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A B S T R A C T

Classifying skill level of an individual for different tasks has been accom-
plished to different levels of accuracy. This paper explores different machine
learning techniques in an attempt to classify the skill level of an individual
in a highly complex task. Eye tracking of individuals was used to collect eye
gaze data during the task of playing a game of Dota 2. A classifier was not
successfully produced but there is reason to believe that it is possible.
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1 I N T R O D U C T I O N

1.1 motivation
Evaluation of an individual’s proficiency in a complex task can take

a significant amount of time and data accumulation before being able
to provide a skill determination for that individual. Many popular
online multiplayer team games (e.g. Overwatch, League of Legends,
and Dota 2) require a set amount of games played to calibrate an indi-
vidual player’s skill level. Based on skill level, the player can then be
placed among players of approximately the same skill level to ensure
that games are balanced to prevent one team from overrunning the
other. However, accurately determining proficient individuals who
are on brand new, uncalibrated accounts, is still an ongoing prob-
lem [11].

1.2 problem statement
Is it possible to use eye gaze data of an individual to determine

their skill level in a complex task? If possible, skill verification could
be done through eye gaze alone, detection of expert players would
take less time, and eye gaze could be used to detect novice players
and focus their gaze. A novel approach to attempt and quickly de-
termine a player’s Dota 2 proficiency, based on eye gaze data alone,
will be examined and expanded upon. The ultimate goal is to create
a model that can predict a player’s Dota 2 skill level from eye gaze
data. Dota 2 was the game chosen to study this problem because of
its overwhelming complexity.

1.2.1 The Complexity of Dota 2

As mentioned previously, Dota 2 is an online multiplayer game. It
is a game between two teams with five individual players per team.
Dota 2 requires raw mechanical skill, extensive game knowledge, and
team coordination. A typical game of Dota 2 takes between 20 and 40

minutes to play on average and is an extremely complex task with no
two games played being identical. A player has approximately 1000

possible actions that can be made at every tick of gameplay compared
to roughly 35 for chess [9]. There are numerous reasons why Dota 2 is
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1.2 problem statement 2

complex, but some simple calculations can be done based on central
components of the game to give a vague intuition into the complexity
of it.

Each player in each game picks and plays one of 119 playable heroes
and no hero can be represented twice in a game i.e. there are 10

unique heroes played in a game. Most heroes in the game have 4

abilities, some have 5, and one hero has 10. Each ability does some-
thing different and unique. Depending on which abilities are used,
the interaction between abilities is either entirely existent, partially
existent, or non-existent. Skilled players will pick their hero based on
its abilities and how they complement their teammates’ heroes’ abili-
ties, negate enemy heroes’ abilities, or both.

Assuming just the lower limit of 4 abilities per hero, 119 heroes
provide a total of 476 distinct abilities. The number of couplings of
different abilities — using 2 distinct abilities with each other — can
be calculated using the binomial coefficient formula n!

k!(n−k)! where n

is the number of distinct abilities (476) and k is the number of differ-
ent abilities being used (2). The number of combinations is 113,050.
However, the order in which abilities are used in game matters so
the permutation of two different abilities can be calculated with the
formula n!

(n−k)! which calculates to 226,100 permutations. However,
within each game, assuming only 4 abilities per hero, there are only
40 abilities that can be used. With only 40 abilities available, increas-
ing the number of abilities used to a nominal 3, there are 59,280 per-
mutations possible.

In addition to abilities, there are also items that players can pur-
chase with in-game gold earned. There are currently 159 items avail-
able every game once enough gold is earned. Similar to abilities, the
interaction between these items is entirely existent, partially existent,
or non-existent. Not only can items interact with other items, but
they can also interact with hero abilities. Hero abilities can also inter-
act with items. The permutations possible between all abilities and all
items is astronomical.

Dota 2 is not limited to the interactions between abilities and items,
but the numbers in a static context provide insight into the level of
complexity. Complexity also comes from interacting with other play-
ers in the game. Dota 2 is a fluid game where each player consistently
makes decisions based on the current state of game being played to de-
termine what their next move is, their team’s next move, and their op-
ponent’s next move. These decisions are dependent on many things,
but centrally: the heroes on a player’s team, what heroes are on the
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Figure 1: Dota 2 Highlighted User Interface Elements

enemy team, and what items each player has. Generally, the first 500

to 1000 hours of gameplay people are just beginning to have a solid
grasp of the foundations and touching on the intricacies of the game.

1.2.2 Why it Could Work - A Hypothesis

Figure 1 shows a screenshot of gameplay as well as highlights, in
red boxes, elements of the game’s user interface. The elements high-
lighted are always visible and they are always in the same spot –
they are static. However, what information is contained within them
changes depending on the state of the game as well as decisions made
by the player. An abundance of information can be gathered from
these static elements about the current state of a game. From gaze
alone, an experienced player could give a general overview of the cur-
rent state of a game from a simple screenshot of an ongoing game.
While playing the game, players can use these static elements to de-
termine their next move.

For example, the in-game clock consistently ticks every second and
keeps track how much time has elapsed so far. The clock can be
used to help a player keep track of time related events in game such
as: stacking jungle camps every minute, power runes spawning ev-
ery two minutes (starting four minutes into the game), bounty runes
spawning every five minutes (starting at zero minutes in), the time
range which Roshan can spawn again, and protecting or taking out-
posts every ten minutes. It is likely that the previous sentence listed
jargon that you cannot make sense of. This exemplifies the informa-
tion provided by in-game static user interface elements. A novice
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(a) Low Skill - Level 1 (b) Average Skill - Level 4

(c) High Skill - Level 7

Figure 2: Relative Gaze Heatmaps of Different Skill Levels for a Dota 2

Game Played

player playing for the first would not know to use the clock to track
these in-game events. However, a more experienced player uses the
clock to be in the right place at the right time for these events.

