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Abstract

The advent of large password leaks in recent years has exposed the

security problems of passwords and enabled deeper empirical investi-

gation of password patterns. Researchers have only touched the sur-

face of patterns in password creation, having characterized patterns in

terms of frequency, length, composition rules and, to some extent, syn-

tactic patterns. The semantics of passwords remain largely unexplored.

In this thesis, we aim to fill this gap by employing Natural Language

Processing techniques to extract and leverage understanding of seman-

tic patterns in passwords. We present the first framework for segmenta-

tion, semantic classification and semantic generalization of passwords

and a model that captures the semantic essence of password samples.

The results of our investigation demonstrate that the knowledge cap-

tured by our model can be used to crack more passwords than the state-

of-the-art approach. In experiments limited to 600 million guesses, our

approach can guess seven times more passwords from the LinkedIn

leak and 10% more passwords from the MySpace leak. Furthermore,

we explore the implications of using date patterns in guessing attacks

and investigate the lexical differences between standard English and

the language used in passwords.
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Chapter 1

Introduction

The exact date the password was invented is unknown. Since remote times it has

been used by people as a method of authentication, not rarely in military contexts,

such as by the Roman military [Paton et al., 2012] and in the Invasion of Normandy

by the U.S. 101st Airborne Division during World War II [Bando, 2007]. In com-

puting, it was introduced in the early 1960’s, and has become both omnipresent,

fostered by the advent of Internet, and the target of much controversy, due to its

inherent security and usability problems. Nevertheless, passwords are not likely to

be replaced in the near future, as alternative, more sophisticated forms of authen-

tication are still immature or economically infeasible, including the ones based on

“what you have” (e.g., tokens, cards, etc.) and on “who you are” (biometrics).

Moreover, passwords offer advantages not always matched by other schemes, in-

cluding usability and easy recovery from loss [Bonneau et al., 2012].
Even after half a century of use in computing, we still do not have a deep under-

standing of how passwords are created. As a consequence, there is no consensus

on the real level of security of passwords or on the adequate metric for password

strength [Bonneau, 2012]. The fact that during the past few years many security

breaches in major websites (e.g., Yahoo, Sony, LinkedIn, etc.) led to the disclosure

of passwords of millions of users, and the passwords that were hashed were quickly

cracked, has driven researchers to try to fill this lack of understanding. These lists

provide the largest samples of real-world passwords to date, offering an enormous

opportunity for empirically grounded research.

It is been increasingly acknowledged that the key to solving the security prob-
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1. Introduction

lems of passwords lies on a better structural understanding of passwords [Jakob-

sson and Dhiman, 2013], i.e., the underlying patterns of password creation, but

the community’s knowledge is still restricted to superficial patterns. The literature

features a wealth of investigations of distribution of characters [Cas; Narayanan

and Shmatikov, 2005] and types of mangling rules present in passwords [Chou

et al., 2013; Weir et al., 2009]. Metrics of password strength consider mainly

length, presence of non-alphabetic characters and character casing [Shay et al.,

2010]; however, deeper patterns, in particular the ones concerning the meaning of

passwords, remain largely unexplored.

The statistics published by the popular media on the aforementioned leaks are

interesting from the semantic point of view. Groups of semantically related words,

such as God, Jesus, angel and devil, or career, job, master and work, all appear

among the 30 most frequent passwords in the list leaked from LinkedIn, a career-

oriented social network [Murphy, 2012]. This thesis aims to address the following

questions: Are there systematic preferences in the choice of concepts? If so, what

are their impact on security? For example, can an attacker save time by targeting

a specific semantic category, or targeting a specific sequence of them? It might

be also relevant to understand the relationships between semantic categories, e.g.,

given a password starting with the words “I love”, is it more likely to be followed

by a male or female name? Another interesting object of study would be the oc-

currence of semantic patterns across populations of different language.

Historically, the semantics of passwords have been investigated through re-

search instruments of social sciences, such as surveys, with small groups of par-

ticipants [Brown et al., 2004; Riddle et al., 1989]. Although presenting some in-

teresting findings, those studies lack ecological validity, as passwords are collected

in controlled experiments, and direct applicability against security problems, as the

evaluation is qualitative.

In this dissertation we explore the large list of passwords (over 32 million)

stolen and made publicly available in 2009 from the RockYou website. Our first

contribution is a in-depth investigation of the date patterns in the list examined.

Second, we demonstrate how Natural Language Processing (NLP) algorithms can

be used to segment, classify and generalize semantic patterns from passwords.

Our third contribution is a model that captures structural, syntactic and seman-
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1. Introduction

tic patterns of a list of passwords. We build upon previous work on Probabilistic

Context-Free Grammars to train a grammar composed of part-of-speech (POS) and

semantic nonterminal symbols. Finally, the fourth contribution consists in testing

the security impact of semantic patterns. We use our grammar to generate guesses

in off-line attack scenarios against other leaked password lists (LinkedIn and MyS-

pace). The results show that our model can guess seven times more LinkedIn

passwords in the first 600 million guesses and 30% more MySpace passwords than

the state-of-the-art approach, proposed by Weir et al. [2009]. The high success

rate cracking passwords from sources different than the training data indicate the

generality of our approach.

The thesis is structured as following: in Chapter 2 we summarize the literature

on password patterns; in Chapter 3 we present an investigation of the date patterns

in RockYou; in Chapter 4, we present an approach for segmenting passwords, clas-

sifying password segments by POS and semantic category and abstracting semantic

categories; in Chapter 5 we build a Probabilistic Context-Free Grammar based on

semantic and syntactic tags and present experimental results; finally, in Chapter 6,

we review our contribution and discuss limitations and future work.
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Chapter 2

Related Work

Research in the field of psychology has employed qualitative research instruments

to investigate the semantics of passwords. Brown et al. [2004] found through

surveys that the most frequent entity in passwords authored by college students

is the self, followed by family, lovers and friends; also, names were found to be

the most common information used, followed by dates. Similarly, Riddle et al.

[1989] found that birth dates, personal names, nicknames and celebrity names are

common. We believe that eliciting the meaning of passwords from users is a limited

method. It is unlikely that people disclose the true theme of their passwords if it is

embarrassing for them; for example, we have found that many passwords contain

sexual references. Moreover, although interesting from the human point of view,

the outcomes of these studies are not strong enough to inform security guidelines.

Researchers have recently began breaking passwords into components and char-

acterizing their structural patterns to develop more empirically grounded strength

metrics. In general, the recent literature about passwords has focused on demon-

strating that the traditional metrics of password strength, such as entropy, do not

provide accurate measures in face of real-world attacks. Several works have pro-

posed methods that expose the vulnerability of the current password creation poli-

cies due to high-level patterns, including lexical (i.e., word preferences), struc-

tural (i.e., preferences in composition rules) and, to some extent, syntactic patterns

(e.g., noun-verb sequences).

Weir et al. [2009] proposed a method to learn structural patterns from a pass-

word list using probabilistic context-free grammars (PCFGs) and an algorithm to

4



generate guesses in highest probability order, which was able to crack 28% to

129% more passwords than John the Ripper, a popular password cracker, in sce-

narios with fixed number of guesses. Their cracking strategy has been considered

the state-of-the-art technique. The main limitation of their approach is not being

able to assign realistic probabilities to alphabetic words, nor capturing their rela-

tionships. Nevertheless, the PCFG framework is of general applicability to learning

password patterns, and has been applied in contexts beyond structural patterns

[Chou et al., 2013; Rao et al., 2013]. In a follow-up paper, by performing standard

password cracking attacks against real passwords, the authors devised an empirical

assessment of the security provided by different creation policies and evidenced the

inadequacy of the notion of entropy as a model of password strength [Weir et al.,

2010].
Similarly, Jakobsson and Dhiman [2013] propose a parser and a model for scor-

ing password strength. The algorithm takes a list of decomposed passwords from

the parser and learns the component frequencies (including alphabetic strings, as

opposed to the algorithm of Weir et al. [2009]), which are used to estimate the

probability and, thus, score the strength of a password. Their approach, however,

is still limited in capturing structural patterns, e.g., it makes no distinction between

password1 and 1password. Also, it does not account for complex relationships be-

tween classes; for example, is the sequence "Ilove" most likely to be followed by a

male or female name, a determiner or a noun?

A few publications have gone a step further, assuming that password creation

might be influenced by syntactic rules, and attempting to characterize syntactic pat-

terns. Ur et al. [2013] present a small study comparing the RockYou and Yahoo!

leaks with several small password lists obtained from participants in controlled ex-

periments exploring varied creation policies. They performed segmentation and

POS tagging of passwords and compared the distribution of POS tags between the

password and natural language, concluding that passwords are more likely than

English to contain nouns and adjectives, but less likely to contain verbs and ad-

verbs. The authors also computed statistics on the presence of bigrams from the

Google Web Corpus for each list, showing that knowing one piece of a password

improves the probability of guessing the whole password. Finally, using a measure

of corpus lexical similarity, the authors suggest that RockYou and Yahoo! are rel-
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atively similar. This relates to the finding of [Bonneau, 2012] suggesting that the

strength of Yahoo! passwords is similar to the RockYou passwords.

More substantially, Rao et al. [2013] study the effect of grammar on vulnera-

bility of long passwords and passphrases. Through a series of experiments, they

investigate the reduction in search space resulting from following English grammar,

concluding that guessing effort is not a direct function of password length, but also

the syntactic structure (how many words are used and what are their POS). Some

POS tags are more vulnerable than others since they can generate a smaller num-

ber of guesses (e.g., the search space of nouns are much larger than of pronouns).

While not discussed in their paper, it is clear that the presence of semantic patterns

could reduce even further the search space of passwords. The findings of Bon-

neau and Shutova [2012] suggest that the choice of people’s passphrases is highly

influenced by their probabilities in natural language, which has a very skewed dis-

tribution, favouring guessing attacks. In particular, they found that users strongly

prefer simple noun bigrams that are common in natural language.

The above studies, however, are limited in that they assume the vulnerabili-

ties are mainly consequence of users choosing patterns common in natural lan-

guage, represented in reference corpora, such as the British National Corpus and

the Google Web Corpus. In this thesis, we present a model which, independent of

passwords following natural language patterns, is capable of capturing their se-

mantic and syntactic essence and pose a threat against unforeseen targets. In this

way, we show that even if passwords do not follow the same patterns of natural

language, if one is able to learn the patterns, they can be compromised.

In summary, the aforementioned studies inform extensively how mangling (com-

position) rules are used and their impact on security; in addition, a few studies

have suggested that syntactic patterns might reduce the security of passphrases,

instead of common passwords, which are used in the majority of the systems. Even

though it seems obvious that uniformities in choice of semantic categories and de-

pendencies between them can significantly reduce the security of passwords, no

previous work has investigated the semantic aspect to date.
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Chapter 3

The Role of Dates

Recent findings indicate that numbers appear to be commonly used in passwords

across language groups, nations, and other population groups [Bonneau, 2012].
For a cracker, a guessing attack based on number patterns is a straightforward way

to crack a significant number of passwords, as it would not require dictionaries

tailored to the target. In semantic terms, date is the most prominent concept en-

coded in numerical sequences. As we shall see in this chapter, patterns related to

the choice of dates represent a significant vulnerability.

