cuts selected by Li
and Abe’s approach to inform which nodes should be abstracted in
views of a hierarchical dataset. Since such cuts are generated with no
consideration of the available display size, we adapt the method by
introducing a weighting parameter that determines the relative impor-
tance of fitness to the data over clutter. An increase in weight results
in a deeper tree cut. In our proof-of-concept, the user can manipulate
this parameter seamlessly through conventional drill-down to increase
the level of detail of the view.

We chose to implement the technique on Docuburst, an open-source
document visualization tool [8]. Docuburst displays a sunburst repre-
sentation of the WordNet ontology where the size of nodes and cat-
egories (angular extent) is weighted by their occurrence in the input
document, allowing users to inspect which words and categories of
words are more prevalent in a document. The color of a node is based
on the non-cumulative count of uses of the corresponding word in the
document. In their future work section, Collins et al. discuss two
problems that could potentially be solved with uneven MDL tree cuts.
First, abstracting subtrees that have low relative importance. Second,
the top levels of WordNet are too abstract, as far as carrying little in-
formation about the document’s content.

Figure 1 features views of the book Gamer Theory, by McKen-
zie Wark. The most representative categories of the document are the
darkest (most frequent); for instance: game, entertainment, algorithm,
storyline, boredom, etc. In a full tree view, 6,302 nodes would be
rendered, which is likely enough to cause latency in a browser-based
visualization. Also, displaying this many nodes results in small, illeg-
ible labels and the need to interactively zoom and pan.

The tree cut resulting from minimizing Li and Abe’s information
criterion is shown in Figure 1(a). Nodes under the tree cut are hidden,
whereas nodes on or above the tree cut are visible. Unless the available
display size is limited, that view can be considered too abstract.

Following Wagner [29], we introduce a free weighting parameter W
to equation (14) as a means to control the importance of the data de-
scription length over the parameter description length and, as a result,
the tree cut depth:

L(θ̂ ,S) =
k
2

log2 |S|−W ∑
l∈S

log2 P̂(l) (W > 0). (15)

The semantics of increasing W is equivalent to that of drilling down;
the more weight applied to the data description length (residuals), the
more parameters (nodes) will be included in the model (tree cut), to
minimize the overall description length. Thus, weighted MDL tree
cuts can be useful to reveal details at a rate that is more compatible
with the distribution of values in the hierarchy. In order to illustrate
this concept, we mapped W to the drill-down action in Docuburst; that
is, when users roll the mouse wheel, W is incremented/decremented by
a predefined delta. Figure 1(b-d), top, shows the result of three sub-
sequent increments in W , starting from 1(a), top. In contrast, Figure
1(b-d), bottom, shows the result of three drill-down steps where a con-
ventional depth threshold is incremented. It is clear that, in only a few
steps, weighted MDL views allow access to most of the representa-
tive nodes in the document with much less clutter than using the depth
threshold or the full overview. In terms of number of nodes rendered
(a-d), the weighted MDL views cost 32, 387, 730, and 887 nodes;
while the depth threshold views cost 183, 808, 2202, 4199 nodes.

An important concern is choosing ∆W so that every increment re-
sults in a view that has significantly more information than the pre-
vious. In our tests, ∆W was defined empirically, and a value of 250
yielded good results for visualizing a variety of documents.

Weighted MDL views can be useful as a way to explore visualiza-
tions interactively, but the problem of optimizing the level of detail as a
function of the available display space before any user input remained
unsolved. Specifically, we needed a method capable of generating a
first view of the dataset that is as informative as possible within the
bounds of readability. Next section presents a satisfactory method.

4 DISPLAY-TAILORED TREE CUT MODELS

We begin this section with the consideration that hierarchical visual-
ization concerns, in general, the representation of tree cut models, in
the sense defined in Section 2.2. If we treat visualization techniques
(e.g., treemap, sunburst) as coding schemes and the views produced
with them as encoded tree cut models, we can select optimal views
using MDL criteria. In particular, we are interested in expressing pa-
rameter and data description lengths in a way that relates to clutter and
fitness in visualizations. We will focus on space-filling hierarchical
visualization techniques, as the connection to MDL is more obvious.

In a space-filling visual representation of a hierarchical dataset, the
pixel grid is divided into areas proportional to the data values. Areas
are recursively grouped in the visual space according to the hierarchy
topology, so that siblings are always adjacent. In addition, color and
labels can be used to convey the hierarchical structure.

A non-aggregated hierarchical visualization Vmax is an encoding of
the deepest tree cut model of a dataset. For example, in a treemap
without decorations (e.g., padding), Vmax fills the entire display space
with rectangles representing the tree leaves. Given the set Λ of visu-
alizations of S using a specific layout, each of which corresponds to a
tree cut of S, Vmax is the visualization that maximizes L(V):

Vmax = argmax
V∈Λ

(L(V)), (16)

where S denotes the dataset. Note that, for sake of simplicity, we make
no distinction in the notation between a visualization V and the tree cut
encoded by it.

In the information theoretic interpretation, if visualizations allowed
for lossless coding, Vmax would always minimize L(S |V) and pro-
vide the best fit to the data, corresponding to the model selected by
MDL when we set L(V) constant or, equivalently, to the model se-
lected by MLE. However, a space-filling visualization is a partial and
lossy coding system: partial because there exist some source symbols

that cannot be encoded (e.g., data points that map to subpixel areas);
lossy because it is possible that a pair of symbols share a code word
(e.g., data points that map to overlapping areas due to rounding).

Depending on the available display space, when the dataset is rela-
tively small, Vmax generally provides the best fit to the data, but when
the number of leaves is large, decoding of information is impacted,
due to the aforementioned limitations caused by display pixel reso-
lution. This is a key departure from Li and Abe’s method, where an
increase in the length of the model always yields an increase in fitness.
In other words, there is a limit on the model fitness to data achievable
by a space-filling visualization. The fact that Vmax does not necessarily
hold the minimum data description length can be denoted as follows:

L(S |Vmax)≥ min
V∈Λ

L(S |V), (17)

This inequality can be read as: the data description length of the
visualization of the deepest tree cut (Vmax) is not necessarily minimal.
As a result, before even considering the parameter description length,
we can observe that it pays off selecting treemaps more abstract than
Vmax when datasets are large relative to the available screen size.

4.1 Treemap

Let’s define the dataset S in more detail. S is a 2-tuple (L, f), where
L is the subset of classes that are tree leaves, and f is a function such
that for each l ∈ L, f (l) is the count of l.

Then the area of a leaf can be defined as the following composite
function with respect to the display area D (in pixels):

(A◦ f)(l) = A(f (l)) =
f (l)
|S|

D. (18)

Likewise, the area of an abstract class C is given by:

A(f (C)) = ∑
l∈C

A(f (l)), (19)

where l ∈ C is the set of tree leaves dominated by C. We call G =
(L,A ◦ f) the linearly transformed dataset using A ◦ f . Essentially, G
is the dataset with scores transformed to pixels. The probabilities of
the classes are estimated based on the encoded G. For conciseness, we
abbreviate A(f (C)) as A(C) in the rest of this section.

