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A B S T R A C T

Technology has altered the immersion of our lives for the worse. As
technology becomes more integrated into our lives, we spend more
time with screens and lose more time in our life experiences. Using
touch-free technology can lessen the divide between technology and
reality and bring us closer to the immersion we once had before. In
this research, hand gestures and mental commands were explored to
enable interaction with a camera without holding or touching it. Hand
gestures were used to change different camera modes and mental
commands to initiate/execute a mode. Different camera modes are
difficult to implement without the use of eye-tracking. For example,
visual search relies on an object selecting a region in the scene by
touching the touchscreen on your phone; using eye-tracking instead,
the fixation point is used to select the region. Using multiple touch-less
gestures creates more fluent transitions between our life experiences
and technology.
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1
I N T R O D U C T I O N

1.1 motivation and problem statement

Technology has evolved over many years and is becoming more
convenient to the point of constant presence. Each evolution has
changed how we live our day-to-day lifestyles. Our communication
has become instantaneous and can reach anyone around the world.
Our expectations on how we perceive time, distance, and relationships
have changed from the past [11]. Previously, we would need to wait
until the person was readily available by telephone or in-person; our
expectation is disconnectivity. Now, we are expected to be connected
not just in one way but in numerous ways on multiple social media
platforms [11].

Social media has impacted the transition between experiences. Our
life experiences have been fragmented whenever there is a downtime
in our lives or when technology is presented [4]. For example, many
people have been to concerts to see their favourite artists perform
live on stage, which is a special in-person event. Unfortunately, many
people would also like to record the moment on their phones, shatter-
ing the immersion of the present moment. Even a simple picture or
internet search could ruin the moment as the process of reaching for
your phone would break the immersion of the experience.

1.2 overview

Cameras are one of the most used technologies on a day-to-day basis.
It is used in various ways: social media, visual searches, messages, etc.
Smoothening the transition between our life experiences and cameras,
when cameras are needed to connect with people worldwide, would
require another method to interact with the camera.

The focus of this thesis is on introducing another way to use a
camera, making it less obstructive and interruptive to create a more
immersive and fluent experience. Reaching and unlocking your phone
could distract you from the life experience as it would divert your
attention away from the current moment with the phone’s display
of unrelated notifications. The solution presented is to remove the
display entirely to hide any distractions and mount the camera where
the user does not need to reach for it.

Mounting the camera alone does not solve the user reaching for the
device. Today’s interaction involves touching the display or camera to
take pictures or change device settings. Touch-less gestures were used
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2 introduction

to interact with the camera minimizing the user touching the device.
Two main camera interactions were replaced with touch-less gestures:
mode changing and mode execution.

Cameras not only take simple photos but can be used as a utility
tool. For example, identifying and analyzing products, shopping,
QR codes, videos, panoramas etc. Therefore, mode changing would
require different gestures to indicate which mode is needed and
require flexible gestures for adding new modes in the future. One
option is using the camera to detect any hands and check the form
of the hand. Using hand gestures with the camera does not need
additional hardware to carry or wear, making it perfect for interacting
with the camera.

The one interaction that will stay the same throughout every use case
is mode execution and is also the most common interaction. Reusing
hand gestures is impossible as performing the gestures will block
the camera’s field of view. Another considered option that requires
minimal training and no hardware is blinking. However, blinking
occurs unconsciously and frequently, leading to false positives and
can cause uncomfortable experiences, especially if mode execution
is performed in succession. Since using the camera to detect mode
execution is not possible, another device needs to be added to the
camera.

The optimal method when adding another device is to integrate it
with the mounted camera rather than wearing two separate devices.
In addition, the gesture needs to interact with the additional device
without touching it but does not need to be flexible like hand gestures
since initiation does not vary between each mode. The device chosen
is a brain-computer interface (BCI) which measures brain activity and
outputs digital signals that can be used for various interactions [3].
Although it is a separate device, future technology can integrate a
camera with a BCI. The BCI also restricts the camera to be mounted
on the head to measure the brain waves, but this is not a problem
since the user’s head is naturally looking in the direction of interest. In
addition, maneuvering the device with the head involves more gross
motor skills than hands, making it easier to maneuver with our heads.

One of the features of a BCI is recognizing patterns in our brain
activity to create a mental command based on the pattern [3]. Although
it requires training to create and execute a mental command, it is
one of the only gestures that does not require physical contact with
the device to interact with the device, allowing the user to be more
immersive to the present moment.