3.1 Processing

Passwords come in a wide variety of forms. Since our main goal is to characterize

the occurrence of dates, we need to determine what will be considered as such. The

everyday use of dates is supported by some important conventions and symbols

meant to avoid ambiguity when a compact format is convenient. For example,

separators (e.g., ‘/’, ‘-’, ‘.’) are normally used to delimit the elements of a date (year,

month, and day); however, perhaps due to historical constraints in some password

systems, password creation rules, and factors such as usability, memorability, and

even portability—it is easier to re-use them as PINs—, people tend to avoid special

characters in passwords.

Not less important, the order of the elements also helps to resolve ambiguity.

Notably, the way people use ordering varies deeply across countries, and is source
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3. The Role of Dates

of confusion even within a single country, as is the case of Canada, where both

DD/MM and MM/DD formats are used. Since we do not know the country where

a password was issued, deciding between formats is challenging. Furthermore,

the presence of leading zeros is also a source of variation and ambiguity. Even

considering the separators, the date 01/02/99 can be parsed as February 1, 1999

or January 2, 1999. If we remove the separators and the leading zero (10299), the

date February 10, 1999 is also introduced as a possibility.

(1) Extract numbers (2) Blacklist (3) Matching (4) Counting

Figure 3.1: Parsing

With the aforementioned considerations, Figure 3.1 illustrates the steps of pars-

ing, which are applied to all passwords that contain a sequence of 5 to 8 digits.

Passwords containing sequences of less than 5 digits are discarded, even though a

date can be represented by 4 digits; we do this because we are only seeking dates

which are fully specified with day, month, and year. The first step is extract the

numerical sequence from the password. After that, the most common numerical

sequences are 12345, 111111, 123123, 121212 and 112233, which, intuitively,

seem not to represent dates, but “pure” numerical/keyboard patterns (see Table

3.1). In (2), we remove all sequences that match any of the numerical patterns

and some other highly frequent sequences not captured by the patterns.

Pattern Examples

Repeated digits 123123, 112233, 111222
Progression 12345, 02468, 654321
Palindrome 45754, 33633, 045540

Table 3.1: List of numerical patterns

In the next step (3), the sequences are tested against a comprehensive list of

date formats (Table 3.2). This list captures a broad range of formats of 5–8 digits

8



3. The Role of Dates

without special characters, including variations in use of leading zero. A valid date

should match at least one of them and lie between the year range [1900, 2012].

8 digits 7 digits 6 digits 5 digits

ddmmyyyy ddmyyyy ddmmyy ddmyy
mmddyyyy mddyyyy mmddyy mddyy
yyyymmdd dmmyyyy dmyyyy dmmyy
yyyyddmm mdyyyy mdyyyy mmdyy

yyyyddm yyyymd
yyyymdd
yyyymmd

Table 3.2: List of date formats.

A single password can match several formats, that might translate into different

or repeated dates (e.g., 030475 → mmddyy and mmddyy → April 3 and March 4,

1975). We considered different approaches for dealing with this ambiguity when

building the frequency distribution of dates (4). Counting all derived dates as

independent events was discarded because it would overrate ambiguous dates.

Counting just the first match based on a priority list of formats turned out to be

impractical since we don’t have solid basis on which to prioritize them. Hence,

the most reasonable strategy is to divide the count of a single event between all

matched dates. In the aforementioned case, for instance, both dates would receive

an increase of 0.5 in their frequency value.

3.1.1 Testing the Dates Assumption

We performed an experiment to rule out that the matched date sequences in the

observed data (RockYou list) could be observed by chance.

The experiment was divided in four parts, each corresponding to one of the

sequence lengths considered. For each length, we randomly generated a list con-

taining as many numerical sequences as found in the RockYou dataset. We then run

the parsing algorithm over both samples, counting the event of a success (when a

sequence is matched by at least one format). Finally, a Pearson’s Chi-squared Test is

performed to compare the results. The proportion of sequences that contain dates

found in the random list corresponds to our expected value. The results show that

9



3. The Role of Dates

Subset Description # of % of RY
Passwords Passwords

(1) Passwords containing sequences of at least 4 digits 8,056,329 24.72
(2) Passwords from (1) that match a numerical pattern 1,346,410 4.13
(3) Passwords containing 5–8 consecutive digits 4,974,602 15.26
(4) Passwords from (3) that match a date 1,934,821 5.93
(5) Passwords consisting of 5–8 consecutive digits 3,951,852 12.13
(6) Passwords from (5) that match a date 1,469,662 4.51
(7) Passwords from (6) that match a numerical pattern 114,724 0.35
(8) Passwords that contain a date and at least one al-
phabetic character

358,562 1.10

Table 3.3: Table of statistics of how numbers and dates appear in the RockYou (RY)
list [SkullSecurity.org].

for all considered lengths, the number of dates found in the RockYou dataset is sig-

nificantly higher than in the random dataset (p < 2.2×10−16). While this test does

not prove that numeric passwords which match date patterns are intended to be

dates, it does present intriguing evidence that the passwords may indeed represent

dates.

3.1.2 Basic Statistics

Of the 32 million passwords present in the RockYou list, approximately 25% con-

tains a sequence of 4 or more digits. Of these sequences of at least 4 digits, ap-

proximately 62% contain 5 to 8 digits (which can represent a full date consisting

of a month, day, and year).

Table 3.3 summarizes some interesting statistics on this password list. When

we match the sequences of 5–8 digits against our date patterns, we notice that

they can explain 38% of such sequences. Dates appear to be more popular in

sequences that are completely composed of digits: of the sequences that contain

a date pattern, 75% are entirely numerical digits. Of all passwords that are solely

composed of digits, 37% match date patterns (or 34% when we remove the ones

that may be due to a numerical pattern).

10
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3. The Role of Dates

3.2 Visualization

To approach the problem of verifying whether dates really do play a significant

role in passwords, and if so, discovering whether there are patterns of dates, or

specific dates which stand out, we designed an interactive visualization to explore

the dataset. We took a multiple coordinated views approach in order to provide

several ways to look at the data (see Figure 3.2). The main goals which guided our

design are:

Guide the investigation Drawing sound security recommendations from patterns

observed in a dataset eventually requires rigorous statistical treatment; how-

ever, data manipulation at a low level is cumbersome and does not favour

the exploration of data space necessary in the early stages of an investigation.

The role of the visualization in this context is to support quick generation and

early testing of hypotheses. It should enable insight on possible patterns and

provide quantitative information to help deciding whether or not a statistical

experiment is worthy. Thus, the formal procedures are left for validation in

the final phase of the investigation.

Facilitate exploration of diverse scenarios The tool should enable one to easily

delimit scenarios for investigation of localized patterns. This involves the

ability to narrow the scope based on time dimension (e.g., decades, years,

days. . . ) and password structure (e.g., presence of a numerical pattern or

letters).

Easily accessible We took a rapid-prototyping approach, refining the visualization

to respond to the questions raised by every new hypothesis drawn, reflecting

our increasing understanding of the data. As a consequence we needed a

medium that provides easy and fast deployment of new versions and high

accessibility to a distributed team.

3.2.1 Representation and Interaction Design

The layout with coordinated views displays the frequency of passwords at multiple

aggregation levels (decades, years, months, and days). To provide the analyst

12



3. The Role of Dates

with confidence in our parsing algorithm, and to make use of the human ability to

see patterns, we also provide a view of the raw passwords. There are three main

components of the view. The Radial Plot shows the distribution of dates parsed

from passwords along years and decades, the Tile Map depicts the distribution

of passwords across days and months, while the raw passwords are shown in a

Wordle view. Performing filtering in a high-level view, such as the Radial Plot,

narrows the context of the lower level ones, in a top-down fashion; conversely,

removing elements from the low level views triggers updates in the high level

ones. Despite the huge amount of data, we strive for fluidity to support perception

of changes resulting from transition between states. The next subsections describe

each component.

3.2.1.1 Radial plot

This view represents years through circles positioned in a radial layout (see Figure

3.2, bottom left). All years of a certain decade are evenly distributed along a ring,

in clockwise order. The rings, representing decades, are organized in ascending

order from center to periphery. Each spoke represents years ending in a particular

digit. The frequency of passwords in a given year is encoded by color, according to

a quantile scale that maps the frequency values to the range [0,9], corresponding

to the colors of a sequential multi-hue pallette published by Brewer. This scale is

meant to reduce the negative visual effect produced by outliers, which occurs with

a linear color scale.

The radial view enables observation of cyclical patterns, while also giving us a

sense of the linear growth of frequency over the decades; furthermore, it enables

rich interaction through selection of rings, circles and labels. The most common

cyclical representation is, however, the spiral [Carlis and Konstan, 1998; Tominski,

1999]. We choose instead the ring-based configuration because it allows selection

of rings (aggregation by decade), which is an important task in this context.

The default state corresponds to the overview, where the whole dataset is

shown in all views, and can be reached by clicking on a blank space in the Radial

Plot. Selecting a year by clicking it updates the Tile Map to show the correspond-

ing frequency distribution across days of that year, and the Wordle is filled with

13



3. The Role of Dates

the corresponding passwords. In the same way, it is possible to aggregate the years

by decade by selecting a ring. Cross-decade aggregation is supported by clicking

on an external label at the end of a spoke, e.g., clicking ‘2’ would select the years

1902, 1912, 1922 and so forth.

3.2.1.2 Tile Map

The Tile Map (see Figure 3.2, top) uses a calendar layout to display the frequencies

computed for each day in a particular year [Mintz and Wayland, 1997]. The color

encoding is consistent with the Radial Plot; that is, frequent regions are evidenced

by dark tiles. A click on a tile triggers an update in the Wordle, which will show

the raw passwords associated with the selected day. We extend the original use of

Tile Maps by plotting aggregated values from multiple years, much like as though

several maps were stacked. When used in this way, the calendar nature of the vi-

sualization loses its meaning, so we discard the labels informing the days of week

(Monday, Tuesday, etc.). Although simultaneous display of multiple Tile Maps in

a vertical list eases comparison between years [Wicklin and Allison, 2009], aggre-

gating them in a single unit allows better perception of patterns accumulated over

a period of time.

3.2.1.3 Word cloud

This visualization builds on the idea of a Wordle diagram, a tightly packed version

of a word cloud [Viégas et al., 2009] (Figure 3.2, bottom right). The view is pop-

ulated with raw passwords which match the selected years (Radial Plot) and day,

if any (Tile Map). The passwords are sized according to the number of times they

occur in the underlying dataset. An indicator bar is used to show the proportion of

matched passwords which are purely numerical compared to those which contain

a date-like numeric sequence as well as words and other symbols. This bar is inter-

active and can be used to restrict the view to the corresponding subset by clicking

the corresponding bar.

In order to allow a researcher to remove any passwords which are strong out-

liers, and to see patterns in the remaining data, we provide the ability to select and

remove a password from the Wordle. The filtered word goes to a ’filtered’ panel on

14



3. The Role of Dates

the right side, then the Wordle is recomputed. When the computation is done, an

animation smoothly reorganize the passwords.