A treemap encodes such areas as a vector of rectangle coordinates
R = [R1,R2, ...,Rk]. Formally, we describe a treemap as a 2-tuple
T̂ = (Γ ,(R |D)). Given D, we can refer to any point in the grid with an
integer index 1 ≤ i ≤ D. Thus, to transmit Ri, we need only two inte-
gers, corresponding to the indexes of the top left and bottom right cor-
ners. Since the index space is finite and the indexes are equally likely,
we can use Rissanen’s universal prior to arrive at L(i) = log2(D). The
parameter description length is then:

L(R) = 2k log2 D. (20)

Equation 20 gives an approximation of the optimal number of bits
necessary to transmit the parameters of a treemap, ignoring any factors
that are constant across all treemaps. For the sake of simplicity, we
consider a treemap with no colors or labels.

Since the pixel grid imposes a limited precision on the representa-
tion of areas, we approximate the encoded area of C in the treemap by
rounding A(C):

A′(C) = �A(C)+1/2�. (21)

Note that A′(C) does not account for precision lost by the fact that
A(C) has to be decomposable into exactly two factors. P̂(C) is esti-
mated simply as the ratio between the encoded class area and the total
display area:

P̂(C) =
A′(C)

D
. (22)

636  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 23,  NO. 1,  JANUARY 2017

Fig. 4. Treemap visualizations generated with the display-tailored MDL procedure, with the following resolutions: 375x400px, 375x667px and
1920x1080px. More abstract tree cuts are selected for smaller displays.

As in (12), we assume that P̂(l) is estimated by normalizing P̂(C)
with respect to the leaves dominated by C:

P̂(l) =

{
P̂(C)
|C| if P̂(C)> 0

c if P̂(C) = 0
(23)

where c is a constant representing the estimated probability of the
leaves under a class whose rounded area is zero, and be thought of as
an uninformed probability. We can set c to an arbitrarily small value
so as to penalize cuts featuring subpixel areas or, more sensibly, de-
fine c as the sum of the probabilities of the “invisible” classes in a cut,
divided by the total number of tree leaves under such classes. The
piecewise function above can also be defined in a more conservative
way; for example, setting P̂(l) = c if A′(C) < δ , in order to penalize
cuts with small areas, where δ is the smallest visible area. For exam-
ple, a 3x3 pixel area on a high resolution wall-sized display.

The data description length is L(G | T̂), the log of the following
likelihood of G (as discussed in Section 2.1):

L (G | T̂) = ∏
l∈L

P̂(l)A(l) (24)

It is worth mentioning that the expression above is not strictly a like-
lihood, but a power of the likelihood, since the data counts have been
multiplied by a common factor that converts them to areas. Finally,
the information criterion for selection of treemaps is:

L(T̂ ,G) = L(T̂)+L(G | T̂) = 2k log2 D− ∑
C∈Γ

A(C) log2 P̂(l) (25)

4.2 Sunburst
The structure of a sunburst can be thought of as a series of overlapping
disks, one for each tree level. A tree cut can be represented as a vector
of arcs Q. The central angle of the arc of a class equals the sum of
its children’s angles. Arc radius is proportional to the depth of a class
in the tree: R j = (j+1)∆R, with R j being the radius of all classes of
depth j, and ∆R = D/2(h+1), where D is the sunburst diameter and
h is the tree height.

It is reasonable to assume that users decode a sunburst by estimating
the ratio of the arc length of a class and the circumference of the disk
that corresponds to the tree level where the class belongs. Assuming
the sunburst is sized to optimally fit the screen, as more levels are dis-
played, the radius of each tree level’s disk is reduced, and estimating
the value of a class becomes more difficult. This implies that selecting
the best tree cut depends on how many levels are displayed, and vice-
versa. For example, a class with a relatively low frequency and depth

2, might be readable when displaying only three levels of a tree, but
can be rendered invisible when eight more levels are displayed, as the
level disks will shrink.

Consequently, we need to run two rounds of minimization of the
description length. In the first, we select the best tree cut under each
value of ∆R, restricting the levels of h; in the second, we select the best
of the tree cuts from the previous step. This is only valid if we define
the encoding of the data in a way that tree cut models are comparable
across values of ∆R; that is, they need to encode the same quantities.

We define the following mapping of S, where function A is the area
of the arc sector of radius D/2, which is independent of ∆R.

(A◦ f)(l) = A(f (l)) =
f (l)
|S|

π(D/2)2. (26)

A sunburst needs only two integers to inform each area, correspond-
ing to the pixel indexes of the endpoints of an arc:

L(Q) = 2k log2 D. (27)

The arc length s of a class C at depth j is:

s(C) =
f (C)

|S|
2πR j. (28)

A′(C) is calculated analogously to (21), based on the rounded arc
length:

A′(C) = �s(C)+1/2� (D/2)2

2R(C)
, (29)

which means that the decoded area of arcs with length smaller than .5
is 0, due to the pixel resolution constraint. The estimated probability
of a class is, thus:

P̂(C) =
A′(C)

π(D/2)2 (30)

4.3 Proof-of-concept
To illustrate the use of our display-tailored MDL procedure, we devel-
oped two prototype visualizations (treemap and sunburst) of the Di-
rectory Mozilla (DMOZ) dataset. As of November, 24, 2014, DMOZ
consisted of 3,847,266 web pages, categorized under a total of 782,031
topics. We selected the subtree under the prefix “Top/World”, which
contains 2,083,282 pages written in English under 498,487 topics.
We wrote browser-based clients that request tree cuts from a Node.js
server. The parameters required by the server are display size and
root node ID. The layouts are calculated in the server using D3 and

rendered in HTML. Although the server has no knowledge of the al-
gorithm used by the client to calculate the treemap, it relies on the fair
assumption that the areas are calculated approximately as Section 4.

The resulting visualizations, parametrized for a variety of screen
resolutions, are presented in Figure 4. Note that as the display reso-
lution increases, deeper tree cuts are selected. This is a consequence
of fewer classes in such cuts being represented with tiny areas; hence,
the likelihood of these cuts increases, while their description length
decreases.

The treemaps drawn by our client allocate significant space for la-
bels, in a way commonly known as “padding”. That space is sub-
tracted from the space available to represent each node’s ancestors,
and is also meant to help users understand the tree structure better.
Our MDL calculations do not account for this “wasted” space (in the
estimation sense) and the clutter introduced by the labels; therefore,
there is more complexity in the resulting views than what is encoded
in L(T̂). We consider, however, the results satisfactory.

5 VALIDATION

This paper is based on the premise that a high-quality display of hi-
erarchical data has a good balance between clutter and information;
hence, the main question to be answered is whether the proposed ap-
proach is scalable, in the sense that it can consistently produce high-
quality views under varying display resolutions and dataset sizes. It
should be noted that it is not our intention to provide a comprehen-
sive evaluation of abstraction approaches; instead, we are interested in
comparing the proposed method with reasonable baselines to put its
quality in perspective.

To address this, we adopted two validation approaches, following
Munzner’s nested model of validation [21]. At the visual encoding
level, we test performance in a comparative controlled study, and we
report on a quantitative image analysis measuring clutter. Finally, at
the algorithm level, we report on the scalability of the approach.