1.2.3 Preliminary Heatmaps

Using Tobii Pro Studio’s heatmap creation tool, three different heatmaps
were created from an initial pilot study explained in Section 2.1. One
from an individual with low skill level, one from an individual with
average skill level, and one from an individual with high skill level.
These heatmaps can be viewed in Figure 2. A distinct difference can
be seen between a low skill player compared to both average and high
skill. There are noticeable differences between the average skilled
player and the highly skilled player — the level 4 player has more fo-
cus on their abilities than the level 7 player. However, as hypothesized
in Section 1.2.2, a novice player does not make use of the static user
interface elements as frequently as as those with experience.

1.2.4 Secondary Considerations

A secondary consideration of the research composed contemplates
if there could be a point where eye data is no longer sufficient at ac-
curately predicting individual skill level (i.e. when it can no longer
differentiate between two skill levels). Is there a difference detectable
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between a top 0.1% player and a top 0.001% player? The data col-
lected for this study did not contain two individuals of such a high
caliber, but one individual ranked within the top 500 players in North
America participated. Another secondary consideration is whether
individuals exhibit a pattern of gaze data which could be used to
uniquely identify them.

1.3 related work
Many different studies have been conducted which focus on eye

tracking and the gaze data produced. The following studies show-
case the ability to classify individuals performing a task from eye
gaze data, the differences in eye gaze between skill levels, and the
effectiveness of training novices with eye gaze data from proficient
individuals.

1.3.1 Finding Waldo

Although the use of eye gaze data was not used by Brown et al.
[2], they tracked a user’s mouse movements during the activity of
finding Waldo — a reasonable proxy for eye gaze in this task. This
activity relies on a user’s gaze to search through an image to find
an individual hidden within it. They were able to predict, between
62% and 83% accuracy, whether an individual would be fast or slow
completing the task.

1.3.2 Who is the expert?

Liu et al. [4] were successfully able to predict, with up to 96% accu-
racy, the expertise level of individuals during a collaborative session
creating concept maps. They were able to achieve this as early as as
the first minute or rather the first 5% of observation time.

1.3.3 Gaze Tracking within Sports

A study looking at the differences between near-expert and expert
baseball umpires was conducted by Millslagle et al. [5]. Their study
found that experts found where the ball would be released earlier
compared to near-experts. They also determined that experts can
track the ball longer in the air compared to near-experts.
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Raab and Johnson [8] looked at the difference in search and op-
tion generation strategies between non-expert, near-expert, and ex-
pert handball players. It was determined that the average number
of options created between different levels of expertise was similar,
but the quality of options generated and the final option chosen were
different.

1.3.4 Training Individuals on Expert Gaze Data

Wilson et al. [12] conducted a study to determine if gaze train-
ing enhances laparoscopic skill acquisition and multi-tasking perfor-
mance. Participants were randomly placed into three different groups
for training: trained with footage of the eye gaze as well as movement
of an expert, footage showing the movement of an expert, and shown
nothing. The gaze-trained group outperformed both groups by com-
pleting the the test task faster. They spent more time gazing at the
target of the task rather than the tools used to complete the task.

1.3.5 Summary

Eye gaze data is a useful metric which has a variety of different
uses. The studies above (barring the Waldo study) used it as a cen-
tral measurement for their research conducted. The studies show the
potential of what could be accomplished if a classifier can correctly
predict the skill level of an individual completing a complex task.



2 M E T H O D O LO G I C A L
A P P R OA C H E S A N D R E S U LT S

Creating a classifier to predict a player’s Dota 2 skill level from eye
gaze data was an extensive process. Two of the major steps involved
were the collection of data and the creation of a classifier. Many differ-
ent classifiers were created and will explored in the following sections.
Classifiers were iteratively improved upon to increase performance
and ultimately test their generalizability.

2.1 pilot study data collection
The software used to record the eye gaze data collected was Tobii

Pro Studio which used a Tobii X60 Pro Eye Tracker that records at
60 Hz. Eye gaze data from seven different individuals of different
skill levels was captured. Although the eye tracking hardware was
the same for all participants, individuals could choose to use their
own mouse and/or keyboard if desired. Personal mouses were pre-
ferred by experienced players whereas individuals with no experience
simply used the computer mouse provided. The setup used for the
controlled study data collected can be seen in Figure 3 and is near
identical to what was used in the pilot study except for the tape used
to secure the eye tracker in place. The screen resolution used to play
Dota 2 on was 1920× 1200 which has an aspect ratio of 16 : 10. The
game took up the entirety of the screen when being played.
Each participant would calibrate the eye tracker using the recording
software and then play Dota 2 as their eye gaze was collected for the
duration of a game. The length of Dota 2 games is variable so the
amount of data collected per participant varied depending how long
their game lasted. The eye gaze recording begun at the beginning of
the game played and was stopped when a team won the game or the
participant ended the session.

In total, 11 games of eye gaze data were collected from 7 partici-
pants. The games played ranged in length from approximately 18–67

minutes with an average game length of roughly 39 minutes and a
standard deviation of approximately 14 minutes. The game lengths
and skill level of the individual who played those games can be seen
in Table 1. Each row indicates a different player.
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2.1 pilot study data collection 8

Figure 3: Eye Tracker Setup

Table 1: Game Data Collected

Skill Level Game Length(s) in Minutes

1 37.1

1 24.1

2 50

3 48.1

4 45.2, 67.4, 46.6

4 23.9

7 32.3, 37.7, 17.7

2.1.1 Setting up the Data

The software used captures many different metrics including each
individual eye pupil’s estimated size and the distance between the
eye and the tracker. For each game recording, a tab separated file is
generated with 82 columns containing a variable number of lines of
data depending on the game’s length. Each line of data represents
an individual gaze recording. One second of gaze recording would
produce 60 lines of data.

For the purposes of this study, the data collected was reduced to
three metrics: RecordingTimestamp, GazePointX, and GazePointY. These
three metrics, as referred to by their names from the recording soft-
ware’s manual, were the only data points used throughout the study.
RecordingTimestamp represents the number of milliseconds that have
occurred since the beginning of the recording (t0 = 0ms). GazePointX
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Figure 4: Skill Tiers Defined By Valve

represents the horizontal coordinate of the averaged left and right eye
gaze point on the screen. Similarly, GazePointY represents the vertical
coordinate of the averaged left and right eye gaze point on the screen.
After reduction, any data that was deemed null — it did not contain
GazePointX and/or GazePointY — was not included.