Since it can be difficult to keep track of what has changed when a new layout

is calculated (e.g., which passwords got more or less importance after a filter is

adjusted), the duration of the transition is proportional to the frequency of the

password. So, more frequent (bigger) passwords move slower. While we have

not tested this, we feel that this appearance of the larger passwords moving more

slowly helps to give stability to the view during the relayout process.

3.2.2 Implementation

The tool is a web-based application that runs entirely in the browser, is written in

JavaScript, and built on top of a set of web technologies standardized by W3C;

namely, HTML, CSS and SVG. In addition, we use the D3 library [Bostock et al.,

2011] to manipulate data and the page’s elements, to control animation, map data

values to visual attributes and deal with events.

3.3 Semantic Patterns Discovered

When using our date visualization tool, we noticed a number of interesting patterns

in user choice (Figure 3.2). To summarize, there appears to be a preference for the

following:

• Years after 1969. The popularity of a year is indicated by the darkness of the

color in the radial portion of the visualization. See Section 3.3.1 for further

details.

• Text words that spell out the name of a month (e.g., “May12009”); see Sec-

tion 3.3.2.

• Two years immediately after one another (e.g., “20082008” or “19391945”).

• The first two days in each month (e.g., “010989”).

• Repeated months/days (e.g., “August 08”).
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3. The Role of Dates

• Holidays (e.g., Valentine’s day, Christmas day, and New Year’s day); see Sec-

tion 3.3.3.

We use each of these observations to specify patterns, which we use to compile

a dictionary used to analyse security implications (discussed in Section 3.4). We

investigate these patterns further in the following subsections.

3.3.1 Recent Years

The radial plot indicates that recent years, in particular after 1969, are the most

popular. Years in the 1980’s, followed by 1990’s and then the 2000’s appear to

be the most popular. There are still a fair number in the 1970’s and 2010’s, and

the popularity noticeably drops after 1969. We investigated this effect further and

found that 1,160,801 (86% of purely numeric date passwords) represent dates

after 1969. Some possible reasons for this preference are that the dates correspond

with: (1) the birthdays of people using these accounts, (2) the dates of significant

events for the people using these accounts, and (3) the dates that people created

these accounts.

3.3.2 Text Combined with Dates

Using the Wordle portion of the visualization, we examined the most popular text

strings that co-occur with dates. We observed that single-characters and initials ap-

pear the most frequently, and when full words are used, they are often the months

of the year. This motivated us to examine how many passwords match date pat-

terns, where the month is spelled out as opposed to being in a purely numerical

format. We generated a set of formats for such dates, for example, MonthDDYY

(see all formats in table 3.2). In all cases where the day is a single digit, we assume

no leading zero is present. Our results are shown in Table 3.4.

We found these numbers to be quite surprising, given that dates written in this

format are rather specific. Table 3.5 combines this result with the pure number

results that are dates, showing that nearly 5% of users choose a date as their pass-

word, and nearly 4% of users choose a date on or after 1969 as their password. As
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3. The Role of Dates

Years # of % of all
considered passwords passwords

1900-2012 124,460 0.38
1969-2012 117,436 0.36

Table 3.4: Passwords in the RockYou dataset that are in a mixed characters and
digits representation of a date (e.g., “1May1990”).

indicated in Table 3.3, the number should be even higher when considering users

who choose dates as part of their passwords.

Years # of % of all
considered passwords passwords

1900-2012 1479398 4.54
1969-2012 1278237 3.92

Table 3.5: Passwords in the RockYou dataset that match a date pattern (e.g.,
“1May1990” or “01051990”). Note that dates which can also be considered a
numerical pattern (e.g., “112233”) are not included in this result.

3.3.3 Holidays

Through exploring using our visualization, we discovered that some familiar dates

“pop out”, which correlate with holidays such as Valentine’s Day, New Year’s Day,

New Year’s Eve, and Christmas Day (see Figure 3.2). While exploring the decades

individually, we also noticed a number of other noteworthy dates appearing more

frequently than expected, including:

• March 21 (First day of spring; Persian new year)

• December 21, 2012 (date associated with the “2012 phenomenon”)

• August 17, 1945 (Indonesian Independence Day)

• April 14 and 15, 1912 (when the Titanic sank)
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3. The Role of Dates

3.4 Security Implications

Our observations using our visualization tool provide deeper understanding of user

choice relating to the semantic category of dates. It provides information regarding

how an attacker might perform an offline attack against a system in which he or she

has no knowledge of the users, their spoken languages, and the dates they might

choose (e.g., does not know the user’s birthday). Our analysis can also inform

password policies and guidelines.

3.4.1 Date-based Guessing Attacks

Here we focus on purely numeric passwords, showing the results of building a

dictionary based on each of the patterns discussed in Section 3.3. Our results are

provided in Table 3.6. Of particular interest are the bolded values in the last two

rows. In the second last row (“combined”), we see that by creating a dictionary

which combines all of our visualization-observed patterns, we would be able to

guess over 27% of date-based passwords using a dictionary composed of only ap-

proximately 15% of the possible dates. The final row shows that we can guess over

22% of date-based passwords using a dictionary composed of only approximately

7% of the possible dates.

Our findings approximate the extent to which these patterns dominate user

choices of dates. The breakdown of each individual sub-dictionary, and the com-

bined dictionary (with duplicates removed) is provided in Table 3.6.
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3. The Role of Dates

Table 3.6 shows that these patterns correctly capture approximately 27% of

date passwords, which corresponds to approximately 1% of all RockYou passwords.

We emphasize that we have eliminated our identified numerical patterns (e.g.,

“121212”) from these results, and that by combining raw numerical patterns with

this dictionary, even more passwords could be guessed; however our purpose in

the present paper is to quantify the effect of popularly-chosen dates. The results

of the combined dictionary show that we could guess nearly 1% of all RockYou

passwords in approximately 15,000 guesses defined by “popular-looking” dates.

Given that this dictionary uses only purely numerical passwords, it could model

an attack under the following threat model — when an attacker only wishes to ob-

tain access to a single account, account-lockouts are not implemented (or the at-

tack is offline), and the attacker knows nothing about the target user group (e.g.,

language, birth dates, etc.). Of course, numerical patterns appear to be more popu-

lar and would pose more of a threat, but on some systems such obvious passwords

are blacklisted.

3.4.2 Password Policies and Guidelines

We use the presented visualization to gain further understanding of how people

choose dates in passwords. The date subset appears worthy of investigation as it

is apparently a common semantic category within user choice; nearly 5% of all

user passwords in the RockYou dataset can be considered a pure date. A dictio-

nary that would be able to guess all of these pure dates would consist of approx-

imately 508,492 entries, which is feasible to guess in a short amount of time in

an offline attack. This alone creates patterns that are easy for attackers to guess,

implying that it would be prudent to recommend that users do not choose a pure

date as their password, even when it adheres to all other password rules (e.g.,

“May1/2009” would satisfy common password requirements, but likely should be

disallowed).

Our findings also strongly suggest the presence of certain patterns in user

choice of dates. These patterns tell us something about user preferences, which

provide further insight into the password selection process. For example, users

seem to prefer dates that fall on the first day of the month, or are a partial repe-
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3. The Role of Dates

tition. This raises a question of whether users might prefer passwords that can be

characterized by multiple patterns? It also raises the question of whether certain

numbers are more memorable than others? If either is so, this could have implica-

tions for creating better password guidelines to aid users in choosing a more secure

yet memorable password.
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Chapter 4

Parsing and Classification

After having learned the date patterns in the subset of numerical sequences, in this

chapter we begin describing a more general approach for extraction of semantic

patterns in passwords. In this approach, passwords of all forms and lengths are

broken into parts and classified semantically; thus, segmentation is a fundamental

step. Segmentation of passwords is at least as difficult as URL segmentation, be-

cause methods cannot rely on presence of space delimiters between words. This

means that a good method to resolve ambiguities is critical.

4.1 Segmentation

Extensive research has been done to address the problems of segmentation of texts

written in Asian languages, whose writing systems do not feature a white space

delimiter and URL word breaking. Passwords are similar to URLs in that both

are fairly multilingual and can include numbers and special characters (passwords

allow more variation). URLs, however, have much more context information avail-

able, i.e., the documents they point to, including body text, title and other meta-

data. The methods for URL word breaking documented in literature have varying

degrees of similarity with our method. Heuristic-based approaches have proposed

the resolution of ambiguities in URL segmentation by looking at document con-

tents [Chi et al., 1999] or scoring classes of word differently (e.g., stop words

and known lexicon) [Khaitan et al., 2009]. Other heuristics take into considera-
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4. Parsing and Classification

Corpus Size

COCA unigrams 497,186
COCA bigrams 1,020,138
COCA trigrams 1,020,009

Total 2,537,333

Table 4.1: Reference corpora detailed.

tion word length. Lexicon based, monolingual approaches using N-grams are also

popular, as statistical methods are deemed as more robust given the wealth of data

available [Monz and Rijke, 2002]. Other approaches employ Bayesian frameworks.

The first application of word breaking in passwords appeared not until recently,

by Jakobsson and Dhiman [2013], who propose a lexicon-based parser. Like in our

method, their algorithm takes a compilation of general and specialized dictionaries

as input and uses a measure of coverage as primary criterion for selection of candi-

date segmentations. However, it does not make use of context (high order N-gram

frequencies) to disambiguate segmentations with equal coverage.

4.1.1 Dictionaries

Our algorithm takes as input a variety of English corpora. We make a distinc-

tion between source corpora and reference corpora. Source corpora consists of a

collection of raw word lists that constitute the algorithm’s lexicon; it is the base

for building the segmentation candidates. The reference corpora is a collection of

part-of-speech tagged N-grams with frequency of use information, which are used

for selecting the most probable segmentation (Table 4.1). As we later explain, not

all words from the source corpora need to appear in the reference corpora; i.e.,

not all words need to have an associated frequency. This frees us to compile very

comprehensive source corpora. Still, while noise in the source corpora is not a

threat to the quality of the segmentation—our algorithm will always prefer the

most probable candidates—, it impacts on the performance of parsing, since more

candidates will be generated and evaluated; therefore, trimming of the word lists

is convenient.

The main corpus is the Contemporary Corpus of American English, a large,
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4. Parsing and Classification

Word list Original Size Trimmed Size

COCA 365,748 359,226
Female names 51,929 51,929
Male names 29,651 29,651
Cities 22,737 21,780
Surnames 28,873 28,412
Months 60 60
Countries 260 260

Total 499258 491,318

Table 4.2: Source corpora detailed.

general-purpose corpus containing part-of-speech tagged unigrams, bigrams and

trigrams along with the observed frequencies of occurrence in general language

(books, magazines, blogs, speeches, etc.)[Davies, 2008-]. COCA is used as our

reference corpus and a trimmed version is used as part of the source corpora. In

that version, of the words with three characters, the ones with less than 100 oc-

currences were removed; of the words with two characters, we selected the top

37; and the only one-character words kept were a and I. Those subjective thresh-

olds values are the result of observation of the dataset. The goal is to reduce the

number of short, rare words that would slow down the parsing without improving

accuracy.

The general nature of COCA is insufficient to support semantic classification of

named entities at a later step, especially regarding names and locations. For this

purpose, we use a collection of specialized word lists:

Names Derived from a dataset of the U.S. Social Security Administration (SSA)

[SSA]. All names are from Social Security card applications for births that

occurred in the United States after 1879 until February 2012. We further

divided this list by gender.