5.1 User Study
Clutter is shown to correlate with response times in visual search tasks
[12, 25, 30]; therefore, a sensible way to assess the level of clutter
in a visualization is by measuring the time participants take to locate
targets. In hierarchical displays, an important caveat of abstraction is
hiding potentially interesting nodes; that is, if a node of interest is lo-
cated deep in the hierarchy, more abstract views will require more drill
downs to locate it. We designed a user study where participants were
asked to find targets in treemaps abstracted with different methods,
including MDL. Among other factors, we varied display resolution,
target value, and target depth in the tree, and examined how each ab-
straction approach performed in interactive tasks.

5.1.1 Tasks
Participants were instructed on how to use the drill down (re-rooting)
function and were given the path to the target (i.e., a list of the tar-
get’s ancestors); for instance: Top/Arts/Music. We implemented a CSS
hack to make labels not searchable with a browser’s find tool. The fol-
lowing factors varied in the tasks: abstraction technique, display size,
dataset size, target depth, and target value. We compared MDL with
three levels of depth threshold: t3 and t4, which correspond to the con-
servative approaches of capping nodes with depth greater than 3 and
4, and t∞, which is equivalent to no aggregation. Display resolution
has three levels: 375x667, 1024x768, and 1920x1080, which match
common resolutions of smart phones, laptops, and desktop monitors,
respectively. For dataset size, we tested three subtrees of DMOZ: top,
arts and soccer, containing approximately 500,000, 55,000, and 3,000
categories each. Target depth (distance from root) varied among 3, 4,
5, and 7; and target value varied between average and outlier. The
value of average targets was the average of the values of all categories
in the target’s level, while the value of outliers was ten times the aver-
age. Given these constraints, the target location in the tree was chosen
randomly. Depending on the combination of factors, the target might
be visible in the “overview” screen or drill down might be necessary
to find it; for example, a target with depth 4 in a treemap where nodes

Variable Coefficient p-value -1.0 -0.5 0.0 0.5
Estimate

-1.0 -0.5 0.0 0.5

technique MDL 0.028

t_3 0.025

t_4 0.019

display 375x667 0.071

1024x768 0.107

root arts 2.19E-07

soccer 2.00E-16

depth depth 0.054

order order 6.75E-08

value outlier 0.003

interactions 375x667:MDL 0.680

375x667:t_3 0.771

375x667:t_4 0.636

1024x768:MDL 0.045

1024x768:t_3 0.346

1024x768:t_4 0.741

arts:MDL 0.683

arts:t_3 0.177

arts:t_4 0.176

soccer:MDL 0.081

soccer:t_3 0.015

soccer:t_4 0.044

depth:MDL 0.190

depth:t_3 0.093

depth:t_4 0.083

outlier:MDL 0.043

outlier:t_3 0.085

outlier:t_4 0.296

Fig. 5. Results from a generalized mixed linear model (Gamma, log-
linked) fitted to the user study data. Response variable is completion
time. Estimates are in log scale.

with depth higher than 3 are hidden (i.e., t3) can only be seen upon a
drill down. The crossing of all factors resulted in 288 interactive tasks.

During pilot testing, we realized that some tasks might take a long
time (over two minutes), and a long session is incompatible with par-
ticipants’ expectations of fairness in crowdsourcing tasks. Thus, each
session consisted of one training task followed by 8 tasks. In total,
each participant completed 9 tasks, which were assigned randomly
based on display resolution, in order to avoid participants having to
interact with visualizations larger than their screen. Completion times
and number of drill-down interactions were recorded. In order to min-
imize the effect of latency, in the interactive tasks the timer was paused
whenever the user drilled down, and resumed once the new view was
completely rendered.

5.1.2 Participants
Participants were recruited with the CrowdFlower crowdsourcing plat-
form and compensated with $2. They were presented with the instruc-
tions both on the CrowdFlower page listing our study and on the study
page hosted in our servers. Participants were allowed to skip each task
after three minutes and withdraw the study at any time.

5.1.3 Results
We analyzed 980 completed trials (∼ 3.4 per task avg.) after remov-
ing 96 outliers. The median session length was 11 minutes. We used
a log-linked Gamma generalized linear model, including as covariates
display resolution, dataset size, target depth and target value both as
main effects and in two-way interactions with technique. A new vari-
able was created representing the order tasks are completed within the
session. User was included as a random intercept. Baseline levels are
t∞, 1920x1080px, top, average, depth and order 0.

The model intercept is 4.37 (79 seconds). Model estimates corre-
spond to increase/decrease in the intercept estimate, which is in log
scale. For instance, for an intercept of 4.37, a variation of -0.1 repre-
sents a reduction of 8 seconds in mean time. The results show that,
relative to t∞, all other techniques are responsible for a significant de-
crease in response times on average (Figure 5). Order has a small, but
significant negative effect on times and so does changing the value of
the target to outlier, to a larger extent. The outlier effect is significantly

VERAS AND COLLINS: OPTIMIZING HIERARCHICAL VISUALIZATIONS WITH THE MINIMUM DESCRIPTION LENGTH PRINCIPLE� 637

Fig. 4. Treemap visualizations generated with the display-tailored MDL procedure, with the following resolutions: 375x400px, 375x667px and
1920x1080px. More abstract tree cuts are selected for smaller displays.

As in (12), we assume that P̂(l) is estimated by normalizing P̂(C)
with respect to the leaves dominated by C:

P̂(l) =

{
P̂(C)
|C| if P̂(C)> 0

c if P̂(C) = 0
(23)

where c is a constant representing the estimated probability of the
leaves under a class whose rounded area is zero, and be thought of as
an uninformed probability. We can set c to an arbitrarily small value
so as to penalize cuts featuring subpixel areas or, more sensibly, de-
fine c as the sum of the probabilities of the “invisible” classes in a cut,
divided by the total number of tree leaves under such classes. The
piecewise function above can also be defined in a more conservative
way; for example, setting P̂(l) = c if A′(C) < δ , in order to penalize
cuts with small areas, where δ is the smallest visible area. For exam-
ple, a 3x3 pixel area on a high resolution wall-sized display.

The data description length is L(G | T̂), the log of the following
likelihood of G (as discussed in Section 2.1):

L (G | T̂) = ∏
l∈L

P̂(l)A(l) (24)

It is worth mentioning that the expression above is not strictly a like-
lihood, but a power of the likelihood, since the data counts have been
multiplied by a common factor that converts them to areas. Finally,
the information criterion for selection of treemaps is:

L(T̂ ,G) = L(T̂)+L(G | T̂) = 2k log2 D− ∑
C∈Γ

A(C) log2 P̂(l) (25)

4.2 Sunburst
The structure of a sunburst can be thought of as a series of overlapping
disks, one for each tree level. A tree cut can be represented as a vector
of arcs Q. The central angle of the arc of a class equals the sum of
its children’s angles. Arc radius is proportional to the depth of a class
in the tree: R j = (j+1)∆R, with R j being the radius of all classes of
depth j, and ∆R = D/2(h+1), where D is the sunburst diameter and
h is the tree height.

It is reasonable to assume that users decode a sunburst by estimating
the ratio of the arc length of a class and the circumference of the disk
that corresponds to the tree level where the class belongs. Assuming
the sunburst is sized to optimally fit the screen, as more levels are dis-
played, the radius of each tree level’s disk is reduced, and estimating
the value of a class becomes more difficult. This implies that selecting
the best tree cut depends on how many levels are displayed, and vice-
versa. For example, a class with a relatively low frequency and depth

2, might be readable when displaying only three levels of a tree, but
can be rendered invisible when eight more levels are displayed, as the
level disks will shrink.