Each gaze data point was labeled with a number dependent on the
proficiency level of the participant that produced it. This proficiency
label was based on the the existing skill levels within the game cur-
rently. Valve, the developer of Dota 2, have 8 different tiers of ranks
which can be seen in Figure 4. They are assigned to players based
on skill level derived from in-game performance. Each tier currently
contains 5 divisions, but for the purposes of this study only the tier
of skill was considered when labelling individuals. The lowest level
of skill is "Herald" (referred to as level 1) and the highest is "Immor-
tal" (referred to as level 8). The number below each tier in Figure 4

represents the label used to distinguish between gaze points collected
from individuals.

The pilot study data consists of the eye gaze data collected from the
games in Table 1. The level 1 participants had never played before and
were given a level 1 skill level and an overview of the game as well
as time to learn the basic controls before playing a game. Roughly
two minutes was spent giving an overview of the game and about 5

minutes to learn the basics of controlling their hero. All participants
played a real match with human players except for the two level 1

players who played with computer controlled players. Players were
allowed to choose whether they wanted to play a real game or a game
with computers.

2.2 a support vector machine classifier
A popular machine learning library provided by scikit-learn [10]

was used to instantiate a support vector machine (SVM) — a super-
vised machine learning model. The model can be trained and tested
to classify data. Unless specifically stated, the model was instanti-
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ated with the default values which entail: a penalty parameter of
C = 1.0, kernel = rbf, and gamma = auto. The training and test
data was randomly split using scikit-learn’s train_test_split method
which has a default training size of 75%, a test size of 25%, and used
the ShuffleSplit method for randomizing the order of the samples.
Many different SVMs diverging from the default values were used to
create Dota 2 skill classifiers that predicted based on eye gaze data
inputted within a feature vector.

What is a feature vector?

Before continuing, it is important to define what is meant by a fea-
ture vector. A feature vector represents the structure of the input data
into the model. Each sample of data uses the same format when train-
ing or testing an individual model. A feature vector can be affected
by factors of how the data was obtained, created, or altered. The
contents of a feature vector are reflected in the output results mean-
ing that different feature vectors created from the exact same data
can produce different results. Which features are used is a choice
by the designer and can be altered. An input takes the general form
of: [feature0, ...featuren] ⇐ label where the features are derived or
taken from data points and the label specifies the skill level of the
player that the data was taken from. For example, one data input us-
ing the feature vector [GazePointX,GazePointY] from data collected
from an "Immortal" player could take the form [843, 128]⇐ 8.

(a) Gaze Trail (b) Gaze Trail Split By Period

Figure 5: Splitting Up Eye Gaze Data Based On Period

One important alteration of the data amongst all the feature vec-
tors used is referred to as a period. A period refers to a set amount of
time which the eye gaze data is split up into during pre-processing i.e.
how many seconds of gaze data will be within one sample. If there
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are 60 seconds of data, and a period of 5 seconds is used, there will
be 12 discrete, non-overlapping samples created of which each sam-
ple contains 5 seconds of continuous gaze data. Figure 5a provides a
simple illustration of a hypothetical gaze trail of a user moving their
eyes from the top left of the screen to the bottom right in a winding
path. Figure 5b has split the gaze trail based on an arbitrary period
where a colour change indicates the end of one period and beginning
of the next.

The following sections will expand on the different SVM models
instantiated, the different feature vector design choices made, the set-
tings used when processing the data into feature vectors, and the
results produced. The sections are presented in the order the research
was conducted. Only level 1, 4, and 7 data was collected for the trials
mentioned in Sections 2.2.1 and 2.2.2.

Results are presented in confusion matrix (CM) format. Each row
in a CM represents a different true skill level and each column shows
how that particular skill level was predicted. For example, in Figure
6 the first row represents how level 1 player samples were predicted.
Each column in the first row represents how a level 1 player was pre-
dicted. For example, 41% of the level 1 samples tested were classified
as level 1, 0% of the samples were classified as level 4, and 59% of
the samples were classified as level 7. A perfect classifier’s CM would
have a diagonal solid in colour indicating that each skill level was pre-
dicted correctly for every sample tested.

An important caveat to note is that when the data was split into
sample periods for SVM trials, data that was marked as being off
screen was not retained. If either or both of the GazePointX or Gaze-
PointY were not recorded as being on the screen, they were not in-
cluded in a sample. This means that two different 5 second samples
may have a different number of final gazes included, depending on
the number of gazes recorded that were "off screen".

2.2.1 Gaze Distance Travelled per Period

The earliest classifier created used a simple feature vector consist-
ing of the gaze distance travelled during a 5 second period. The gaze

length was calculated for a period by using
numSamples∑

n=1

d(gazen, gazen−1)

where d is the Euclidean distance between two points. The period size
was arbitrarily chosen to be 5 seconds as this did not seem too long
nor too short and captured a length of gameplay which a lot of abil-
ities could be used within. One trial’s confusion matrix result using
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Figure 6: Gaze Distance Travelled in 5 Seconds

Figure 7: Average Change in Gaze Per 5 Seconds

this feature vector can be seen Figure 6. The result shows an incom-
plete model that cannot predict level 1 players accurately but is able
to predict level 4 and level 7 players accurately.

2.2.2 Average Delta Change per Period

Another early feature vector designed used the delta change be-
tween each successive gaze within a 5 second period, taking the form

of [
n∑
1

(xn − xn−1, yn − yn−1] where n is the number of gazes in the

sample. This captures whether the user looked left, right, up, down
or fixated on the previous gaze point. One trial’s resulting confusion
matrix can be seen in Figure 7. The results are similar to the previous
feature vector suggesting an incomplete model that cannot predict a
level 7 player accurately but can predict level 1 and level 4 players
accurately.
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Figure 8: Gaze Bin Representation

2.2.3 Gaze Bins

There were small numbers of trials for the feature vectors men-
tioned in Sections 2.2.1 and 2.2.2. From these two feature vectors,
a more extensive feature vector was conceptualized and then imple-
mented. The main problem with the first two feature vectors used is
that the temporal nature of the data was completely lost. The final
representation, once processed, was simply a number or two which
did not preserve any information about the sample of gazes that pro-
duces it.