Cities Derived from the Geonames [GeoNames] list of cities which have at least

15,000 inhabitants or are capitals. In order to reduce noise, we removed

cities whose name contains four characters and population lower than 240,000,

or fewer than four characters.
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4. Parsing and Classification

Surnames As with many popular word lists on the web, the actual source of the

list of surnames is unknown. This list was downloaded from Outpost9 [Out-

post9] and had the words with fewer than four characters removed.

Months Small list manually curated by the author. The months list includes months

written in the following languages: English, Spanish, French, Portuguese and

Italian.

Countries List with names of all countries in English.

4.1.2 Algorithm

As previously mentioned, word boundaries are not explicit in passwords. Indeed,

due to lack of context, it is impossible to determine the exact words, if any, in-

tended by the password’s author. This is worsened by the usual intention to make

passwords more cryptic, realized in the form of a variety of mangling patterns.

Mangling patterns (or rules) are used to generate complex variations of a simple

password, e.g., love, l0v3, 3v0l, etc. According to Jakobsson and Dhiman [2013],
the most common rules are concatenation, replacement, spelling mistake and in-

sertion. Thus any segmentation algorithm tailored to passwords needs to account

for mangling. From a security perspective, it is also important to preserve and later

classify such patterns.

Example 1. crazy2duck93ˆ −→ gaps: {2, 93ˆ}; words: {crazy, duck}

Let’s assume a password is a sequence of word and/or gap segments. A word

segment is any string that can be found in the source corpora, while a gap segment

is any string not present in the source corpora surrounded by word segments or

password boundaries at any side. Given the constitution of our source corpora, a

word segment is always alphabetic, while a gap can include any character (num-

bers, symbols or letters). Example 1 illustrates the segmentation of a password

containing both types of segments.

In the example above there is not much room for ambiguity. In Table 4.3,

instead, we have at least four competing candidate segmentations. If we favour

coverage by word segments, i.e., minimum presence of gaps, we can rule out the
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4. Parsing and Classification

Password Segments Coverage

Anyonebarks98 (A) Anyone barks 98 0.84
(B) Any one barks 98 0.84
(C) Anyone bar ks98 0.69
(D) Any one bar ks98 0.69

Table 4.3: Candidate segmentation for password Anyonebarks98

candidates C and D. The two remaining candidates have equal coverage; thus an-

other criterion is considered as a secondary disambiguation factor: frequency of

use. In the English language, the construct (A) is more probable than (B).

The segmentation strategy illustrated in Table 4.3 is described at high level in

Algorithm 1. Given a password p, we generate a set W containing all substrings

of p; then after a filter, W contains only the strings present in the source corpora

(word segments). Next, a list of segmentation candidates is built, each containing

a subset of W . The segmentation candidates are only formed by word segments.

The list is then filtered to contain only the ones with greatest coverage (sum of

length of segments). In the frequent case that more than one candidate remains,

we assign an n-gram probability to each candidate and select the best (t). As a last

step, the gap segments are re-inserted in t in the appropriate positions.

Algorithm 1 Segment string into most probable word and gap sequence
1: procedure SEGMENT(p)
2: W ← Generate all possible substrings of p
3: Remove w ∈W not present in source corpora
4: C ← Generate segmentation candidates from W
5: θ ← Calculate maximum coverage from C
6: Remove c ∈ C | c < θ
7:

8: if LENGTH(C)> 1 then
9: t ← Select most probable c ∈ C

10: else
11: t ← C[0]
12: end if
13: Insert gaps in t
14: return t
15: end procedure
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The selection of the most probable segmentation candidate is based on the

reference corpora. As previously stated, it contains high order N-gram frequencies

that can help us rank the segmentations by likelihood. Let KN be an N-gram corpus

and f (KN) the total frequency of N-grams in corpus K . The probability of an N-

gram w1...wN is given by:

P(w1...wN) =
f (w1...wN)

f (KN)
(4.1)

An annotated trigram corpus can serve as the grounds for very accurate seg-

mentation, but its coverage is usually limited. The higher the N-gram order, the

greater the chances of a context not be found in the corpus. There is a clear trade-

off between accuracy and coverage and one way to work around it is falling back

to less accurate algorithms whenever necessary. We rely on this backoff strategy in

the recursive Algorithm 2 to generate probabilities used in line 9 of Algorithm 1.

The probability of a segmentation is the product of its N-gram probabilities. Given

a segmentation containing three segments, for example, the algorithm computes

all combinations of trigram, bigram and unigram probabilities and chooses the one

that maximizes the score.

In language modelling, N-gram models are often evaluated in the context of

a classic task, where the problem is to predict the next word given the previous.

We did not test the accuracy of our model in this traditional framework, as we are

only interested in ranking the candidates; in other words, we do not need a precise

measure of how much better a candidate is in comparison to another. Table 4.4

shows a sample of the segmentation results produced by the algorithm.

4.1.3 Analysis of Segmentation Results

Now that we have the capability of extracting words from passwords, the simplest

analytical question one can make is which words are more common in the RockYou

list? This question is of relevance to password cracking, in particular, one of the

weaknesses of the the approach of Weir et al. [2009] is the lack of a sound method

to assign probabilities to the words their guess generator takes as input. In that

case, a ranked dictionary can be used to form guesses in highest probability order.
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Password Segment

7eleven 7
7eleven eleven
buddy5 buddy
buddy5 5
chummy chummy
dm3455 dm3455
futebol futebol
ilovesabastion i
ilovesabastion love
ilovesabastion sabastion
jon311 jon
jon311 311
lidia00 lidia
lidia00 00
lredix l
lredix red
lredix i
lredix x
poohbear14 pooh
poohbear14 bear
poohbear14 14
toonarmy10 to
toonarmy10 on
toonarmy10 army
toonarmy10 10
password password
princess1 princess
princess1 1
rajidevi13 raji
rajidevi13 devi
rajidevi13 13
teamvampire team
teamvampire vampire
yellow yellow

Table 4.4: Random sample
of segmentation results.

(%) Relative
Rank Word Count Frequency

1 a 1361806 3.24
2 i 1263919 3.01
3 love 584219 1.39
4 me 263629 0.63
5 in 220521 0.53
6 you 206937 0.49
7 baby 204716 0.49
8 my 186373 0.44
9 to 166795 0.40

10 an 159914 0.38
11 is 151409 0.36
12 girl 142228 0.34
13 it 140943 0.34
14 as 119110 0.28
15 la 117583 0.28
16 te 112123 0.27
17 sexy 109663 0.26
18 on 107114 0.26
19 am 105293 0.25
20 be 100167 0.24
21 man 99677 0.24
22 password 99296 0.24
23 the 98293 0.23
24 luv 98250 0.23
25 boy 92671 0.22
26 no 92572 0.22
27 amo 89068 0.21
28 rock 88746 0.21
29 angel 86063 0.20
30 ca 85751 0.20
31 or 82794 0.20
32 na 82108 0.20
33 el 80608 0.19
34 and 78502 0.19
35 lil 74801 0.18
36 do 71859 0.17
37 ha 71467 0.17
38 de 69206 0.16
39 princess 69178 0.16
40 life 66054 0.16
41 lo 63621 0.15
42 he 62692 0.15
43 ma 61648 0.15
44 ko 60691 0.14
45 at 60528 0.14
46 ta 60193 0.14
47 fuck 59928 0.14
48 hot 58486 0.14
49 yo 58064 0.14
50 pink 57130 0.14

Table 4.5: 50 most frequent words from the
source corpora in the RockYou list.
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Algorithm 2 Recursively calculate the N-gram score of a segmentation
1: procedure BESTNGRAMSCORE(C)
2: score← 0
3: l ← LENGTH(C)
4:

5: if l = 1 then
6: score← UNIGRAMPROBABILITY(C)
7: else if l = 2 then
8: score← BIGRAMPROBABILITY(C)
9: else if l = 3 then

10: score← TRIGRAMPROBABILITY(C)
11: end if
12:

13: if score = 0 then
14: for i← 1, 3 do
15: a← BESTNGRAMSCORE(C[: i])
16: b← BESTNGRAMSCORE(C[i :])
17: tempScore← a ∗ b
18: if tempScore > score then
19: score← tempScore
20: end if
21: end for
22: end if
23: end procedure

Table 4.5 shows the 50 top segments in the RockYou list.

Another relevant question is how the vocabulary of passwords compares to

the language of real world? To answer this question, we use the British National

Corpus (BNC) [BNC, 2007] as a reference and the measure of corpus similarity

G2 for ranking the most distinguishing words [Rayson and Garside, 2000]. The

G2 measure is calculated as described by Collins et al. [2009], using the following

contingency tables and equations :

Corpus A Corpus B Total

C(word) a b a+ b
C(other words) c− a d − b c+ d − a− b

Total c d c + d
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E1 = c ∗ (a+ b)/(c+ d) (4.2)

E2 = d ∗ (a+ b)/(c+ d) (4.3)

G2 = 2 ∗ (a ∗ ln(a/E1) + b ∗ ln(b/E2)) (4.4)

where C(word) in the count of the target word and E1 and E2 are the expecta-

tion values for the word frequency in corpus A and B, respectively. In summary, G2

tells us the probability that the frequency of occurrence of a word in one corpus dif-

fers significantly from another. Table 4.6 shows the most deviant words between

passwords and BNC. A positive G2 value indicates the word is more common in

passwords, while a negative value indicates the contrary.

The results reveal that the probability of connective words, in particular, prepo-

sitions (from, in, with, to, etc.) and conjunctions (and, for, but, etc.) is much

higher in the BNC corpus than in the RockYou passwords. The most reasonable ex-

planation is the size of the sentences, as BNC frequencies are extracted from a large

collection of books, newspapers, magazines, and so forth. Surprisingly, a subset of

pronouns (I, me and my) are much more likely to appear in passwords, contrary to

others, for example, her, him, and they. Other words stand out in passwords with

no obvious linguistic explanation, such as love, baby, sexy and princess. Therefore,

we hypothesize that, instead of syntactic patterns, semantics should explain the

high occurrence of such words and the disparity of frequencies of words with same

syntactic function.