Consequently, we need to run two rounds of minimization of the
description length. In the first, we select the best tree cut under each
value of ∆R, restricting the levels of h; in the second, we select the best
of the tree cuts from the previous step. This is only valid if we define
the encoding of the data in a way that tree cut models are comparable
across values of ∆R; that is, they need to encode the same quantities.

We define the following mapping of S, where function A is the area
of the arc sector of radius D/2, which is independent of ∆R.

(A◦ f)(l) = A(f (l)) =
f (l)
|S|

π(D/2)2. (26)

A sunburst needs only two integers to inform each area, correspond-
ing to the pixel indexes of the endpoints of an arc:

L(Q) = 2k log2 D. (27)

The arc length s of a class C at depth j is:

s(C) =
f (C)

|S|
2πR j. (28)

A′(C) is calculated analogously to (21), based on the rounded arc
length:

A′(C) = �s(C)+1/2� (D/2)2

2R(C)
, (29)

which means that the decoded area of arcs with length smaller than .5
is 0, due to the pixel resolution constraint. The estimated probability
of a class is, thus:

P̂(C) =
A′(C)

π(D/2)2 (30)

4.3 Proof-of-concept
To illustrate the use of our display-tailored MDL procedure, we devel-
oped two prototype visualizations (treemap and sunburst) of the Di-
rectory Mozilla (DMOZ) dataset. As of November, 24, 2014, DMOZ
consisted of 3,847,266 web pages, categorized under a total of 782,031
topics. We selected the subtree under the prefix “Top/World”, which
contains 2,083,282 pages written in English under 498,487 topics.
We wrote browser-based clients that request tree cuts from a Node.js
server. The parameters required by the server are display size and
root node ID. The layouts are calculated in the server using D3 and

rendered in HTML. Although the server has no knowledge of the al-
gorithm used by the client to calculate the treemap, it relies on the fair
assumption that the areas are calculated approximately as Section 4.

The resulting visualizations, parametrized for a variety of screen
resolutions, are presented in Figure 4. Note that as the display reso-
lution increases, deeper tree cuts are selected. This is a consequence
of fewer classes in such cuts being represented with tiny areas; hence,
the likelihood of these cuts increases, while their description length
decreases.

The treemaps drawn by our client allocate significant space for la-
bels, in a way commonly known as “padding”. That space is sub-
tracted from the space available to represent each node’s ancestors,
and is also meant to help users understand the tree structure better.
Our MDL calculations do not account for this “wasted” space (in the
estimation sense) and the clutter introduced by the labels; therefore,
there is more complexity in the resulting views than what is encoded
in L(T̂). We consider, however, the results satisfactory.

5 VALIDATION

This paper is based on the premise that a high-quality display of hi-
erarchical data has a good balance between clutter and information;
hence, the main question to be answered is whether the proposed ap-
proach is scalable, in the sense that it can consistently produce high-
quality views under varying display resolutions and dataset sizes. It
should be noted that it is not our intention to provide a comprehen-
sive evaluation of abstraction approaches; instead, we are interested in
comparing the proposed method with reasonable baselines to put its
quality in perspective.

To address this, we adopted two validation approaches, following
Munzner’s nested model of validation [21]. At the visual encoding
level, we test performance in a comparative controlled study, and we
report on a quantitative image analysis measuring clutter. Finally, at
the algorithm level, we report on the scalability of the approach.

5.1 User Study
Clutter is shown to correlate with response times in visual search tasks
[12, 25, 30]; therefore, a sensible way to assess the level of clutter
in a visualization is by measuring the time participants take to locate
targets. In hierarchical displays, an important caveat of abstraction is
hiding potentially interesting nodes; that is, if a node of interest is lo-
cated deep in the hierarchy, more abstract views will require more drill
downs to locate it. We designed a user study where participants were
asked to find targets in treemaps abstracted with different methods,
including MDL. Among other factors, we varied display resolution,
target value, and target depth in the tree, and examined how each ab-
straction approach performed in interactive tasks.

5.1.1 Tasks
Participants were instructed on how to use the drill down (re-rooting)
function and were given the path to the target (i.e., a list of the tar-
get’s ancestors); for instance: Top/Arts/Music. We implemented a CSS
hack to make labels not searchable with a browser’s find tool. The fol-
lowing factors varied in the tasks: abstraction technique, display size,
dataset size, target depth, and target value. We compared MDL with
three levels of depth threshold: t3 and t4, which correspond to the con-
servative approaches of capping nodes with depth greater than 3 and
4, and t∞, which is equivalent to no aggregation. Display resolution
has three levels: 375x667, 1024x768, and 1920x1080, which match
common resolutions of smart phones, laptops, and desktop monitors,
respectively. For dataset size, we tested three subtrees of DMOZ: top,
arts and soccer, containing approximately 500,000, 55,000, and 3,000
categories each. Target depth (distance from root) varied among 3, 4,
5, and 7; and target value varied between average and outlier. The
value of average targets was the average of the values of all categories
in the target’s level, while the value of outliers was ten times the aver-
age. Given these constraints, the target location in the tree was chosen
randomly. Depending on the combination of factors, the target might
be visible in the “overview” screen or drill down might be necessary
to find it; for example, a target with depth 4 in a treemap where nodes

Variable Coefficient p-value -1.0 -0.5 0.0 0.5
Estimate

-1.0 -0.5 0.0 0.5

technique MDL 0.028

t_3 0.025

t_4 0.019

display 375x667 0.071

1024x768 0.107

root arts 2.19E-07

soccer 2.00E-16

depth depth 0.054

order order 6.75E-08

value outlier 0.003

interactions 375x667:MDL 0.680

375x667:t_3 0.771

375x667:t_4 0.636

1024x768:MDL 0.045

1024x768:t_3 0.346

1024x768:t_4 0.741

arts:MDL 0.683

arts:t_3 0.177

arts:t_4 0.176

soccer:MDL 0.081

soccer:t_3 0.015

soccer:t_4 0.044

depth:MDL 0.190

depth:t_3 0.093

depth:t_4 0.083

outlier:MDL 0.043

outlier:t_3 0.085

outlier:t_4 0.296

Fig. 5. Results from a generalized mixed linear model (Gamma, log-
linked) fitted to the user study data. Response variable is completion
time. Estimates are in log scale.

with depth higher than 3 are hidden (i.e., t3) can only be seen upon a
drill down. The crossing of all factors resulted in 288 interactive tasks.

During pilot testing, we realized that some tasks might take a long
time (over two minutes), and a long session is incompatible with par-
ticipants’ expectations of fairness in crowdsourcing tasks. Thus, each
session consisted of one training task followed by 8 tasks. In total,
each participant completed 9 tasks, which were assigned randomly
based on display resolution, in order to avoid participants having to
interact with visualizations larger than their screen. Completion times
and number of drill-down interactions were recorded. In order to min-
imize the effect of latency, in the interactive tasks the timer was paused
whenever the user drilled down, and resumed once the new view was
completely rendered.