Gaze bins organizes gazes into bins based on where each gaze took
place on the screen. A representation of an example gaze bin can be
seen in Figure 8. In Figure 8, the screen was split up into 3 rows and
3 columns of bins. It can be interpreted as: one gaze took place in the
top left corner of the screen, one gaze took place in the right centre
of the screen, and 5 gazes took place in the bottom left corner of the
screen.

Using gaze bins partially maintains the temporal nature of the data.
Within a sample, it is possible to know approximately where other
gazes took place during that period. The different settings to produce
a gaze bin feature vector were: bin_rows, bin_columns, period, overlap,
and kernel. Adjusting these settings changed how the data was pro-
cessed into distinct gaze_bin feature vectors. The feature vector pro-
duced, dependent on these settings, was then used to create samples
to train and test on.

Explaining the settings

Both bin_rows and bin_columns were determined at the same time
and were based upon the aspect ratio of the screen that was used
during data collection. The screen uses an aspect ratio of of 16 : 10

so natural values to use would be 10 bin_rows and 16 bin_columns i.e.
a 10 × 16 bin_size. Based on these number, the screen is split into
10 equaled sized rows based on the vertical resolution and 16 equal
sized columns based on the horizontal resolution. This creates a grid
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of 160 equal sized bins. Other bin setups tried were 5× 8 and 20× 32

– half and double the aspect ratio. The grid of bin tallies is the input
into the SVM classifier to train or test upon. The gaze_bin represen-
tation in Figure 8 used a bin_size of 3× 3 and would be inputted as
[1, 0, 0, 0, 0, 1, 5, 0, 0].

The definition of a period can be found above in Section 2.2. Overlap
refers to a pre-processing step when splitting up the data into periods.
With no overlap, the data samples are completely discrete. With over-
lap, it is possible to have samples that contain the exact same data
that is contained in a different sample. Splitting up 30 seconds of
total gaze data into samples based on a 10 second period and no over-
lap would roughly be represented by [gbt0−t10 , gbt10−t20 , gbt20−t30 ]

whereas a 5 second overlap used is
[gbt0−t10 , gbt5−t15 , gbt10−t20 , gbt15−t25 , gbt20−t30 ] where gbtx−ty is a
gaze bin sample processed starting at x seconds (inclusive) and end-
ing at y seconds (non-inclusive).

One benefit of overlapping is that the total number of samples pro-
duced can essentially be doubled if an overlapping time of half the pe-
riod length is used. Additionally, arbitrary discretization of the data
samples can be partially mitigated because the data contained within
one sample can have data contained within another sample. This
could potentially capture relationships between a number of gazes
that happened to be split into different samples.

Limiting the samples used

The number of samples available is dependent on the period length
and the overlap length. To compare the results of different models
trained and tested on the settings mentioned, it was necessary to en-
sure that each model was trained and tested on the same number of
data samples. The lower limit of samples produced is determined by
the highest period length used. The period lengths used, in seconds,
were: 5, 20, 30, 60, 90, 105, and 120. The period lengths chosen were
based upon the initial 5 second period length used previously and
extended to examine the effect a longer duration had on results. Ei-
ther half of the period (rounded up) was used for the overlap length or
no overlapping was used. Thus, 140 training samples and 45 testing
samples could be produced with no overlapping. With overlapping,
280 training samples and 90 test samples could be produced.

Running a trial

For each recorded game, the data was split into samples based
upon both period and overlapping length. Next, each sample was pro-
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Figure 9: Trials Using an RBF Kernel

cessed into its gaze bin representation dependent upon bin_rows and
bin_columns. After, the sample was placed into a central collection
that includes all samples. The central collection was randomly split
up into a training set and test set after all samples had been processed
into gaze bins. This means that each trial has data used to train and
test upon that is different than other trials. The source of the data
is the exact same for every trial, but the data selected to be used is
different for each trial.

The sets were then reduced in size to only include the first n sam-
ples which is dependent on the use of overlapping. An SVM classifier
was then instantiated with a specific kernel: linear, polynomial, or rbf.
The classifier was then trained on the training set. Finally, the classi-
fier was tested on the test set to evaluate its suitability.

The results

Many different trials were conducted based upon different combi-
nations of the settings mentioned. At least four trials were conducted
for each combination to ensure that any results achieved were consis-
tently possible. Based upon the settings listed so far, there are:
n_bin_sizes×n_periods× overlapping_used×num_kernels =
3× 7× 2× 3 = 126 trial combinations. Four trials per combination
gives 504 trials conducted.

All of the results for each combination will not be examined in de-
tail as it would be lengthy and unnecessary. Instead, an overview of
the results will be presented covering the general trend of the out-
comes achieved by the differing classifiers.

Figure 9 shows the CM for every single combination produced us-
ing an rbf kernel, regardless of any of the other settings. The CM did
not change and in every trial every sample was classified as having
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(a) Linear A (b) Linear B

(c) Poly A (d) Poly A

Figure 10: Kernel Choice: Linear vs. Polynomial
bin_size : 10× 16, period : 5s, overlap : 0s

been produced by a level 4 player. It was not determined why this
occurred because time was not allocated to deciphering the reason.

Figure 10 shows the different nature of results achieved based upon
the kernel chosen when initially instantiating an SVM. The other set-
tings used in both trials were the exact same and were:
10× 16 bin_size, 5 second period, 0 overlapping,

140 train_samples, and 45 test_samples. Both CMs are not accu-
rate, but the trials using a polynomial kernel consistently predicted
level 4 skill level more often than other skill levels for each row of dis-
crete level proficiency. The reason for this is likely that the amount of
data available between skill levels was not equal and the highest total
amount of data per skill level was collected from level 4 players. This
distinction was much more pronounced within lower period lengths.
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(a) 5× 8 (b) 10× 16

(c) 20× 32 (d) 20× 32

Figure 11: Different Bin Sizes
kernel : linear, period : 30s, overlap : 0s

The bin_size ultimately played a non-significant role in the classi-
fier’s accuracy. The trials seen in Figure 11 showcase trials with a
differing bin_sizes. The classifiers shown used the exact same settings
that were used in Figure 10 except a period of 30 seconds was used
instead. The results not shown with different settings followed suit —
little to no impact could be seen based upon the bin_size used.