4.1.4 Visual Exploration

We designed a web-based visualization tool to enable visual exploration of the lexi-

cal difference between BNC and passwords (Figure 4.1). The visualization features

the 500 most distinguishing words (ranked by |G2|) and allows one to interactively

compare measures of word frequency and check the most frequent passwords that

contain a certain word. The words are represented by polylines in a parallel coordi-

nates plot [Inselberg, 1985], with polyline color encoding the sign of the G2 value

(blue as positive and brown as negative). Low-level tasks like selection, brushing,
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G2 Ranking Word G2 BNC Freq. (%) Pass. Freq. (%)

Negative
1 the -3562992.1 6.18 0.23
2 of -1710019.2 2.94 0.10
3 and -1357509.7 2.68 0.19
4 to -945327.8 2.56 0.40
5 that -726880.0 1.11 0.01
6 was -573790.3 0.92 0.02
7 ’s -529691.4 0.81 0.01
8 for -482500.2 0.85 0.04
9 in -445348.4 1.88 0.53

10 with -425616.0 0.65 0.01
11 have -303984.0 0.47 0.01
12 they -296823.3 0.43 0.00
13 from -273829.2 0.41 0.00
14 but -271616.7 0.46 0.01
15 this -270287.3 0.46 0.02
16 had -266129.0 0.44 0.01
17 which -259366.4 0.37 0.00
18 his -257657.5 0.43 0.01
19 not -237838.7 0.46 0.03
20 it -231153.4 1.09 0.34

Positive
1 love 1241949.6 0.02 1.39
2 i 767866.4 0.90 3.01
3 baby 430337.4 0.01 0.49
4 te 269387.4 0.00 0.27
5 sexy 259820.1 0.00 0.26
6 girl 255209.0 0.02 0.34
7 la 249772.7 0.00 0.28
8 luv 237913.5 0.00 0.23
9 password 237306.2 0.00 0.24

10 me 221084.4 0.14 0.63
11 amo 216783.0 0.00 0.21
12 angel 195553.4 0.00 0.20
13 el 183410.1 0.00 0.19
14 lil 179966.7 0.00 0.18
15 rock 172164.9 0.01 0.21
16 boy 155204.1 0.01 0.22
17 lo 150611.6 0.00 0.15
18 ha 147753.1 0.00 0.17
19 ko 147109.6 0.00 0.14
20 princess 146047.7 0.00 0.16

Table 4.6: G2 Top ranked positive and negative words.
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search, and axis inversion and axis reordering are all supported. In order to mini-

mize the visual effect of outliers and leverage the screen space, the scale of the axes

is not linear, but quantile; this is evidenced by the axis labels distributed unevenly

along the axes.

In Figure 4.1, we compare the words the and angel. Their position in the G2

axis reveals that the is much more likely to appear in English language than in pass-

words, as opposed to angel. While both have a similar frequency in passwords, the

G2 measure distinguishes “angel” as being much more frequent in passwords than

expected. On the left pane, one can see the most frequent passwords containing

the word angel.

The visualization offered important support for validation of the segmentation

results, as it provides quick access to the passwords linked to a word. A known

weakness of our segmentation algorithm is the production of noise from passwords

that do not contain words (e.g., I and a would be parsed from a123i321k), in

particular when a comprehensive source corpora is used (e.g., the Asian name ho

would be parsed from a seemingly random password like ts63k7ho). Those issues

were easily spotted using the visualization.

4.1.5 Limitations

Our parser is not multilingual. While there are some foreign words in the source

corpora, the occurrence of unknown foreign words causes errors in the segmen-

tation. This affects the accuracy of the syntactic and semantic classifications. If

one intends to use our approach in contexts that require high accuracy—study of

semantics in passwords from the cultural perspective, for example—, it would also

be desirable to improve of our named entity disambiguation, which is somewhat

arbitrary. Another limitation of our parser is that if new terms begin to be used in

passwords (e.g., new company names or slang), they will only be captured once

included as part of the source corpora.
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4.2 Part-of-speech tagging

Part-of-speech tagging is a required step for the semantic classification we perform

on nouns and verbs. Beyond that, for security purposes, it is very important to

tag words that belong to all other POS classes, because it can potentially lead to

further reduction of the search space in cracking attacks. POS tagging benefits

from contextual information much like segmentation but, fortunately, there is a

wealth of free tools that implement sound POS tagging algorithms which produce

reasonable results. In particular, the POS module of the Natural Language Toolkit

(NLTK) [Bird, 2006] was used, trained on our data. For each password, the POS

function takes as input and array [s1, ..., sn], where si is a segment, and outputs and

array of 2-tuples [(s1, t1), ..., (sn, t1)], where t i is a POS tag.

Tagger Coverage (%)

COCA trigram 1.61
COCA bigram 4.48
COCA unigram 89.82
Names 0.25
WordNet 0.4
Default 3.42

Table 4.7: Taggers that compose the backoff model, in order of priority. The cover-
age column shows the percentage of word segments from the RockYou list tagged
by each tagger.

4.2.1 Sequential Backoff Tagger

We rely again on backoff models, since one can be trained easily in NLTK and it has

a good balance between simplicity and accuracy [Manning and Schütze, 1999]. In

Table 4.7, we show the taggers that compose the backoff model in order of priority.

We first try to tag the segments using the COCA trigram tagger; in the case it fails,

the COCA bigram tagger is used, and so forth. The tagger is used to tag only the

word segments of passwords. The names tagger tags anything seen in the names

source corpus as NP (proper name), while the WordNet tagger searches for a word

in the WordNet tree and chooses the POS tag corresponding to the most common
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sense of the word. Finally, the default tagger is a custom tagger which arbitrarily

tags any word as NN (noun). A default tagger is used to assign the most common

tag to words that could not be tagged by any other tagger, so that the backoff

tagger has full coverage [Bird et al., 2009]. The unigram tagger, as expected, is

the one that tags the majority of words.

4.2.2 Results

Table 4.9 presents a sample of the POS tagging results. The algorithm does a good

job in disambiguating the word using the context provided, as in the passwords

gangsterlove and ilovestacy where the word love assumes different syntactic func-

tions. The Table 4.8 shows the resulting distribution of segments by POS.

Category % Count

Nouns 73.66 30,935,261
Pronouns 5.70 2,394,372
Adjectives 5.36 2,252,433
Verbs 4.90 2,059,787
Articles 4.06 1,705,886
Others 6.31 2,652,107

Total 41,999,846

Table 4.8: Distribution of the POS tagged segments from RockYou by syntactic
category.

4.3 Semantic Classification

After segmenting and POS tagging the passwords, we finally met the requirements

to perform a good semantic classification. At this point, we can represent each

password by an array of 2-tuples S = [(s1, t1), ..., (sn, tn)], where si is a segment and

t i is a POS tag (Null for gap segments). In this section, we describe an algorithm

that takes as input an array of passwords in the format S and outputs for each

password an array K = [(s1, t1, c1), ..., (sn, tn, cn)], where ci is a semantic category.

First, we show how WordNet and the source corpora can be used to assign semantic
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Password Segment POS

babygirl87 baby NN
babygirl87 girl NN
babygirl87 87
anthony05 anthony NP
getyourown get VB
getyourown your PP$
getyourown own JJ
anthony05 05
gansterlove ganster NP
gansterlove love NN
gohome01 go VB
gohome01 home NR
gohome01 01
justme7 just RB
justme7 me PPO
justme7 7
L1Lplaya L1L
L1Lplaya play VB
L1Lplaya a AT
ilovestacy i PPSS
ilovestacy love VB
ilovestacy stacy NP
magicmom4 magic JJ
magicmom4 mom NN
magicmom4 4
mowwowdiggydog20 mow VB
mowwowdiggydog20 wow UH
mowwowdiggydog20 diggy NP
mowwowdiggydog20 dog NN
mowwowdiggydog20 20
paulradford07 paul NP
paulradford07 radford NP
paulradford07 07
whatever whatever WDT
wicked wicked JJ

Table 4.9: Sample results of the POS tagging.
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tags to segments (Section 4.3.1). After, in Section 4.3.2, we describe how low-level

semantic concepts can be abstracted, allowing us to, later on, characterize semantic

patterns in a more general way.

4.3.1 WordNet-based classification

WordNet 3.0 [Fellbaum, 2010] is a large, manually constructed, lexical database of

English structured as a network (or graph) of concepts. Each concept is expressed

as a synset, a set of synonyms. WordNet covers adjectives, verbs, nouns and ad-

verbs, separately. Concepts are connected through hyperonymy (IS-A) relations1;

i.e., synsets are arranged into hierarchies, where the top nodes express general

concepts and towards the bottom the nodes are increasingly specific. WordNet can

be used to group words that share a meaning into a semantic category. For exam-

ple, the words car, auto, automobile and motorcar all refer to the concept car, and

car IS-A vehicle. In the WordNet terminology the words are called lemmas and the

concept is called a synset.

In our semantic classification of password segments, verbs and nouns are the

only classes that receive a semantic tag. Adjectives in WordNet are not connected

through hyperonymy relations, but through other relations, such as antonymy, that

do not contribute to generalization (see Section 4.3.2). In fact, sentiment analysis

would be a suitable way to generalize adjectives, but it is out of scope in this

dissertation. All other syntactic classes (e.g., pronouns, adverbs, etc.) are not

semantically classified because of their limited semantic content—POS suffices as

a categorization criterion.

In Algorithm 3, we detail the steps of semantic classification. If s is a gap

segment, it is classified according to the Table 4.10, using regular expressions.

Next, we test if s is a proper noun. WordNet does not provide comprehensive

support to proper nouns (NP tags), which account for 55% of the segments from

RockYou that are tagged as nouns; thus, if the word is a proper noun, we rely on the

source corpora to tag it as month, female name, male name, surname, country or

city, in this order. This is necessary because the corpora is ambiguous, e.g., Paris is

1There are several other semantic relations (e.g., antonymy, meronymy, holonymy), some of
them featured in WordNet; however, we are only interested in hyperonymy, since it contributes to
generalization. See section 4.3.2.
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Category Example

number 123
char LoL
special *<|:-)
num+special 0:-3
mixed o/\o5̂

Table 4.10: Semantic categories of gap segments.

both in the cities and in the female names word lists, so we disambiguate this step

by arbitrarily prioritizing the word list. Next, if the word is either a verb or a noun,

we reduce it to its stem (stemming) and find its synsets in WordNet. A word might

have different associated synsets (one for each sense), which are ordered according

to their frequency count, from most to least frequently used [Fellbaum, 1998].
However, according to the WordNet documentation, frequency information was

last updated in 2001 and is no longer maintained; so the sense ordering should not

be construed as an accurate indicator of frequency of use. As we do not need very

accurate sense disambiguation, we choose the first synset, whose name becomes

the semantic tag of the word. The name has the form word.pos.#, where # is the

sense number; for example, love.n.01 is the first noun sense of “love”.

4.3.2 Generalization

We saw in the previous section that our WordNet-based semantic classification

groups words with same meaning into synsets; however, it does not consider the

hyperonymy relations between synsets. For example, the words dolphin and butter-

fly would not be grouped under the animal synset, even though they are hyponyms

of animal. The ability to generalize semantic categories is desirable, given that we

could characterize patterns in a more general, concise way; for example, if sev-

eral kinds of animal appear with consistent frequency in the sample, we could

abstract and tag them all as animal. Nonetheless, each synset is linked to a chain

of hypernyms, and selecting the appropriate hypernym automatically is difficult.

Consider the synset dove.n.01, whose six first hypernyms are pigeon.n.01, columb-

iform_bird.n.01, gallinaceous_bird.n.01, bird.n.01, chordate.n.01 and animal.n.01.
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Algorithm 3 Classify segments by semantic category
1: procedure CLASSIFYSEMANTIC(S)
2: K ← []
3: for all (s, t) ∈ S do
4: c← null
5: if s is a gap segment then
6: classify by gap category
7: else if t is a proper noun tag then
8: c← source corpus name
9: else if t is either a verb or a noun tag then

10: s← STEM(s)
11: s ynsets← LOOKUPWORDNET(s)
12: if LENGTH(s ynsets)> 0 then
13: c← s ynsets[0].name
14: end if
15: end if
16: APPEND(K , (s, t, c))
17: end for
18: return K
19: end procedure

Which synset is more appropriate to represent dove.n.01 at a higher level?