5.1.2 Participants
Participants were recruited with the CrowdFlower crowdsourcing plat-
form and compensated with $2. They were presented with the instruc-
tions both on the CrowdFlower page listing our study and on the study
page hosted in our servers. Participants were allowed to skip each task
after three minutes and withdraw the study at any time.

5.1.3 Results
We analyzed 980 completed trials (∼ 3.4 per task avg.) after remov-
ing 96 outliers. The median session length was 11 minutes. We used
a log-linked Gamma generalized linear model, including as covariates
display resolution, dataset size, target depth and target value both as
main effects and in two-way interactions with technique. A new vari-
able was created representing the order tasks are completed within the
session. User was included as a random intercept. Baseline levels are
t∞, 1920x1080px, top, average, depth and order 0.

The model intercept is 4.37 (79 seconds). Model estimates corre-
spond to increase/decrease in the intercept estimate, which is in log
scale. For instance, for an intercept of 4.37, a variation of -0.1 repre-
sents a reduction of 8 seconds in mean time. The results show that,
relative to t∞, all other techniques are responsible for a significant de-
crease in response times on average (Figure 5). Order has a small, but
significant negative effect on times and so does changing the value of
the target to outlier, to a larger extent. The outlier effect is significantly

638  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 23,  NO. 1,  JANUARY 2017

t∞ t3 t4 MDL

0

20

40

0

20

40

average
outlier

0 1 2 3 45+ 0 1 2 3 45+ 0 1 2 3 45+ 0 1 2 3 45+
of drill down

co
un

t

Abstraction

t∞

t3

t4

MDL

Fig. 6. Number of drill-down interactions needed to complete a single
trial of the study, grouped by abstraction technique and target value.

and slightly larger for the MDL approach, although the differences in
estimates are not dramatic. Interestingly, depth does not seem to sig-
nificantly affect the response variable. This may be due to our not
accounting for the time for new views to load when drilling down. A
decrease in dataset size improves completion times only for t∞, and in
the smallest dataset condition (soccer), both t3 and t4 perform worse
than t∞. This is probably due to participants having to drill-down with
t3 and t4, while the target is already visible with MDL and t∞. This
explains why the effect sizes are larger for soccer than for arts.

Figure 6 gives the distribution of the number of drill-down interac-
tions needed to complete one trial, grouped by abstraction technique
and target value. In the average target value condition, the distribu-
tion of values for MDL is skewed to the right compared to all other
approaches; that is, it required fewer drill downs. In the outlier condi-
tion, MDL was better than t3 and t4, and similar to t∞.

5.1.4 Discussion
The results confirm that lack of abstraction in views of large hierar-
chies is detrimental to user performance, at least in visual search tasks.
In that respect, even highly abstract approaches, such as t3 and t4, are
better than unabstracted views. However, as we are not accounting
for the latency between drill downs, it is possible that in high latency
environments the benefits of abstraction are cancelled by the effect of
latency when locating targets requires drill down. In such a case, Fig-
ure 6 suggests that MDL would require fewer drill-downs than t3 and
t4. The fact that a reduction in dataset size was detrimental to user
performance in all abstraction conditions suggests that abstraction for
small datasets is overkill; nevertheless, compared to t3 and t4, MDL
had the smallest increase in response time upon dataset reduction.

We expected outlier target to be easier to spot, as their size is ten
times larger than the average. The fact that MDL benefits the most of
the outlier condition is likely a result of the MDL tendency to expose
nodes with large model residuals.

Overall, the average response time of MDL was very similar to that
of depth threshold approaches, even though the average clutter in MDL
views tends to be higher. In the next section, we investigate the behav-
ior of MDL views using an analytical measure of clutter.

5.2 Feature Congestion Measure
To complement the analysis of the previous section, we compared the
same abstraction techniques with the feature congestion measure of
clutter [25], which is based on the notion that clutter in a display is
associated with degrading performance in visual search. It essentially
measures the difficulty of adding a new, salient item to a display. The
measure computes the local variability of color and contrast luminance
at multiple scales, then combines the values over space and scale to
generate a scalar.

We generated treemap views of the DMOZ’s subtree “Top/World”,
the same used throughout this paper, in resolutions ranging from
100x100px to 2400x2400px, with the four abstraction approaches

4

6

8

10

12

0 500 1000 1500 2000 2500
width

log
(c
ou
nt
)

0.09

0.12

0.15

0.18

0.21

0 500 1000 1500 2000 2500
width

clu
tte
r

abstraction t∞ t3 t4 MDL

Fig. 7. Left: Level of clutter computed with the Feature Congestion
measure as a function of display size. Right: Node count as a function
of display size. In both charts, dataset is DMOZ, and aspect ratio is 1:1.

tested in our user study: t∞, t3, t4, and MDL. We then calculated
the featured congestion measure using only contrast luminance, as our
treemaps do not vary color. In addition, the views were generated
without labels, in order to focus on clutter caused by tree structure.
Padding is kept, as it is usually necessary for understanding structure
in treemaps featuring deep levels.

The results of the experiment are shown in Figure 7, left. The clut-
ter of t∞ views remains constant and high across the whole range of
resolutions. t3 and t4 decrease exponentially as the resolution grows.
Just like t∞, the clutter in MDL views remains constant, but is lower
than t∞. Note that for small displays, MDL ends up “falling back”
to t3 and t4. As space becomes available, the distance between MDL
and the depth thresholded views becomes higher, with MDL filling the
space with more data.

While clutter is often considered to be unwanted, it is positively
correlated with information density, and our approach attempts to find
a balance. So, while the clutter of t3 and t4 drops dramatically at large
screen sizes, so does the information density. Clutter can be compared
with the number of nodes visible in the visualizations as seen in Figure
7, right. MDL, t3, and t4 consistently reveal far fewer nodes than t∞.
The number of nodes revealed by MDL increases with screen size,
while maintaining a roughly constant level of clutter. We argue that
while MDL reveals a smaller number of nodes at screen width 1024px,
compared to t3, and the clutter is higher, this is due to the better (more
uniform) distribution of nodes across the space, as seen in Figure 8.

Woodruff et al. [31] argue in favor of constant information density
(e.g., constant number of objects per area) across x, y and z dimen-
sions of a multiscale visualization. They achieve that automatically
by modifying the visual representation of data points and by adjusting
the level of abstraction unevenly. Figure 8 (middle) demonstrates that
MDL can also approximate constant information density across x and
y dimensions. In addition, the results of the feature congestion exper-
iment suggest that MDL approximates constant information density
across display resolutions. Across the z dimension (drill-down) we
saw variations in the information density caused by the expansion of
nodes that have many children (fan out effect [4]). Unlike VIDA [31]
and GrouseFlocks [4], which create new aggregates to minimize fan
out, our method preserves the original hierarchy structure. As a result,
if there are strong variations in how wide the first levels of subtrees
are, the information density can vary.

5.3 Scalability Analysis
Our algorithm is a customization and application of the approach of Li
and Abe, with the additional optimization step of including a factor of
display size. They find that determining the MDL tree cut terminates
in time O(NxS), where N denotes the number of leaf nodes in the input
tree T and S denotes the input sample size. Our algorithm increases
this procedure by the transformation from the data domain to the pixel
domain, and the estimation of the probabilities of leaves, both of which
are O(NxS). As S is generally much larger than N, our algorithm
scales roughly linearly with the size of the dataset.