Figure 11 also showcases the inconsistency in results achieved
amongst independent trials using the exact same settings. Both (c)
and (d) represent the exact same feature vector but two different tri-
als. Each of the CMs are quite different except for they both predicted
level 4 players quite accurately. Other skill levels were not accurate
and the wrong prediction that led to inaccuracy was different between
both trials. However, it can be seen that the trials are more accurate
overall than trials shown in Figure 10.

One setting that had noticeable effect on trial results was the period
length. This is evident in the trials shown in Figure 12 differing only
in the period length used. The overall accuracy of the CM produced
in trials increased when the period length increased. Overall accuracy
also increased when overlap was used.
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(a) 30 Seconds (b) 60 Seconds

(c) 90 Seconds (d) 120 Seconds

Figure 12: Different Period Lengths
bin_size : 10× 16, kernel : linear, overlap : 0s

(a) No Overlapping (b) No Overlapping

(c) Overlapping Used (d) Overlapping Used

Figure 13: No Overlapping vs. Overlapping Used
bin_size : 10× 16, kernel : linear, period : 120s
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Figure 13 shows two trials with a 120 second period without the
use of overlapping and two trials with overlapping used. It is clear
that the use of overlapping increases the overall accuracy of the model.
The reason for this is likely the increase in the data available to train
upon. When overlapping is used, 280 training samples and 90 tests
samples were used in contrast to 140 training samples and 45 testing
sample when it was not used.

Top results and testing generalizability

The results achieved by the classifiers shown in Figure 13 were
amongst some of the highest overall accuracies achieved from differ-
ent setting combinations. After trials were run on all different setting
combinations, top results were narrowed down. Narrowing down re-
sults took into account recall, precision, and F1 score in addition to
overall accuracy. To obtain these statistical measures, confusion matri-
ces were converted into a pandas-ml [6] confusion matrix which auto-
matically calculates and provides these statistical values with ease to
the programmer. A tolerance to have each of the statistical measures
above 70% was set to find some of the best setting combinations.

There were 29 unique combinations that were above the tolerance
set which can be seen in Table 2. The lowest period length was 60

seconds with overlapping. From there, each increase in period length
was represented. The linear kernel was represented more than the
polynomial kernel with 19 occurrences compared to 10. All bin sizes
were represented. Noticeably, many more results depended on over-
lapping being used than no overlapping.

Up until this point, the classifiers created and tried were being
tested on participants from which data they had seen before. To clar-
ify, the testing set did not contain data samples found within the
training set, but it did contain data from individuals represented in
the training data. For a classifier to be successful, it must be gener-
alizable to data it has never seen before or, in the case of this study,
individuals it has never seen before.

The top feature variable combinations derived in Table 2 were used
as the basis to create classifiers to test on totally unseen individuals.
Data from a level 1 individual, a level 4 individual, and one level 7

game was left out of the training set. Then, the classifier was trained
as normal. Finally, it was tested on data from the games data that was
entirely void from the training set.
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Table 2: Top Setting Combinations

bin_size period overlap kernel

10x16 60s 30s linear

10x16 90s 45s linear

10x16 90s 0s linear

10x16 105s 53s linear

10x16 120s 60s linear

10x16 120s 0s linear

20x32 60s 30s linear

20x32 90s 45s linear

20x32 90s 0s linear

20x32 105s 53s linear

20x32 105s 0s linear

20x32 120s 60s linear

20x32 120s 0s linear

5x8 60s 30s linear

5x8 90s 45s linear

5x8 105s 53s linear

5x8 105s 0s linear

5x8 120s 60s linear

5x8 120s 0s linear

10x16 90s 45s poly

10x16 105s 53s poly

10x16 120s 60s poly

20x32 105s 53s poly

20x32 120s 60s poly

5x8 60s 30s poly

5x8 90s 45s poly

5x8 105s 53s poly

5x8 120s 60s poly

5x8 120s 0s poly
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(a) period : 105s

overlap : 53s

(b) period : 120s

overlap : 60s

(c) period : 60s

overlap : 30s

(d) period : 60s

overlap : 30s

Figure 14: Unseen Data Trial Results
bin_size : 10× 16, kernel : linear

Four trial results can be seen in Figure 14. These results were
selected randomly from all the trials conducted using a linear kernel
but are indicative of the overall outcome produced. All the selected
results also used a bin_size of 10× 16. Any rows with "NaN" indicate
a skill level not present in the test set but it was amongst the predicted
skill levels by the classifier. The trend seen in testing unseen individu-
als was inconsistency and poor overall accuracy. This is evident in (c)
and (d) which happened to use the exact same settings. No classifier
produced using the Gaze Bin feature vector was able to generalize to
completely unseen data. The success seen in Figure 13 is likely at-
tributed to the classifiers becoming overfitted to the training data —
it learned the data too well.

2.2.4 Looking at Different Gameplay Stages

One final attempt to create a classifier was used in conjunction with
an SVM and builds on top of the Gaze Bin feature vector. It was
brainstormed that creating separate classifiers for different stages of
gameplay could be more plausible than attempting to create one that
oversaw all stages of gameplay. If correct, the classifiers could be com-
bined into one overall classifier that would likely be able to predict a
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player’s proficiency in Dota 2.

This is plausible because a game of Dota 2 requires different game-
play as well as different knowledge to be drawn upon for different
stages of the game. Amongst experienced players, there a different
stages within a game that are dependent on how much time has
occurred and what is happening within the game. Three acknowl-
edged stages of gameplay include: the early-game, mid-game, and
late-game.