To automatically answer that question, we make use of the tree cut model by

Li and Abe [1998]. Given a sample of words S with associated frequencies and

a hierarchy (tree) of concepts generalizing the words, the tree cut model selects

the tree cut that represents the best generalization level for the sample. Each

internal node of the tree represents a semantic class, and each leaf node represents

an instance of the above classes. The frequency of the leaves correspond to the

observed frequencies in the samples, and are accumulated by the internal nodes.

The tree cut model defines a horizontal cut M across the tree, so that the nodes

belonging to the cut abstract all nodes underneath; in other words, a tree cut

defines an uneven generalization level for the tree.

The tree cut model is based on the Minimum Description Length Principle, with

roots in Information Theory. The principle basically states “that any regularity in a

given set of data can be used to compress the data, i.e., to describe it using fewer

symbols than needed to describe the data literally” [Grünwald et al., 2005]. Thus,
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with a good estimation of the probabilities that underlie the occurrence of data

items, it is possible to efficiently encode the sample.

Roughly, the tree cut model selects the cut that has the best balance between

two metrics: Lpar(M) (parameter description length) and Ldat(M) (data descrip-

tion length), which are involved in a trade-off. Ldat(M), which measures how far

the tree cut model M is from the data, is proportional to the abstraction level—

the greater the abstraction level, the lesser the model fits the data. Lpar(M), on

the other hand, represents the size of the cut and is inversely proportional to the

abstraction level. Ideally, we want a small Lpar(M) (good level of generalization)

but with a good fit to the data (small Ldat(M)). Technically, the algorithm of Li

and Abe [1998] minimizes the sum of Lpar(M) and Ldat(M), referred to as model

description length Lmod(M):

Lmod(M) = Lpar(M) + Ldat(M) (4.5)

The parameter description length is calculated as in Equation 4.6, where k is

the number of nodes (classes) in the cut and |S| is the sample size:

Lpar(M) =
k

2
× log|S| (4.6)

The data description length is given by Equation 4.7:

Ldat(M) =−
∑

n∈S

log P̂(n) (4.7)

where n ∈ S is a category and P̂(n) represents its probability obtained simply

by normalizing the frequencies:

P̂(n) =
1

|C |
× P̂(C) (4.8)

|C | denotes the number of leaves (synsets, in our case) under a class, and P̂(C)
is given by

P̂(C) =
f (C)
|S|

(4.9)

where f (C) is the total frequency of instances of class C in the sample.

40



4. Parsing and Classification

4.3.2.1 Adapting the tree cut model to WordNet

The tree cut model was developed for a thesaurus tree; however, WordNet is a

directed acyclic graph, so we need to convert it to a tree to get a correct model.

Furthermore, the internal nodes in WordNet represent simultaneously semantic

categories and word senses, while the tree cut model assumes that internal nodes

are categories and leaves are senses. Therefore, the following steps are performed

to convert WordNet to a suitable representation [Wagner, 2000]:

1. Duplicate synsets containing multiple parents (hypernyms), for example,

warm_up.v.04:

[use.v.01, work.v.12, warm_up.v.04]

[use.v.01, work.v.12, exercise.v.03, warm_up.v.04]

2. Divide frequency count between duplicated (ambiguous) synsets.

3. Split internal nodes into word sense and semantic classes by creating a child

leaf node that represents the sense. For example:

[use.v.01, work.v.12, warm_up.v.04]

becomes [use.v.01, work.v.12, warm_up.v.04, s.warm_up.v.04]

In addition, Wagner [2000] reports that the algorithm of Li and Abe [1998]
“tends to over-generalize for infrequent verbs and to under-generalize for frequent

verbs”. Wagner noticed that Lpar and Ldat have different complexities with respect

to the sample size |S|. Lpar has the complexity O(log|S|), while Ldat has the com-

plexity O(|S|), as seen in Equations 4.7 and 4.6. That means that, in our case, the

size of the sample has influence over the level of generalization; so as the sample

gets larger the algorithm tends to under-generalize—a fact that has been observed

in our experiments. Wagner [2000] then proposes a weighting factor, which is

essentially a free parameter that introduces some flexibility in the calculation re-

garding the level of generalization. This parameter, hereby called W , is introduced

in the Equation 4.5:

Lpar(M) +W
�

log|S|
|S|

�

Ldat(M) (C > 0) (4.10)

41



4. Parsing and Classification

The value of the parameter W , however, is chosen arbitrarily; so in order to

evaluate the choice of this parameter, we prototyped an interactive visualization

that allows the comparison of tree cuts resulting from different W values. In Figure

4.2, the visualization shows a representation of the subtree rooted at the node

carnivore.n.01, where frequency is cumulative and encoded by color (the higher

the value, the darker the node). The golden line represents the tree cut resulting

from using W = 1, 000, while the red line corresponds to W = 5, 000 and the blue

line to W = 10,000.

Roughly, the tree cut model only generalizes groups of synsets whose frequen-

cies are, to some extent, uniform, and this extent can be adjusted by the W param-

eter, as discussed previously. It is evident in the visualization that smaller W values

lead to more general cuts. For example, with W = 1, 000 all types of wild cats are

represented by the concept wildcat.n.01, which crosses the golden cut; however,

the disparity between the frequencies of wildcat.n.01 and its siblings prevents the

generalization to cat.n.01. On the other hand, at W = 5,000, the algorithm pre-

serves the distinction between all kinds of wild cats, and at W = 10,000, the level

of specificity is raised, with the cut discriminating types of lynx, such as bobcat.

This behaviour matches closely the human intuition. Entities that occur uni-

formly tend to be generalized, while deviating entities are treated individually.

From an analytical point of view, the generalization helps to shed light upon highly

occurring concepts. For example, the fact that none of the cuts crosses dog.n.01

reveals that in passwords there might be preferences towards certain types of dog,

such as bulldog. After examining several parts of the whole tree, we concluded

that the value W = 5, 000 leads to a generalization level that significantly reduces

the complexity of the classification (i.e., number of categories), while highlighting

highly divergent categories.

4.3.3 Results

In Table 4.11, we show a sample of the results of the semantic classification. The

Semantic tag column shows the semantic tags assigned to the password segments

after generalization (described in the previous section). The effect of generaliza-

tion can be observed by comparison of the semantic tags with the corresponding
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synsets. For example, in the password 671soldier, the segment soldier is classified

as worker.n.01, a generalization of the synset soldier.n.01. Notably, some synsets

are not generalized (e.g., puppy.n.01).
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Password Segment Semantic tag Synset

hope87 hope wish.v.01 hope.v.01
hope87 87 number
serenity serenity trait.n.01 repose.n.03
bishop5 bishop status.n.01 bishop.n.01
bishop5 5 number
slutsister slut vulgarian.n.01 slattern.n.02
slutsister sister s.sister.n.01 sister.n.01
fuckyou05 fuck s.sleep_together.v.01 sleep_together.v.01
fuckyou05 you
fuckyou05 05 number
goblue0507 go s.travel.v.01 travel.v.01
goblue0507 blue
goblue0507 507 number
looted looted take.v.21 loot.v.01
drift21 drift force.n.02 drift.n.01
drift21 21 number
candysinger candy s.candy.n.01 candy.n.01
candysinger singer musician.n.01 singer.n.01
671soldier 671 number
671soldier soldier worker.n.01 soldier.n.01
bravo100 bravo murderer.n.01 assassin.n.01
bravo100 100 number
egobrain ego pride.n.01 ego.n.01
egobrain brain structure.n.04 brain.n.01
pitcher9 pitcher athlete.n.01 pitcher.n.01
pitcher9 9 number
puppies puppies puppy.n.01 puppy.n.01
church church religion.n.02 church.n.01
‘ale‘8 ‘ special
‘ale‘8 ale alcohol.n.01 ale.n.01
‘ale‘8 ‘8 num+special
‘18angelnjohany ‘18 num+special
‘18angelnjohany angel s.angel.n.01 angel.n.01
‘18angelnjohany n char
‘18angelnjohany johany mname

Table 4.11: Sample of passwords with segments classified by semantics. The Se-
mantic tag column shows the final semantic category of a segment, after synset
generalization.
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Chapter 5

Semantic Guess Generator

The hypothesis driving this dissertation is that passwords can be characterized by

semantic patterns, which can help us understand more about the effective security

provided by passwords in practice. In order to verify this hypothesis, the mere se-

mantic classification of the password segments is not enough. We need a model to

capture the structural relationships of semantic classes and encode the probabilities

of different constructs. The intuition behind the usefulness of semantic patterns is

that some words tend to pair up with specific classes of words. This occurs due

to selectional preferences that depend both on part-of-speech and meaning; for

example, a verb calls for a noun, and the verb eat is most probably followed by the

name of a food. From the security point of view, this may represent a significant

reduction in the search space in a cracking session, i.e., the guesser will only try or

prioritize guesses that are probable both in the semantic and in the syntactic levels.

Computational linguists have been representing those patterns through grammars;

however, we cannot assume that people follow the grammar of English in pass-

words, since they have no reason to do so; hence, the algorithm needs to learn

the passwords grammar. Following Weir et al. [2009], we employ probabilistic

context-free grammars to model the syntactic and semantic patterns of passwords.

With this model we can learn the semantic patterns from a sample and generate

passwords previously unseen. Then a suitable way to evaluate the fitness of our

model, i.e., how well passwords can be characterized by semantic patterns, is using

it to generate guesses for cracking attacks. The extent by which those attacks are

successful is at the same time an indicator of how well the patterns are captured
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by the model and an evidence of their security implications.

5.1 Probabilistic Context-Free Grammars

A probabilistic context free grammar (PCFG) is a context free grammar whose pro-

ductions have associated probabilities. A PCFG represents a syntax, i.e., it shows

how words group together and relate to each other as heads and dependents, and

it is used either to parse or generate the sentences of a language [Manning and

Schütze, 1999]. PCFGs were used in passwords first by Weir et al. [2009] to learn

mangling patterns from the RockYou list and generate guesses in highest probabil-

ity order. Under the assumption that long passwords are likely to follow English

grammar rules, Rao et al. [2013] used a context-free grammar of English to gen-

erate guesses targeting long passwords.

A generic PCFG G consists of:

• A set of terminals, Σ = w1, ..., wm. This is the vocabulary of the grammar,

that forms the content of the sentences.

• A set of nonterminals, V = N 1, ..., N n, also known as variables, are the syntact

categories of the grammar.

• A start variable N 1.

• A set of rules N i → ζ j, where ζ j is a sequence of terminals and nonterminals.

• A set of probabilities on rules, such that ∀i
∑

j P(N i → ζ j) = 1.

In our PCFG, Σ is a set comprised by the source corpora and the learned gap

segments, and V is the set of semantic and syntactic categories. The rules are all

of the form N i → wk, i.e., a nonterminal derives exactly one terminal, or N 1→ ξ j,

where ξ j is a sequence of nonterminals. The grammar can be proven to be regular,

since no rule has more than one nonterminal in its right-hand side, and each of

these nonterminals is at the same end of the right-hand side.