Any overhead encountered by generating a display-optimized tree
cut could be shifted to a server-side pre-calculation, for example, to

Fig. 8. Treemap views of the DMOZ dataset for a 1024x768px display. On the left, the full view of the dataset. In the middle, the level of detail is
based on the best MDL tree cut (uneven). On the right, an even cut is performed below level 4 of the tree. The MDL tree cuts yield a better balance
of information density and clutter.

Fig. 9. Subtle visual cues for collapsed nodes using texture (treemap)
and border thickness (sunburst).

pre-cache the tree cut for a variety of standard screen sizes, thereby
eliminating any delay incurred by the tree cut operation. The resulting
trees generally better balance information density with the number of
nodes, and will render faster and consume fewer client resources than
an equivalent full tree, and show a more uniform information density
than a fixed-level tree cut.

6 DISCUSSION

Generality: With the formulae for treemap and sunburst visualiza-
tions, we exemplified how model selection criteria can be written for
visualizations under the MDL framework. We believe that MDL can
be applied to many other kinds of hierarchical visualizations where
(a) some visual aspect of the nodes is weighted by a score, and (b)
the scores are cumulative. This might include visualizations that
are not traditionally hierarchical but were augmented with multiscale
functionality, such as aggregated scatterplots, parallel coordinates and
node-link diagrams [11]. Defining criteria for new classes of visual-
ization involves the specification of three main expressions:

1. The transformation from the data domain to the visualization do-
main (pixel units) (A(C)).

2. Number of bits necessary to encode the visualization (L(V)).

3. How probabilities of tree leaves are estimated from the visual
representation of classes (P(l)).

Uniform distribution assumption: Behind the estimation of the
probability of leaves given a class is the assumption of uniform prob-
ability. If this assumption is not reasonable in a certain application
domain, P(l) can be easily changed to reflect a different probability
distribution. A case where this might be useful is when depicting ge-
ographic information, where the user might have a prior assumption
about the distribution; for example, given a certain value for the State
of New York (e.g., gross product), one might expect that value to be
concentrated in New York City. In many other cases, lacking prior
knowledge, we expect the uniform distribution to be fairly reasonable.

An important limitation is that if the data is uniformly distributed,
the tree cut generated will be the most abstract possible (i.e. the root).
This occurs, for example, if the value of every leaf is 1. Likewise, if
a different distribution is used and the data conforms exactly, the tree
cut will be overgeneralized.

Interpretation: It is especially important in models such as ours,
where abstraction is calculated algorithmically, that the presence of
data abstraction is made apparent, in ways that are not distracting to
the main task of working with a visualization. While our technique
and evaluation focus on the level of abstraction, we have begun an in-
vestigation into the representation problem. Figure 9 suggests prelim-
inary visual designs which subtly distinguish aggregates from regular
leaves. On treemaps, aggregates are textured; on sunbursts, collapsed
nodes are decorated with a colored, thicker border.

7 CONCLUSION

In this paper we have presented a technique for using the MDL Prin-
ciple, extended with considerations of display space, in order to create
optimized views of hierarchical datasets which fit the “analyze first,
show the important” first step of the visual analytics pipeline. In ad-
dition to providing overviews customized to dataset and display size
characteristics, the display-optimized tree cuts can be interactively ex-
panded by changing the weighting parameters.

The number of nodes displayed in a display-optimized MDL tree
cut is similar to those in an even tree cut at a set depth, but fewer than
showing a full tree. This increases the rendering efficiency, resulting
in a performance gain in web-based visualization applications, where
processing resources, memory, and display space may be constrained
(e.g. on mobile devices). In addition, on small screens and any touch
device where rendered elements are small, interaction accuracy can
be difficult due to the “fat fingers” problem. Our technique applies
abstraction in cluttered areas of a visualization, which will likely im-
prove target selection accuracy.

We have demonstrated our technique applied to two datasets across
two different hierarchical visualization types, treemap and sunburst
diagrams, and outlined the steps required to generalize the approach
to other visualization types. Display-optimized MDL tree cuts may
prove especially useful due to their general nature — they are not cus-
tomized to dataset characteristics. However, it is also possible to tailor
them to the dataset, for example, by basing the tree cut on a selected
data attribute, as long as that attribute is quantitative on the leaves and
cumulative in the hierarchy.

In the future, we plan to apply the display-optimized MDL tree
cut to new visualization types. In addition, we see promise in the
challenge of developing new methods for representing abstraction. Fi-
nally, while we demonstrate the possibilities of interactive drill down
to deeper levels of the tree cut using a fixed step size, we plan to inves-
tigate ways to automatically tailor the drill down step based on dataset
characteristics, display space, and to harmonize tree cut drill down
with more traditional techniques to click and open branches manually.

VERAS AND COLLINS: OPTIMIZING HIERARCHICAL VISUALIZATIONS WITH THE MINIMUM DESCRIPTION LENGTH PRINCIPLE� 639

t∞ t3 t4 MDL

0

20

40

0

20

40

average
outlier

0 1 2 3 45+ 0 1 2 3 45+ 0 1 2 3 45+ 0 1 2 3 45+
of drill down

co
un

t

Abstraction

t∞

t3

t4

MDL

Fig. 6. Number of drill-down interactions needed to complete a single
trial of the study, grouped by abstraction technique and target value.

and slightly larger for the MDL approach, although the differences in
estimates are not dramatic. Interestingly, depth does not seem to sig-
nificantly affect the response variable. This may be due to our not
accounting for the time for new views to load when drilling down. A
decrease in dataset size improves completion times only for t∞, and in
the smallest dataset condition (soccer), both t3 and t4 perform worse
than t∞. This is probably due to participants having to drill-down with
t3 and t4, while the target is already visible with MDL and t∞. This
explains why the effect sizes are larger for soccer than for arts.

Figure 6 gives the distribution of the number of drill-down interac-
tions needed to complete one trial, grouped by abstraction technique
and target value. In the average target value condition, the distribu-
tion of values for MDL is skewed to the right compared to all other
approaches; that is, it required fewer drill downs. In the outlier condi-
tion, MDL was better than t3 and t4, and similar to t∞.

5.1.4 Discussion
The results confirm that lack of abstraction in views of large hierar-
chies is detrimental to user performance, at least in visual search tasks.
In that respect, even highly abstract approaches, such as t3 and t4, are
better than unabstracted views. However, as we are not accounting
for the latency between drill downs, it is possible that in high latency
environments the benefits of abstraction are cancelled by the effect of
latency when locating targets requires drill down. In such a case, Fig-
ure 6 suggests that MDL would require fewer drill-downs than t3 and
t4. The fact that a reduction in dataset size was detrimental to user
performance in all abstraction conditions suggests that abstraction for
small datasets is overkill; nevertheless, compared to t3 and t4, MDL
had the smallest increase in response time upon dataset reduction.

We expected outlier target to be easier to spot, as their size is ten
times larger than the average. The fact that MDL benefits the most of
the outlier condition is likely a result of the MDL tendency to expose
nodes with large model residuals.

Overall, the average response time of MDL was very similar to that
of depth threshold approaches, even though the average clutter in MDL
views tends to be higher. In the next section, we investigate the behav-
ior of MDL views using an analytical measure of clutter.