Once the mode has been executed, it is essential to follow up with
feedback. Since feedback needs to be sent without using a display,
two other options were considered: audio and haptic feedback. Audio
feedback allows the system to ask users questions about the mode
(e.g. find on the internet, post on social media, etc.) or describe further



1.2 overview 3

details about the photo taken. Haptic feedback is simple and easy
to understand but does not allow any follow-up from the user or
flexibility like audio feedback does. Overall, audio feedback can make
more complex interactions with the user than haptic feedback and
thus is used for the feedback system.

In summary, creating the touch-free camera may allow people to be
more immersed in the present moment. Touch-less gestures focus the
user on what is happening rather than maneuvering the camera or
smartphone.





2
R E L AT E D W O R K

This section will discuss works done in the past that are closely
related to this work including hand gestures, hybrid BCIs, and search
and select tasks.

2.1 hand gestures

Hand gestures have been used to interact with software applications
[1, 9]. Alkemade, Verbeek and Lukosch [1] used hand gestures to
select what tools the user wants from the CAD software in a virtual
environment. They have also explored in choosing natural gestures to
relate with the conceptual design, so that it establishes a useful set of
gestures to improve efficiency of the gesture-based interface [1]. Hand
gestures are very flexible and can be distinct from each other with
little changes to our hands. For example, the number of fingers held
up and orientation of the hand [9]. This relates to the work on how
gestures were chosen and how they can interact with the camera.

2.2 hybrid bcis

Selecting different objects with just our eyes alone can be difficult,
as unintentional fixations and arbitrary dwell times can occur when
users are engaged in another activity, also know as the Midas Touch
problem [12]. To remove these false positives a BCI was used to replace
dwell times with a mental command. There are three different types
of BCIs [12]:

Active BCI: Derives its outputs from brain activity that is directly
consciously controlled by the user, independently from external events,
for controlling an application.

Reactive BCI: Derives its outputs from brain activity arising in
reaction to external stimulation, which is indirectly modulated by the
user for controlling an application.

Passive BCI: Derives its outputs from arbitrary brain activity with-
out the purpose of voluntary control, for enriching an HCI with
implicit information.

Active BCIs was used in this work, as well combining eye-tracking
as the second input modality creating a hybrid BCI [12].
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6 related work

2.3 search and select

The effectiveness of the hybrid BCI has been evaluated by compar-
ing past methods of search and selecting methods [10, 12]. Giving
voluntary control when the selection happens gives more accurate
selections [12]. Although hybrid BCIs performed slower than stand-
alone eye-tracking devices [12], hybrid BCIs outperformed in terms
of user-friendliness, and more users achieved reliable control than
pure eye-tracking [10]. This work uses search and select methods
proposed by hybrid BCIs to ensure the users have reliable control
while maintaining user-friendliness and touch-free interactions with
the device.



3
M E T H O D O L O G Y

This section will talk about the methods used to obtain a fluent
experience and how they can smoothen the transition between our life
experiences and when reaching for our camera. This section will also
describe why and how these methods interact with the camera. All
the chosen methods are touchless, meaning the user does not need to
touch any devices to interact after the device has been worn.

3.1 mental commands

Mental commands are effective in minimal physical contact with
the device. Reducing physical contact can increase the immersion of
the experience by allowing the user to be more immersive rather than
maneuvering the device with their hands. Mental commands depend
on recognizing patterns in the user’s brain activity and learning the
difference between the user’s neutral state and the desired command
state [3]. So, it is optimal to choose a thought that can be distinct and
as strong as possible in a neutral state. The thought can be literal or
abstract (e.g. the mental command "lift" can associate with lifting a
virtual box (literal) or visualizing a scene (abstract)). The choice of
method depends on the user’s disposition towards a certain modality
[3]. A strong disposition towards a certain modality of sensory input
(touch, sound, taste, etc.) can focus on the command state easier [3].
Multiple command states are possible but avoided since it requires
intensive training to be comfortable with two or more commands and
trigger them independently. Therefore, using one mental command
must be associated with a constant interaction throughout all the
camera use cases. The interaction used to associate with the command
is mode execution.