Since we have syntactic and semantic categories, and both are relevant to char-

acterize patterns, we combine both types of categories to compose the nonterminal
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Rule Prob.

N 1→ [PP][love.v.01.VV0][PP][number] 0.33
N 1→ [PP][hate.v.01.VVD][PP][number] 0.33
N 1→ [sport.n.01][number] 0.33
[PP]→ i 0.5
[PP]→ you 0.25
[PP]→ them 0.25
[love.v.01.VV0]→ love 1
[hate.v.01.VVD]→ hated 1
[sport.n.01]→ football 1
[number]→ 2 0.5
[number]→ 3 0.5

Table 5.1: Sample grammar learned from the training set iloveyou, ihatedthem3,
football3

set. For nouns and verbs semantically classified, we overload a nonterminal sym-

bol with both semantic and syntactic information; for example, in the nonterminal

love.v.01.VVD we have the concatenation of a semantic (love.v.01) and a POS cate-

gory (VVD). This symbol should derive only the verbs categorized as love that are

inflected in the past tense. In this way, we increase the descriptive power of the

grammar.

Example 2. N 1→ [pronoun][love.v.01.V V D][pronoun][number]

The rules and the corresponding probabilities can be learned from a pass-

word training set by a simple algorithm. Given a segmented password, its se-

mantic/syntactic structure constitutes the right-hand side of the rule. Example 2

shows the rule learned from the password ilovedyou2. The segments that carry a

semantic tag (nouns and verbs) lead to POS- and semantic-based symbols (love),

while all others lead to POS-based symbols (I and you). The probability of such

a rule is simply its relative frequency, given by P(rule) = Cr/Ct , where Cr is the

count of matching passwords and Ct is the total count of passwords. In the same

way, the algorithm can learn rules that generate the terminals and their probabil-

ities. In Table 5.1, we show an example PCFG learned from the set of passwords

{ilove you2, ihated them3, f oot bal l3}.
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Approach Base structures Non-terminals Terminals Terminal Struct.

Semantic 1,861,821 12,410 4,045,458 1.3x1086

Weir 78,126 166 3,554,133 1.8x1073

Table 5.2: Comparison between grammars generated by the semantic and Weir
approaches trained with the RockYou list.

Consistent with the nomenclature adopted by Weir et al. [2009], we call the

structures derived from the start variable base structures, i.e., right-hand side of all

N1 rules. A base structure after the rewriting of all its nonterminal symbols is called

a terminal structure, and it is effectively a password generated by the grammar.

The probability of a terminal structure is the product of the probability of the

base structure with the probability of all the rules required for its derivation. For

example, P(youlovethem2) = 0.0103125. Table 5.2 shows a comparison between

the PCFGs generated by our approach and the approach of Weir et al. [2009], both

trained with the RockYou list.

5.2 Building a guess generator

Password cracking usually involves some software that can read or generate a

guess, hash it using the same hashing algorithm used by the target and compare

it against all the target hashes. The most prominent program is John the Ripper

(JtR) [Openwall]. When a comparison results true, we have a hit, i.e., a password

was successfully guessed. The popular approaches for generating the guesses are

either based on word lists or brute force. In the word list approach, the guesses

come from a large list of strings, or a compilation of lists. Word lists are man-

ually curated and available from a variety of sources on the web. They usually

contain strings that are highly used as passwords, and strings found in previous

leaks. The limitation of word lists is obvious: a password not listed there will not

be guessed. To overcome this limitation, John The Ripper comes with a mangling

option, where it reads a guess from the word list and derives variations based on

a configurable set of heuristics, e.g., password→ p4ssw0rd. In this case, a wordlist

of a couple of million entries can generate dozens of millions of guesses. In the
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brute force strategy, an algorithm progressively generates all possible strings up to

a maximum length. In addition, JtR features a “smart brute force” mode, where

it uses a Markov model to prioritize the generation of guesses containing more

frequent letters.

In a realistic cracking session, crackers first exhaust the possibilities of the word

list mode and then switch to a brute force attack, which cracks passwords in a much

lower hits/guesses ratio. This strategy can potentially crack the most common

passwords fast, but will take a long time to guess all the passwords; so the larger

the number of passwords cracked before switching to the brute force mode, the

better (for the attacker). As previously mentioned, Weir et al. [2009] used PCFGs

to learn mangling rules and generate guesses in optimal probability order. Their

approach shows good results when the training set is very similar to the target. As

we will see in Section 5.4, when the password creation policy of the target is differ-

ent, affecting the choice of mangling rules, their method degenerates quickly. We

hypothesize that using the same PCFG framework, but learning semantic patterns

in addition to mangling rules, will be more accurate in generating realistic guesses.

Once we have the grammar trained, building a guess generator is just a matter

of outputting the terminal structures in highest probability order. This said, the

algorithm for this job is not exactly trivial. Fortunately, Weir et al. [2009] proposed

Algorithm 4, which works well for this purpose. Our PCFG is able to generate an

enormous number of guesses (1.3x1086) when trained on RockYou. For sake of

comparison, the approach of Weir et al. [2009] (hereafter referred to as the Weir

approach, for conciseness) trained on the same RockYou list and using dic-0294 as

the input dictionary can generate around 1.8x1073 guesses.

5.2.1 Custom Mangling

The Semantic Guess Generator only generates guesses containing lowercase word

segments; gap segments, on the other hand, are learned (and derived) in the form

they appear in the passwords. Case mangling of word segments, however, is a

desirable feature, since it is a common mangling pattern. Table 5.3 shows the

case statistics for the word segments we extracted from the RockYou passwords,

where the mangle category corresponds to words that do not fall in any other
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Algorithm 4 Generates guesses in highest probability order
1: procedure GENERATEGUESSES(G)
2: . Initialize priority queue with most probable derivation of each base

structure
3: queue← initialize priority queue
4: for all G.base_structures do
5: guess← initialize guess
6: guess.terminals← most probable terminal values for the base struct.
7: guess.pivot← 0
8: guess.p← calculate probability of the guess
9: INSERT(queue, guess)

10: end for
11:

12: c← POP(queue)
13: while c 6= NULL do . Generate password guesses
14: OUTPUT(c) . Output current guess
15: for i← c.pivot, LEN(c.terminals) do . Derive lower probability guesses

from the same base structure
16: new← initialize new guess
17: new.terminals← DECREMENT(c.terminals, G, i) . Replace

c.terminals[i] by the next lower probability terminal at i
18: if new.terminals 6= NULL then
19: new.p← calculate probability
20: new.pivot← i
21: INSERT(queue, new)
22: end if
23: end for
24: c← POP(queue)
25: end while
26:

27: end procedure

category, e.g., hOUse. Even though lowercase guesses would not be a high limiting

factor against RockYou, it would probably severely limit the guessing success of

our generator against targets that enforce strong password creation policies. Thus,

we developed a version of the guess generator that applies a small set of custom

mangling rules to word segments. Gap segments always preserve their original

case.
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Rule Count %

lowercase 39,516,827 94.09
uppercase 1,658,417 3.95
capitalized 718,318 1.71
mangled 106,284 0.25

Total 41,999,846

Table 5.3: Case statistics of word segments extracted from RockYou passwords.

Capital Capitalizes the first word segment, e.g., bearDOG123LoL→ Beardog123LoL.

This rule is only applied to guesses that begin with a word segment, i.e.,

words derived from all non-terminal symbols, except mixed_all, mixed_num_sc,

number, special and char.

Uppercase Uppercases all characters of word segments, e.g., bearDOG123LoL →
BEARDOG123LoL.

Camel Case Capitalizes all word segments, e.g., bearDOG123LoL→ BearDog123LoL.

It is worth highlighting the sophistication of the camel case rule, which is only

possible with password segmentation, a feature not present in the state-of-the-art

password crackers.

5.3 Comparison with previous approach

Our approach can be seen as an evolution of the Weir approach. Before presenting

the experiments that show to what extent the Semantic Guess Generator outper-

foms the state of the art techniques, in this section we enumerate the points where

our technique deviates from the Weir approach.

5.3.1 Rules

The Weir approach uses only a small set of non-terminal symbols: Dn (digits), Sn

(special characters) and Ln (alphabetic strings), where n is the string length. As

seen in Table 5.2, our method trained on the RockYou list generates a much finer
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grained grammar, with 12,410 non-terminal symbols, in comparison with the 166

non-terminals generated by the Weir approach trained on the same list. This leads

to more precise probability estimates.

5.3.2 Terminals

As opposed to our method, the Weir approach does not include rules to derive

alphabetic strings, i.e., it does not “learn” them. Their method takes a dictionary

as input and estimates the probability of a word w of length n as the relative

frequency 1/Cn, where Cn is the count of words of length n. Since the number

of distinct short words is reduced (e.g., ar gmax(C1) = 26), this strategy tends to

favour guesses containing short alphabetic strings.

5.3.3 Input

The Weir guessing algorithm takes two parameters as input, a grammar and an

input dictionary. In our method, the “input dictionary” (equivalent to Terminals

in Table 5.2) is embedded in the grammar . While this provides the already men-

tioned advantages, it impacts on flexibility. If we want to use a different set of

terminals (e.g., COCA unigrams or a foreign language corpus), rules need to be cre-

ated linking them to the non-terminals (semantic and syntactic categories), which

requires re-running the semantic classifier.

5.4 Experiments

5.4.1 Experimental Setup

We use the community enhanced version (jumbo) of John The Ripper 1.7.9. This

software has a so-called stdin mode, where it receives guesses from a third-party

program through the standard input. Thus, we pipe the guesses from the guess

generators to JtR, which performs the hash comparisons. Then with a small script,

JtR’s output is parsed and the graphs are generated. To test the Weir approach, we

use the code that Weir made available on his personal website [Weir].
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In the experiments, we limit the number of guesses to 600 million (due only

to memory limitations) and, despite the fact that the target passwords might have

known minimum length, we do not configure the minimum guess length of meth-

ods when available, in order to test the methods in a context where no assumptions

are made about the target.

The primary criterion for the choice of the scenarios is the relevance of the

targets, i.e., we focus on large leaks from popular services that gathered major

attention and concern of the media. We also consider possible sources of bias,

namely, the type of resource being protected, the demographics of users and the

collection method [Jakobsson and Dhiman, 2013].

5.4.2 Experiment 1: Using RockYou Semantics to Guess LinkedIn

In this scenario, the grammar is trained upon RockYou, and the target is the

LinkedIn list, which was exposed in June 2012. The LinkedIn list contains 6,458,020

unique passwords hashed with unsalted SHA1. Among the passwords, there are

some which are composed only of words, so we believe the password creation pol-

icy was either non-existent or fairly liberal. This resource is relatively free of bias,

as the users are predominantly adults with some degree of education and the pass-

words were somehow stolen (as opposed to phishing). The type of resource being

protected (social network profiles), however, is not of the highest risk to personal

privacy.

The methods tested are the following:

1. Semantic Guess Generator with all default John the Ripper mangling rules

2. Semantic Guess Generator with custom mangling rules

3. Semantic Guess Generator without mangling rules

4. Weir guess generator

5. John The Ripper wordlist mode with all rules enabled followed by incremen-

tal 1

1Incremental mode in JtR corresponds to the previously mentioned brute force attack with
Markov models.
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Figure 5.1: Results of Experiment 1. The tree variations of the semantic approach
perform better than JtR and Weir.