5.2 Feature Congestion Measure
To complement the analysis of the previous section, we compared the
same abstraction techniques with the feature congestion measure of
clutter [25], which is based on the notion that clutter in a display is
associated with degrading performance in visual search. It essentially
measures the difficulty of adding a new, salient item to a display. The
measure computes the local variability of color and contrast luminance
at multiple scales, then combines the values over space and scale to
generate a scalar.

We generated treemap views of the DMOZ’s subtree “Top/World”,
the same used throughout this paper, in resolutions ranging from
100x100px to 2400x2400px, with the four abstraction approaches

4

6

8

10

12

0 500 1000 1500 2000 2500
width

log
(c
ou
nt
)

0.09

0.12

0.15

0.18

0.21

0 500 1000 1500 2000 2500
width

clu
tte
r

abstraction t∞ t3 t4 MDL

Fig. 7. Left: Level of clutter computed with the Feature Congestion
measure as a function of display size. Right: Node count as a function
of display size. In both charts, dataset is DMOZ, and aspect ratio is 1:1.

tested in our user study: t∞, t3, t4, and MDL. We then calculated
the featured congestion measure using only contrast luminance, as our
treemaps do not vary color. In addition, the views were generated
without labels, in order to focus on clutter caused by tree structure.
Padding is kept, as it is usually necessary for understanding structure
in treemaps featuring deep levels.

The results of the experiment are shown in Figure 7, left. The clut-
ter of t∞ views remains constant and high across the whole range of
resolutions. t3 and t4 decrease exponentially as the resolution grows.
Just like t∞, the clutter in MDL views remains constant, but is lower
than t∞. Note that for small displays, MDL ends up “falling back”
to t3 and t4. As space becomes available, the distance between MDL
and the depth thresholded views becomes higher, with MDL filling the
space with more data.

While clutter is often considered to be unwanted, it is positively
correlated with information density, and our approach attempts to find
a balance. So, while the clutter of t3 and t4 drops dramatically at large
screen sizes, so does the information density. Clutter can be compared
with the number of nodes visible in the visualizations as seen in Figure
7, right. MDL, t3, and t4 consistently reveal far fewer nodes than t∞.
The number of nodes revealed by MDL increases with screen size,
while maintaining a roughly constant level of clutter. We argue that
while MDL reveals a smaller number of nodes at screen width 1024px,
compared to t3, and the clutter is higher, this is due to the better (more
uniform) distribution of nodes across the space, as seen in Figure 8.

Woodruff et al. [31] argue in favor of constant information density
(e.g., constant number of objects per area) across x, y and z dimen-
sions of a multiscale visualization. They achieve that automatically
by modifying the visual representation of data points and by adjusting
the level of abstraction unevenly. Figure 8 (middle) demonstrates that
MDL can also approximate constant information density across x and
y dimensions. In addition, the results of the feature congestion exper-
iment suggest that MDL approximates constant information density
across display resolutions. Across the z dimension (drill-down) we
saw variations in the information density caused by the expansion of
nodes that have many children (fan out effect [4]). Unlike VIDA [31]
and GrouseFlocks [4], which create new aggregates to minimize fan
out, our method preserves the original hierarchy structure. As a result,
if there are strong variations in how wide the first levels of subtrees
are, the information density can vary.

5.3 Scalability Analysis
Our algorithm is a customization and application of the approach of Li
and Abe, with the additional optimization step of including a factor of
display size. They find that determining the MDL tree cut terminates
in time O(NxS), where N denotes the number of leaf nodes in the input
tree T and S denotes the input sample size. Our algorithm increases
this procedure by the transformation from the data domain to the pixel
domain, and the estimation of the probabilities of leaves, both of which
are O(NxS). As S is generally much larger than N, our algorithm
scales roughly linearly with the size of the dataset.

Any overhead encountered by generating a display-optimized tree
cut could be shifted to a server-side pre-calculation, for example, to

Fig. 8. Treemap views of the DMOZ dataset for a 1024x768px display. On the left, the full view of the dataset. In the middle, the level of detail is
based on the best MDL tree cut (uneven). On the right, an even cut is performed below level 4 of the tree. The MDL tree cuts yield a better balance
of information density and clutter.

Fig. 9. Subtle visual cues for collapsed nodes using texture (treemap)
and border thickness (sunburst).

pre-cache the tree cut for a variety of standard screen sizes, thereby
eliminating any delay incurred by the tree cut operation. The resulting
trees generally better balance information density with the number of
nodes, and will render faster and consume fewer client resources than
an equivalent full tree, and show a more uniform information density
than a fixed-level tree cut.

6 DISCUSSION

Generality: With the formulae for treemap and sunburst visualiza-
tions, we exemplified how model selection criteria can be written for
visualizations under the MDL framework. We believe that MDL can
be applied to many other kinds of hierarchical visualizations where
(a) some visual aspect of the nodes is weighted by a score, and (b)
the scores are cumulative. This might include visualizations that
are not traditionally hierarchical but were augmented with multiscale
functionality, such as aggregated scatterplots, parallel coordinates and
node-link diagrams [11]. Defining criteria for new classes of visual-
ization involves the specification of three main expressions:

1. The transformation from the data domain to the visualization do-
main (pixel units) (A(C)).

2. Number of bits necessary to encode the visualization (L(V)).

3. How probabilities of tree leaves are estimated from the visual
representation of classes (P(l)).

Uniform distribution assumption: Behind the estimation of the
probability of leaves given a class is the assumption of uniform prob-
ability. If this assumption is not reasonable in a certain application
domain, P(l) can be easily changed to reflect a different probability
distribution. A case where this might be useful is when depicting ge-
ographic information, where the user might have a prior assumption
about the distribution; for example, given a certain value for the State
of New York (e.g., gross product), one might expect that value to be
concentrated in New York City. In many other cases, lacking prior
knowledge, we expect the uniform distribution to be fairly reasonable.

An important limitation is that if the data is uniformly distributed,
the tree cut generated will be the most abstract possible (i.e. the root).
This occurs, for example, if the value of every leaf is 1. Likewise, if
a different distribution is used and the data conforms exactly, the tree
cut will be overgeneralized.

Interpretation: It is especially important in models such as ours,
where abstraction is calculated algorithmically, that the presence of
data abstraction is made apparent, in ways that are not distracting to
the main task of working with a visualization. While our technique
and evaluation focus on the level of abstraction, we have begun an in-
vestigation into the representation problem. Figure 9 suggests prelim-
inary visual designs which subtly distinguish aggregates from regular
leaves. On treemaps, aggregates are textured; on sunbursts, collapsed
nodes are decorated with a colored, thicker border.

7 CONCLUSION

In this paper we have presented a technique for using the MDL Prin-
ciple, extended with considerations of display space, in order to create
optimized views of hierarchical datasets which fit the “analyze first,
show the important” first step of the visual analytics pipeline. In ad-
dition to providing overviews customized to dataset and display size
characteristics, the display-optimized tree cuts can be interactively ex-
panded by changing the weighting parameters.