3.2 hand gestures

As mentioned, only one command state is used for interacting with
the camera in all the use cases, but the purpose of a photo can vary
between each use case. So, it is required to have a dynamic gesture
that can account for future and present purposes. Our hands can be
changed in various ways, for example, the position and curvature of
our fingers. This feature makes hand gestures a good candidate for
handling different use cases as it could associate one hand gesture
to one or more use cases. This gesture also does not require any
additional hardware to recognize since images of hands are sufficient

7



8 methodology

and accurate enough to trigger each hand gesture independently.
Different camera modes are implemented to fit the user’s needs or
requirements. So, one hand gesture will be associated with one camera
mode.

3.3 eye tracking

Images can be very useful in many ways, but images themselves
provide little to no context to what the user is focusing on in the
scene. The only way to determine that context is if the scene only
contains one object or is more significant than all the other objects.
One possible solution is eye-tracking to determine where the user is
interested in the scene. Eye-tracking allows different applications to
be possible that images alone cannot provide. Combining eye tracking
with image processing algorithms can provide more context and detail,
making different camera modes possible without needing a display or
touching any devices.

3.4 feedback

Achieving the most immersive experience would require the user not
to look at any display. Although a display is very effective in showing
results and progress, the program must send feedback without any
display. A possible alternative to let users know what is going on
with the progress is audio feedback. Audio feedback can have many
forms, such as audio cues (sound effects) and speech. Audio cues can
convey different kinds of information in a short time. For example,
one sound effect can associate when an action is starting, progressing,
or finished, making the user understand what the device is doing
at all times. Associating sound effects with a status needs to relate
to (e.g. shutter sound when the picture is taken); otherwise, it will
be difficult to understand what information is trying to be conveyed.
Speech is used for conveying complex information that audio cues
cannot do understandably in a short time. In a photo-taking context,
speech can explain details about a photo such as objects seen, location,
visual sentiment, etc. The context can be more specific to the user’s
interest and provide more meaningful feedback about the photo using
eye-tracking.



4
I M P L E M E N TAT I O N

This section will discuss the hardware used to detect gestures de-
scribed in the previous section. It will introduce what APIs in the
software architecture is used to recognize gestures and how they are
recognized. It will also introduce what camera modes are implemented
to showcase how the methods interact.

4.1 hardware

Our classic camera device needs to be modified to recognize men-
tal commands and hand gestures. Also, the camera should not be
maneuvered by our hands to achieve maximum immersion. All the
devices used are, as a result, are worn on the head. Maneuvering a
camera with a head requires fewer motor skills than maneuvering
with hands. Since the head area involves larger muscle groups (gross
motor skills) than our hands (fine motor skills). Therefore, it requires
less skill to maneuver a camera with our head than our hands, and
also, it is intuitive to look at a scene to take a photo of it.

4.1.1 Brain Computer Interface

Brain-computer interfaces acquire the wearer’s brain signals and an-
alyzes them to execute the desired action. EMOTIV Insight (Figure 1)
was used as the brain-computer interface. It provides five-channel EEG
(AF3, AF4, T7, T8, Pz), which EMOTIV uses to create four data streams
(mental commands, performance metrics, facial expressions, and mo-
tion sensors) [3]. EMOTIV Insight uses Bluetooth 5.0 to wirelessly
connect to devices, which means no hassle with wires and minimal
time to set up.

Figure 1: EMOTIV Insight provides 5 channel EEG that allows mental com-
mand creation

9



10 implementation

4.1.2 Eye Tracking Glasses

Pupil Core (Figure 2) and Pupil Capture software [2] was used for
eye tracking. The glasses have two cameras: a world camera and an
eye camera. The world camera captures whatever the user is facing
with a FOV of 99° x 53° and acts as the user’s camera. The eye camera
captures the eye to estimate gaze and fixation points with an accuracy
of 0.60° after a 5 point calibration. The device is connected via USB to
connect to a mobile device or personal device to send data into the
network. The software is continually listening at one of the ports.

Figure 2: Pupil Core provides eye-tracking data that can estimate gaze/fix-
ation points over the network. It also captures images from the
world at thirty frames per second at 720p.

4.1.3 Wireless Earbuds

Since audio feedback is used, it would be optimal for the people
around the user not to hear anything from the device. Wireless earbuds
are used to hear any feedback from the camera with minimal time to
set up and no wires in the way of the user. One earbud is worn as
both earbuds could distract the user from life experiences, but still can
switch attention for a brief moment to listen for any updates or audio
cues that confirm the user’s needs and requirements.