The input dictionary used with the Weir approach is the same used in their

paper (dic-0294). With John The Ripper, we used the passwords.txt wordlist

(2,151,220 unique values) available at Dazzlepod [Dazzlepod]. According to Daz-

zlepod, this list has a success rate of 40% using all the mangling rules against the

famous Lulzsec collection of hashes (final release).

The results show that the Semantic Guess Generator in all 3 methods outper-

forms the other methods 5.1. The second method (built-in mangling rules) sur-

passes the third method before the 200,000th guess. This is probably due to the

fact that the target contains passwords with a variety of case configurations, and

in the condition #2, only lowercase guesses are generated. The Semantic Guess

Generator with the JtR rules enabled is the worst of the three. Most JtR’s man-
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gling rules change the guess structure in some way (e.g., reversing the characters,

appending numbers, etc.); so the mangling rules violate the highest probability

order of the guesses. The Weir approach is in fact the worst, cracking approxi-

mately seven times less passwords than our semantic approach. This is probably

a consequence of it being trained on a list that is not very similar to the target

(demographics, type of resource being protected and password creation rules are

different). This highlights the robustness of our method: it performs well even

when trained with a list that has different characteristics compared to the target.

5.4.3 Experiment 2: Using RockYou Semantics to Guess MyS-

pace

In this experiment, we target the MySpace list, one of the first large leaks, exposed

in 2006 and collected through phishing. This list is much smaller than the LinkedIn

list, containing 49,655 clear text passwords (41,543 unique). In order to keep

the consistency with the other experiment, we hashed the passwords—with JtR’s

dummy hash format—and used the same procedure outlined in Section 5.4.1.

Because it was obtained through phishing, this list is arguably composed of

weaker passwords. This can be noticed by the fact that the non-mangled version

of our algorithm performs better than the version with custom mangling, probably

because the proportion of passwords using uppercase characters is not high.

Again, the semantic approach outperforms all the others; in particular, it cracks

approximately 13% more passwords than the Weir approach.

5.4.4 Experiment 3: Final Guessing Success Rate against MyS-

pace

In order to evaluate the expressiveness of our model, it is necessary knowing how

many passwords it would eventually guess, i.e., the final guessing success rate,

however, it is known that our semantic approach (as well as the Weir approach)

can generate a very large number of guesses. Finding the final guessing success rate

empirically is, thus, not viable in a reasonable amount of time without powerful

computing resources. Yet, it is possible to compute this measure through a simple
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Figure 5.2: Results of Experiment 1. The best semantic condition performs more
than 10% better than the Weir approach.

algorithm, with the constraint that the passwords should be cleartext.

Finding whether or not a password can be guessed requires making the pass-

word go through the same pipeline for training the grammar: segmentation, clas-

sification and generation of grammar rules. If all the generated rules are present

in the trained grammar, the password will eventually be guessed. A small change,

however, is necessary: as each password can be segmented in different ways and,

consequently, be derived by different sets of rules, we do not test only the rules cor-

responding to the best segmentation, but the rules from all segmentations. If any

of the possible segmentations produces a rule existing in the grammar, we deem

the password guessable.

The process to compute the final guessing success rate for the Weir approach
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Guessed
Approach passwords %

Semantic 45,568 91.76
Weir 30,208 60.83

Table 5.4: Comparison of final guessing success rates of MySpace passwords.

is essentially the same, with the difference that it does not generate ambiguous

segmentations.

The results, presented in Table 5.4 prove the expressiveness of our model and

its superiority in comparison with the Weir approach, which guesses around 30%

less passwords from the MySpace leak.

5.5 Performance Limitations

In comparison with the John the Ripper’s modes and the Weir approach, our ap-

proach is inferior in terms of time (guesses/second) and memory use. In fact, we

use the same algorithm as the Weir approach to generate guesses, but our gram-

mar contains many more rules (see Table 5.2). Further study is needed to detect

whether the performance bottleneck is in the complexity of the algorithm or the

problem can be solved by optimizing the implementation. Despite that, as pre-

sented in the previous section, the semantic guess generator can be much more

efficient than the other approaches, as measured using an implementation- and

platform-agnostic metric, namely, success rate (hits/guesses). Notably, the inferior

performance can be neglected in cracking sessions against slow hashes, where the

hashing time is the bottleneck, turning the cost of hash comparisons much higher.

Another issue that might be hindering the performance and efficiency of our

approach is that our grammar generates duplicates guesses. This occurs because

passwords are ambiguous, being possibly generated by different rules. For ex-

ample, the password onego, can be generated by rules producing (one, ego) or

(one, go). Further study is needed to measure the impact of this issue but, as the

experimental results clearly report, it is not compromising significantly the effi-

ciency.
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Chapter 6

Conclusions

In this dissertation we have contributed with the first framework for the analysis

of semantics in passwords and approaches for guessing passwords more efficiently

than the existing ones.

We began by demonstrating how one can analyse date patterns in a passwords

sample, in Chapter 3. Then we enumerated the relevant date patterns in the largest

real-world password list ever released and indicated the potential vulnerabilities

caused by their occurrence through realistic guessing attack simulations. To our

knowledge, this is the first systematic exploration of date patterns in passwords. In

Chapter 4, we applied Natural Language Processing methods to the segmentation

and classification of password samples. With such methods, we decomposed pass-

words into conceptually consistent parts and inferred their meaning and syntactic

function. The computer-supported semantic classification of passwords is an un-

precedented application of NLP. Furthermore, we are the first to demonstrate how

a computational linguistic model can be used to generalize semantic categories

from a password sample based on its semantic profile.

Lastly, and more importantly, in Chapter 5 we extended the state-of-the-art

model of password patterns and created a model that encapsulates the semantic

and syntactic patterns of passwords. With a set of experiments, we informed the

impact of semantic patterns on the security provided by passwords and evaluated

the expressiveness of our model against the state-of-the-art approach. The experi-

mental results evidence that our model captures password creation patterns better

than any previous model. Besides, they strongly support our hypothesis that se-
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mantic patterns represent a serious vulnerability for the password authentication

scheme.

6.1 Summary of Results

In the following sections we synthesize the main results of this thesis.

6.1.1 Date Patterns

Our visualization enabled discovery of a number of semantic patterns in the Rock-

You list: (a) years after 1969; (b) text words that spell out the name of a month; (c)

sequences of two years; (d) the first day in each month; (e) repeated months/days

and (f) holidays.

These semantic patterns have security implications—most notably, they enable

the creation of language-independent password guessing dictionaries, which re-

quire no a-priori knowledge of the users. These dictionaries could be successful

in an offline attack or against systems that do not implement account lock-out

policies. We created one dictionary of approximately 15,000 popular dates that

guessed approximately 1% of passwords from the RockYou dataset. We also found

that approximately 4% of RockYou passwords were purely numeric dates, which

can be guessed in a dictionary of approximately 200,000 entries. Finally, we found

that over 4.5% of RockYou passwords can be characterized as dates (either purely

numeric dates or dates that spell out the name of the month).

Our findings suggest it would be prudent to recommend that users do not

choose a pure date numeric sequence as their password. Our findings also strongly

suggest the presence of certain patterns in user choice of dates. These patterns

tell us something about user preferences, which provide further insight into the

password selection process.
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6.1.2 General Semantic Patterns

We performed a comparison at the lexical and syntactic level between the lan-

guage used in the RockYou passwords and the natural language, represented by

the British National Corpus. The results showed that a large number of short, very

frequent words in natural language are much more likely to appear in natural lan-

guage than in passwords, including prepositions and conjunctions. However, other

syntactic classes that also contain predominantly short words, such as pronouns,

are significantly more likely to appear in passwords. We also showed that some

differences in word frequency are probably result of semantic preferences. Those

findings call for a more in-depth investigation from the cultural and linguistic per-

spectives.

We found that a semantic model trained with a large password list, can be used

in a guessing attack to crack up to seven times as many passwords as the approach

of Weir et al. [2009], and up to six times as many passwords as the de facto industry

standard (a combination of wordlist and brute force strategies), given the same

number of guesses. Those numbers refer to the passwords stolen from LinkedIn, a

website currently ranked #14 globally [Alexa]. We also found that our semantic

model can ultimately crack, given an unlimited number of guesses, approximately

30% more passwords from the MySpace leak than the approach of Weir et al.

[2009], and 10% more within a 600 million guesses constraint.

In summary, the semantic approach can crack passwords at a higher hits/guesses

ratio, giving to an attacker a significant economy of time during cracking sessions

against targets hashed with slows algorithms. This represents a serious security

vulnerability, as efficiency is critical in a situation where passwords have been

stolen and the cracker is trying to guess them before they are reset.

6.2 Future work

Our research into the semantic patterns in passwords has raised several opportu-

nities for future research. In this section, we discuss these under two thematic

directions.
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6.2.1 Semantic Guess Generator

As described in Chapter 5, the performance of our guess generator currently pre-

vents us from running larger experiments on a standard desktop computer. As

future work, we plan to run larger experiments on a High Performance Comput-

ing (HPC) platform. This will allow us to detect when the success curve begins to

flatten out, which will give us a better understanding of the practical limitations of

our approach.

While our experimental scenarios are surely relevant, there are other interest-

ing experiments we would like to perform. In particular, training our grammar

with smaller password samples would serve to test if the semantics learned from

small samples are capable of compromising the same targets. In this respect, we

expect that the generalization of semantic categories compensate, to some extent,

the reduced sample size.

On a related note, we are currently not exploring the full potential of seman-

tic generalization. By generalizing concepts, we can generate guesses containing

words not seen in the training data. However, as the vocabulary of our grammar is

learned from the training data, we do not generate guesses containing new words.

We plan testing the Semantic Guess Generator with arbitrarily chosen wordlists in

addition, or replacing the learned words. A potential challenge in this scenario is

estimating the probabilities of words. An alternative would consist in using a cor-

pus of English, such as COCA and BNC. Using those corpus would help us answer

if the probabilities of natural language can make us guess as many passwords as in

our current approach.

6.2.2 Anthropological Analysis

Passwords are an interesting source for cultural studies [Andrews, 2012; Bonneau,

2010]. Their secret nature is a kind of guarantee for people that whatever they

write in a password will remain private. The fact that passwords are typed sev-

eral times a day [Florencio and Herley, 2007] reminds people that any thoughts

expressed through them will be brought up often. In systems where changing

passwords periodically is mandatory, the passwords are constantly acquiring new
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contents, which might well be influenced by cultural trends.

When tagged semantically, a list of passwords can be seen as a repository of

thoughts with varying sentiments. Given that passwords contain people’s names,

company names, feelings, actions, etc., answers to questions such as “Is feeling

A more frequent than B?” or “Which political view is more predominant?” can

potentially feed much discussion and hypothesis. Therefore, we envision that the

semantic patterns of passwords would make a rich source for anthropological in-

vestigation. In order to support this direction, the incorporation of sentiment anal-

ysis is likely required; moreover, a visualization interface would be ideal to support

easy visual analysis and tasks such as comparison and filtering.
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