The number of nodes displayed in a display-optimized MDL tree
cut is similar to those in an even tree cut at a set depth, but fewer than
showing a full tree. This increases the rendering efficiency, resulting
in a performance gain in web-based visualization applications, where
processing resources, memory, and display space may be constrained
(e.g. on mobile devices). In addition, on small screens and any touch
device where rendered elements are small, interaction accuracy can
be difficult due to the “fat fingers” problem. Our technique applies
abstraction in cluttered areas of a visualization, which will likely im-
prove target selection accuracy.

We have demonstrated our technique applied to two datasets across
two different hierarchical visualization types, treemap and sunburst
diagrams, and outlined the steps required to generalize the approach
to other visualization types. Display-optimized MDL tree cuts may
prove especially useful due to their general nature — they are not cus-
tomized to dataset characteristics. However, it is also possible to tailor
them to the dataset, for example, by basing the tree cut on a selected
data attribute, as long as that attribute is quantitative on the leaves and
cumulative in the hierarchy.

In the future, we plan to apply the display-optimized MDL tree
cut to new visualization types. In addition, we see promise in the
challenge of developing new methods for representing abstraction. Fi-
nally, while we demonstrate the possibilities of interactive drill down
to deeper levels of the tree cut using a fixed step size, we plan to inves-
tigate ways to automatically tailor the drill down step based on dataset
characteristics, display space, and to harmonize tree cut drill down
with more traditional techniques to click and open branches manually.

640  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 23,  NO. 1,  JANUARY 2017

REFERENCES

[1] J. Abello, F. Van Ham, and N. Krishnan. ASK-GraphView: A
large scale graph visualization system. IEEE Trans. on Visual-
ization and Computer Graphics, 12(5):669–676, 2006.

[2] N. Andrienko and G. Andrienko. Spatial generalisation and ag-
gregation of massive movement data. IEEE Trans. on Visualiza-
tion and, 17(2):205–19, 2010.

[3] D. Archambault and D. Greene. ThemeCrowds: Multiresolution
summaries of twitter usage. International Workshop on Search
and Mining User-generated Contents, pages 77–84, 2011.

[4] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks:
Steerable exploration of graph hierarchy space. IEEE Trans. on
Visualization and Computer Graphics, 14(4):900–913, 2008.

[5] S. Baldassi, N. Megna, and D. C. Burr. Visual Clutter Causes
High-Magnitude Errors. PLoS Biology, 4(3):e56, 2006.

[6] A. Brew, D. Greene, D. Archambault, and P. Cunningham. De-
riving insights from national happiness indices. Proceedings -
IEEE International Conference on Data Mining, ICDM, pages
53–60, 2011.

[7] M. Chuah. Dynamic aggregation with circular visual designs.
In Proceedings IEEE Symposium on Information Visualization,
pages 1–9, 1998.

[8] C. Collins, S. Carpendale, and G. Penn. DocuBurst: Visualizing
document content using language structure. Computer Graphics
Forum, 28(3):1039–1046, jun 2009.

[9] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang. Measuring
data abstraction quality in multiresolution visualizations. IEEE
Trans. on Visualization and Computer Graphics, 12(5):709–716,
2006.

[10] G. Ellis and A. Dix. A taxonomy of clutter reduction for informa-
tion visualisation. IEEE Trans. on Visualization and Computer
Graphics, 13(6):1216–1223, 2007.

[11] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for infor-
mation visualization: overview, techniques, and design guide-
lines. IEEE Trans. on Visualization and Computer Graphics,
16(3):439–54, 2010.

[12] S. Haroz and D. Whitney. How Capacity Limits of Attention In-
fluence Information Visualization Effectiveness. IEEE Trans. on
Visualization and Computer Graphics, 18(12):2402–2410, dec
2012.

[13] D. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Chal-
lenges in Visual Data Analysis. In Proc. of the Int. Conv. on
Information Visualisation, pages 9–16. IEEE, 2006.

[14] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Summarizing
and Understanding Large Graphs. Statistical Analysis and Data
Mining, 8(3):183–202, 2015.

[15] R. Lamarche-perrin, Y. Demazeau, and J.-m. Vincent. Building
Optimal Macroscopic Representations of Complex Multi-agent
Systems. In N.-T. Nguyen, R. Kowalczyk, J. Corchado, and
J. Bajo, editors, Trans. on Computational Collective Intelligence
XV, volume 8670, pages 1–27. Springer Berlin Heidelberg, 2014.

[16] R. Lamarche-perrin, L. M. Shnorr, J.-m. Vincent, and Y. De-
mazeau. Evaluating Trace Aggregation Through Entropy Mea-
sures for Optimal Performance Visualization of Large Dis-
tributed Systems. Technical report, INRIA, 2012.

[17] T. C. M. Lee. A Minimum Description Length Based Image
Segmentation Procedure , and Its Comparison with a Cross-
Validation-Based Segmentation Procedure. Journal of the Amer-
ican Statistical Association, 95(1995):259–270, 1999.

[18] T. C. M. Lee. An Introduction to Coding Theory and the Two-
Part Minimum Description Length Principle. International Sta-
tistical Review, 69(2):169–183, 2001.

[19] H. Li and N. Abe. Generalizing Case Frames Using a Thesaurus
and the MDL Principle. Computational linguistics, 24(2):217–
244, 1998.

[20] G. a. Miller. The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psychological
review, 101(2):343–352, 1956.

[21] T. Munzner. Visualization Analysis & Design. CRC Press, 2014.

[22] J. R. Quinlan and R. Rivest. Inferring Decision Trees Using the
Minimum Description Length Principle. Information and Com-
putation, 80(1989):227–248, 1989.

[23] J. Rissanen. A universal prior for integers and estimation by
minimum description length. Annals of Statistics, 11(2):416–
431, 1983.

[24] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1989.

[25] R. Rosenholtz, Y. Li, Z. Jin, and J. Mansfield. Feature conges-
tion: A measure of visual clutter. Journal of Vision, 6(6):827–
827, 2010.

[26] R. Rosenholtz, Y. Li, and L. Nakano. Measuring visual clutter.
Journal of vision, 7(2):17.1–22, 2007.

[27] B. Shneiderman. The eyes have it: a task by data type taxonomy
for information visualizations. In Proc. 1996 IEEE Symposium
on Visual Languages, pages 336–343. IEEE Comput. Soc. Press,
1996.

[28] F. Töpfer and W. Pillewizer. The Principles of Selection. The
Cartographic Journal, 3(1):10–16, 1966.

[29] A. Wagner. Enriching a lexical semantic net with selectional
preferences by means of statistical corpus analysis. In Pro-
ceedings of the European Conference on Artificial Intelligence
- ECAI, 2000.

[30] J. M. Wolfe. Visual Search. Attention, pages 1–41, 1998.

[31] A. Woodruff, J. Landay, and M. Stonebraker. Constant density
visualizations of non-uniform distributions of data. In Proceed-
ings of the 11th annual ACM symposium on User interface soft-
ware and technology - UIST ’98, pages 19–28, 1998.

[32] Y. Wu, X. Liu, S. Liu, and K. L. Ma. ViSizer: A visualization
resizing framework. IEEE Trans. on Visualization and Computer
Graphics, 19(2):278–290, 2013.

[33] B. Yost and C. North. The perceptual scalability of visualiza-
tion. IEEE Trans. on Visualization and Computer Graphics,
12(5):837–844, 2006.