A game of Dota 2 does not necessarily reach each stage because
the game could end before the stage is reached, but every game has
an early game as it begins right when the game starts. There is no
concrete definition of when one stage ends and another begins but
for the purposes of this study time cutoffs were prescribed. The defi-
nitions are as follow: early-game is 0–10 minutes, mid-game is 10–25

minutes, and late-game is 25+ minutes. These times are based upon
personal experience and knowledge from playing and watching Dota
2 for eight years along with being a player with level 7 skill profi-
ciency.

Training and testing classifiers was almost identical to what was
done at the end of Section 2.2.3. The only difference was that the train-
ing and testing data sets for each specific stage classifier were limited
to data that occurred during the classifier’s specified time range. The
data available to train and test on was quite limited.

Trials were also first conducted without omitting any individuals
from the training data set. Trials were then conducted by leaving
out specific individuals from the training set and testing the classifier
specifically on samples from individuals left out. The results for both
were near-identical to those presented in the previous Section 2.2.3.
This method for creating a specific time classifier was not adequate to
classifying unseen individuals.

2.2.5 SVM Conclusions

The top results from trials using an SVM classifier were feature vec-
tors with a longer period setting and used of overlapping. The top
feature vector used a linear kernel, a period length of 120 seconds,
and used overlapping. Nonetheless, this feature vector was not gen-
eralizable and unable to successfully classify a player’s Dota 2 skill
level.
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2.3 a long short term memory classifier
Using a long short term memory (LSTM) network was the next di-

rection decided upon to create a working Dota 2 skill classifier. An
LSTM was chosen primarily because the nature of the data is tempo-
ral and sequential. A whole game of Dota 2 played can be thought of
as producing one sequence of gazes. That sample sequence is further
broken down into multiple discrete sequences to create samples to
train upon, as was also done in Section 2.2.

Each sequence of data takes place across a set period of time. What
is looked at presently can and does determine what will be looked
at in the future. A player may gaze at their minimap in the bottom
left hand corner and see an enemy approaching to their right, giving
them information about the current state of the game — the locations
of opponents. From this gaze, they may choose to look to the left side
of their screen to run away from the enemy, the right side of their
screen to try and engage the enemy, or choose to look at something
entirely different. Either way, their gaze choice is almost certainly de-
pendent on their previous gaze. Using an LSTM network would help
ensure that relationships between gazes and their sequence could be
learned as well as maintained to help accurately predict a skill level
based on a sequence of gazes.

PyTorch [7] was used to create an LSTM classifier. One of the main
benefits of using PyTorch is that it is simple to perform training and
testing with the use of batches on a graphics processing unit (GPU).
Using batches significantly speeds up training and testing of a classi-
fier by training and testings on multiple samples at a time rather than
one at a time. This is an important point to note because conducting
a trial took significantly longer using an LSTM classifier compared to
an SVM classifier.

Table 3: LSTM Classifier Architecture

Layer Type Parameters Used

1 Linear in_features, out_features
2 LSTM input_size, hidden_size
3 Linear in_features, out_features

2.3.1 LSTM Layers and Feature Vector Considerations

The number of layers used in creating an LSTM for each trial was
minimal. The basics of the architecture can be seen in Table 3 as well
as the parameters that were used when instantiating each layer as re-
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ferred to in PyTorch’s [7] torch.nn documentation.

Explaining the settings

The major difference between the feature vector used in Section
2.2.3 and the one used with the LSTM classifier is the actual input
used for training and testing the classifier. The input for the LSTM is
a sequence of samples where each individual sample takes the form:
[normalized GazePointX, normalized GazePointY, t] where t is
the normalized time the gaze occurred, if included as determined by
a boolean value keep_time. The number of samples in a sequence is
dependent on the period length used.

The settings consisted of: period, overlapping, keep_time, epochs, and
subsampling_size. The period and overlapping are identical to what was
seen previously in Section 2.2.3. How many iterations the model
trained before being evaluated was the number of epochs used.

Model parameters that were changed included use_dense_layer and
hidden_dimension_size. Hidden_dimension_size was dependent on the
number of individual samples within a sequence. Although they are
not necessarily considered a part of the settings which produce the
feature vector, these two model parameters will be included within
the setting descriptions from now on for ease of clarification.

To prevent classifiers becoming too large with too many learnable
parameters subsampling was used. Subsampling took place after data
was split up into discretized period samples. Each sample period was
reduced in size by keeping one in every four individual samples. For
example, one second of gameplay produces approximately 60 individ-
ual samples because the eye tracker collects data at 60 Hz. If a period
of one second is used, with five seconds of total gameplay, 5 sample
periods (sequences) will be created with each sequence containing
60 individual samples of the aforementioned individual sample form.
The time difference between samples would be: 4/60− 0/60 = 0.0666̇
seconds or approximately 66 milliseconds. In contrast, the average
visual reaction time is 284 milliseconds [1]. The amount of data lost
is acceptable because it is lower than a realistic visual reaction time
which means that the difference in time between gazes is still less
than an individual’s ability to react to what they are seeing during
gameplay on screen.
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Explaining the layers

The first layer is a linear layer, sometimes referred to as a dense
layer in other popular machine learning libraries. Its individual layer
parameters are in_features and out_features. The in_features parameter
is the number of of variables contained within an individual sample
from the input sequence — 2 if time is not included and 3 if time is
included. The out_features was arbitrarily chosen to be 32 and is a
number that was planned on being adjusted to see how it affects the
results. This layer was initially thought to be a pseudo-embedding
layer for the initial input. The use of this layer was also a setting con-
sideration as it could be left out. Past early trials, it was discussed
and resolved that this was an incorrect use of a linear layer so this
layer was left out entirely for later trials.

The second layer is the LSTM layer. If the first linear layer was
included, the input_size to this player would the out_features of the lin-
ear layer. However, if the first linear layer was not used, the input_size
would be the same as what would be used for the first linear layer had
it been used. The hidden_size was set to be the same as the number of
individual samples within an input sequence.

The second linear layer in_features was equal to the hidden_size in
the LSTM layer. The out_features was set to the number of distinct
skill groups present in the training data set being used in each specific
trial.

2.3.2 Running a Trial for an LSTM Classifier

Trials were conducted similarly to what was seen in Section 2.2.3.
However, it was decided that the train and data sets would be game-
play data from unique individuals. Eye gaze data in the training set
would be data from individuals not present in the testing set with an
exception during early trials that the level 7 data is from the same
player but the games it was derived from were not the same. The
majority of trials using an LSTM classifier ensured no intersection of
players found in the training set and testing set.

Each classifier trial was run four times to ensure consistent results.
Every classifier used an SGD optimizer with learning_rate = 0.001
and momentum = 0.9. The loss function (criterion) used was
nn.CrossEntropyLoss which combines nn.LogSoftMax and nn.NLLLoss
into one criterion [7]. After the classifier was created, it performed
learning iterations over the training data set for the determined num-
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(a) 30 Seconds

hidden_dim : 300

(b) 30 Seconds

hidden_dim : 300

(c) 5 Seconds

hidden_dim : 75

(d) 5 Seconds

hidden_dim : 300

Figure 15: Different Period Lengths
epochs : 50, overlap : period

2 ,

lin_out : 32, keep_time : False

ber of epochs. After, it was tested on the test data set to determine it’s
effectiveness in classifying a gaze sequence effectively.

2.3.3 Early Trials and Results

Early trials only included data from players with a skill level 1,
level 4, or level 7. Although undetermined, it was thought that the
difference between a level 3 and level 4 player may be more difficult
to determine than the difference between a level 1 player and level 4

player or a level 4 player and a level 7 player. Thus, level 2 and level 3

data was not included to possibly aid in making classification easier
between players skills levels further away from each other.

Trials performed early saw a noticeable difference in the effect of
one setting used compared to the trends presented in Section 2.2.3.
With epochs = 50, overlap = period

2 lin_out = 32, and keep_time =

False as the other settings, Figure 15 shows two classifiers using dif-
ferent period lengths i.e. a longer sequence of gazes as input.
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(a) (b)

(c) (d)

Figure 16: No Overlapping
epochs : 50, period : 5s, overlap : 0s, lin_out : 32,
keep_time : False, hidden_dim : 75

The trend noticed was that as period length increased, the overall
accuracy of the classifier reduced. The trials using a period of 30 sec-
onds had an overall accuracy ranging from 37.4%–48.4% whereas a
period of 5 seconds ranged from 62.4%–69.1%. A smaller period pro-
duced higher accuracy and reduced inconsistency between trials.

The use of overlapping still increased the overall accuracy of mod-
els. Figure 16 shows trials using a 5 second period length with the
same feature variables as in the previous paragraph except no over-
lapping was used. The overall accuracy ranged from 48.5%–69.1%.
Although the highest accuracy achieved was on par compared to the
trials using overlapping shown in the previous paragraph, the lack of
overlapping appeared to produce an inconsistency within the trials.

An increase in the amount of epochs showed an increase in the over-
all accuracy achieved. This is an expected result as in increase in
epochs allows the classifier to potentially learn more because it iter-
ates over the training data more times. With the use of 100 epochs,
the overall accuracy was between 52.8%–76.7%. Trials can be seen in
Figure 17.
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(a) (b)

(c) (d)

Figure 17: Training with 100 Epochs

epochs : 100, period : 5s, overlap : 3s lin_out : 32,
keep_time : False, hidden_dim : 75

2.3.4 Looking at Different Gameplay Stages Again

Because the highest accuracy of classifiers developed was not gener-
alizable, the idea mentioned in Section 2.2.4 was revisited. However,
rather than creating separate classifiers for each different stage of the
game, it was faster and more straightforward to check what part of
the game a misclassified sample took place. The number of times a
gaze was incorrectly predicted was tracked for each specific part of a
game.

The games that this was tested on were roughly 33 minutes, 33 min-
utes, and 38 minutes in length. The games were divided into thirds
to determine what part of the game a classification was incorrect in:
the first third of the game, second third of the game, or final third of
the game. Figure 18 shows the tallied results for two different classi-
fiers instantiated and evaluated. It was decided that creating separate
game stage classifiers would be highly unlikely to produce a more ac-
curate classifier because there was not a significant difference between
the different times of when samples were misclassified.
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(a) Trial 1 (b) Trial 2

Figure 18: Count of Misclassified Samples by Gameplay Stage

2.3.5 Changing to Binary Classification

The highest classification achieved was with a low period of 5 sec-
onds, regardless of other feature vector variables used. The results
of these preliminary trials are not generalizable. This caused a pivot
towards attempting to create a classifier that could predict if a player
was skilled or novice. The player skill levels already in place were
used to determine if a player was a novice — a skill level of 1 was
labelled novice and any other skill level was labelled as experienced.

It was also decided shortly after switching to binary classification
that the first linear layer would not be used anymore. The trial results
following, unless otherwise noted, only used one level 1 individual
and one level 4 individual to train as well as a different level 1 and
different level 4 individual to perform classifier evaluation.

The final setting from the original listing, keep_time, showed min-
imal effect. The overall accuracy for no time included in the input
ranged from 77.6%–78.9% and the overall accuracy for time included
ranged from 78.2%–79.5%. The overall trend of including the nor-
malized time within each individual sample was a slight increase in
overall accuracy.

Unfortunately, due to a programming error, no more trials using a
period of 5 seconds and an overlapping of 3 seconds were run. As a
consequence, only data from trials using a period of 5 seconds with
no overlapping will be referenced for the remainder of the paper. It
is likely that better results would have been achieved with the use of
overlapping, but it cannot be said for certain.

2.3.6 Labelling Gazes based upon Static UI Elements

The next iteration in feature vector design changed the individual
input format. Each individual input took the form [gaze_type, t]



2.3 a long short term memory classifier 30

where t is the normalized time the gaze type occurred. There were
many different gaze types defined which were based upon the high-
lighted static UI elements seen previously in Figure 1. The intuition
behind this design was that the classifier would easily be able to learn
a pattern or order of gazes that may be able to identify an experienced
player. It was hypothesized that more experienced players have rou-
tine eye gaze habits that make use of UI elements. This approach
would reduce the possible number of inputs drastically because there
is a much smaller number of labels being used than possible pairings
of normalized eye gaze coordinates.

In total, 9 gaze type labels were defined: [radiant_heroes, clock,
dire_heroes, minimap, gold_status, hero_items, hero_abilities, gameplay, and
unclassified]. More labels could have been used, but it would have re-
quired additional information beyond eye gaze data. For example, to
determine if what was being looked at was gameplay or the in-game
item-shop, it would be required to know when the player opened the
shop by either hitting a specific keybind or manually clicking on the
shop to open it. When the shop is open, it covers a portion of game-
play on the right hand side of the screen. It was not feasible to make
such distinctions with limited time remaining.

(a) 60.5% Accuracy (b) 73.1% Accuracy

(c) 76.7% Accuracy (d) 83.4% Accuracy

Figure 19: Using Gaze Types
epochs : 100, period : 5s, overlap : 0s,

keep_time : True, hidden_dim : 75
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(a) 73.5% Accuracy (b) 87.2% Accuracy

(c) 81.9% Accuracy (d) 77.0% Accuracy

Figure 20: Using Gaze Types
epochs : 300, overlap : 0s,

keep_time : True, hidden_dim : 75

If a gaze occurred within a pre-defined area of the screen, it was la-
belled as the area it took place in. If it did not occur in a specific area,
but was still determined to be on-screen, it was labelled as gameplay.
If it was off-screen, it was labelled as unclassified.

A set of trials with 100 epochs can be seen in Figure 19. The overall
accuracy ranged from 60.5%–83.4%. Although inconsistent, a higher
overall accuracy was achieved. The results of increasing the epochs
to 300 can be seen in Figure 20. It had an overall accuracy range of
73.5%–87.2% which was more accurate and more consistent.

2.3.7 Classification using Multiple Samples

The final iteration on the classifier was a new method of evaluation.
Instead of testing on one sequence, multiple sequences from the same
player were tested on. The classifications were tallied and the major-
ity prediction was the final classification for the sequence of samples.

Implementing this required altering the pre-processing step of the
test data set creation. After splitting up test data into sequences,
sequences would be grouped together depending on the test_length
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(a) 84.4% Accuracy (b) 95.3% Accuracy

(c) 86.7% Accuracy (d) 93.0% Accuracy

Figure 21: Evaluating with Multiple Samples
epochs : 300, overlap : 0s, keep_time : True,

hidden_dim : 75, test_length : 7

used. To ensure that there was not a tie in classification predictions, 7

was chosen as the number of sequences to test upon. For a 5 second
period, this meant that 7 samples, each containing 5 seconds of gaze
data, would be classified — a total of 35 seconds of gameplay. During
evaluation, after the seventh sample was classified, the skill level pre-
dicted most was the final prediction for that test sample.

Figure 21 shows the results of this final alteration to a classifier. The
accuracy was the highest achieved yet. However, the data used up un-
til this point was still extremely limited. There were only two games
of data within the training set and two games in the testing set. The
results also show that when accuracy dropped, the experienced player
was being classified incorrectly as a novice, not the novice player be-
ing predicted as experienced.

2.3.8 Study Data Collection

More data was accumulated during an official study amid the late
stages of the thesis. The aim of the study was to collect data from two
distinct individuals for each of the 8 original skill levels defined in
Figure 4. There were 10 participants total, of which 1 the eye tracking



2.3 a long short term memory classifier 33

setup was not able to calibrate properly. The 9 remaining players all
played a full game of Dota 2. The skill levels were: 1, 1, 1, 1, 3, 5, 7, 7,
and 8.

Results from Study Data

The final classifier in the previous section was tested on study par-
ticipants’ data. It was trained and classified in the same manner, but
either the experienced or novice player’s data in the test set was re-
placed with a study participant’s data. The success seen in the pre-
vious section was not generalizable to the new data introduced. The
overall accuracies produced were lower and trials produced inconsis-
tent results.

(a) Level 5 - 71.8% (b) Level 5 - 67.2% Accuracy

(c) Level 7 - 76.6% Accuracy (d) Level 7 - 59.4% Accuracy

Figure 22: Evaluating with Multiple Samples
epochs : 300, overlap : 0s, keep_time : True,

hidden_dim : 75, test_length : 7

Figure 22 shows trial results from the newly collected data. The
novice data was kept identical as the previous results shown thus far.
The test data for the experienced player was switched to the study
participant’s data. The accuracy is above 50% for the trials, which is
better than guessing, but this due to the classifiers ability to correctly
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predict novices within the pilot study’s data collection. The classifier
is not capable of consistently predicting experienced players correctly
meaning it is not generalizable.

(a) Level 7 Player (b) Level 8 Player

Figure 23: Level 7 vs. Level 8 Heatmap Comparison

An interesting result of the study data was the heatmap produced
by the level 8 participant — a top 500 player within the North Amer-
ican region. The heatmap can be seen in Figure 23b. There is a stark
difference between the level 7 player’s heatmap produced and the
level 8 player’s heatmap produced. In contrast to the level 7 player’s
heatmap, there is much more gaze focus on the bottom portion of
the screen where abilities, gold status, and items are displayed on the
game’s UI.



3 C O N C L U S I O N

Two prominent machine learning libraries were employed in an at-
tempt to create a classifier capable of distinguishing the different level
of skill between Dota 2 players based on eye gaze alone. A support
vector machine classifier was used with many different feature vec-
tors. Yet, no classifier created was generalizable.

Next, a long short term memory network was instantiated with
different feature vectors. Classifying players was switched to either
novice or experienced. However, successful feature vector designs
found using the limited data were not generalizable with any study
data collected.

3.1 future work
Figure 23 clearly shows a distinction in gaze between an extremely

high skilled player and a high skilled player. Although this study was
unable to produce a classifier capable of distinguishing between play-
ers, it is likely possible that one could be produced with a different
approach.

Nonetheless, one of the severe limitations of this study was the
amount of eye gaze data available. A focus on collecting more data
would likely be the starting point for future work. One approach
to achieve this could take advantage of using webcams to create a
tool which people could voluntarily use to record their eye gaze from
Dota 2 gameplay. PyGaze [3] provides an example of how this is
achievable.

35
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