Figure 3: Users will wear all the devices mentioned above at the same time.
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4.2 architecture

Figure 4: A diagram to represent the software architecture. Each colored
node in the software node represent a thread and each white nodes
represent action taken place

The software architecture (Figure 4) uses multi-threading in
Python to listen for data that the hardware is sending over the network.
Two threads are deployed to handle hand recognition and mental com-
mands from the start. The hand recognition thread processes the
model of the hand to determine which gesture is being performed and
results in a mode change. The mental command thread processes men-
tal command data to determine if the user wants to execute a mode.
It then spawns a thread responsible for processing the image based
on the mode. Each thread has been laced with feedback to ensure
the user understands what is happening at all times. Multi-threading
allows the system to fetch and process data concurrently to ensure all
information produced is as close to real-time as possible.
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4.3 hand detection

Hand detection is required to detect hand gestures. MediaPipe Hand
[8] utilizes a machine learning model to infer twenty-one 3D land-
marks of the hand (Figure 5) on a single frame and performs real-time
detection with multiple hands on a mobile phone. This lightweight
model suits detecting gestures by comparing the coordinates of these
landmarks.

Figure 5: Twenty one landmarks of the hand provided by MediaPipe [8]

The gestures used are the number of fingers holding up, which is
associated with one mode. The number of fingers is determined by
comparing the fingertip coordinates (landmark 4, 8, 12, 16, and 20)
to the PIP joints or the MCP joint for the thumb (landmark 2, 6, 10,
14, and 18). The finger is counted by comparing if the y-coordinate
of the fingertips is higher than the y-coordinate of the PIP joints.
For the thumb, the finger is protruded outwards to the side, so the
x-coordinate is used instead.

The orientation of the hand (i.e. whether the palm is facing towards
you or away), the handedness (i.e. left or right) and the rotation of the
palm was also considered. The coordinates were transformed based
on the angle of the palm:

θ = arctan
(

landmark_9.y − landmark_0.y
landmark_9.x − landmark_0.x

)

x′ = x · sin(θ) + y · cos(θ) (for thumb)

y′ = y · sin(θ)− x · cos(θ) (for rest of the fingers)

This simple transformation handles the rotation of the wrist to
ensure the hand is upright, as shown in Figure 6. When the hand
is not upright, fingers can be miscounted since the fingers do not
curl in the direction of the y-axis (x-axis for the thumb). The hand’s
orientation is used to transform the coordinates of the thumb by
comparing the transformed coordinates of landmarks 17 and 1. The
orientation paired with the handedness will determine the negation
of the angle for the thumb.



4.3 hand detection 13

(a) Five fingers counted before transfor-
mation

(b) Four fingers counted after transfor-
mation

Figure 6: Four fingers are held up in this example. (a) Five fingers are counted
before transformation, the thumb has been miscounted since the
fingertip’s x-coordinate is larger than the thumb’s MCP joint (b)
Four fingers are counted after transformation

Figure 7 shows all the gestures for each of the modes needed to
perform to switch between different modes. Note that fingers can be
hidden, shown in Figure 7, but MediaPipe handles this by assuming
the fingers are curled. The gesture needs to be held for 2 seconds
straight to change the mode. The software gives two types of feedback
for mode switching: subtle progress sound for detecting a gesture
during the 2 seconds and speech for the mode currently on at the end
of the 2 seconds (e.g. "Camera mode," "Translation mode").

(a) Gesture for object detection mode (b) Gesture for translation mode

(c) Gesture for camera mode

Figure 7: On the left section of each image is the gesture detected. For visual
purposes, there is a pie menu indicating the mode in orange drawn
with OpenCV. On the right, is the hand detection model provided
by MediaPipe.
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4.4 mental command training

Training is required for the brain-computer interface to recognize
user-specific brain activity patterns to create mental commands. The
software used EmotivBCI [3] software for quality checks, training
and mental command creation. To ensure the quality of the training,
contact and EEG quality checks are performed by the software. All
five sensors are green, and the baseline is taken before any training
is performed. Two command states are trained: neutral state and the
desired command state. A neutral state is used when the user is idling
or the state the camera is ignoring. The command state is used for
executing a mode.

The training process used is ten runs per state, twenty in total. Each
run takes eight seconds to finish, and after each run, training feedback
(1-100) is received. The goal specified by EmotivBCI is seventy-five.
Any lower scores would result in a rejection of the run. The training
sequence used was to alternate between the neutral state and the
desired command state to better contrast the two states [3]. After ten
successful runs, the software adjusted the sensitivity to make it easier
to trigger the desired command state. On a scale of 1-10 with a default
of five, the sensitivity used is seven for the desired command state
and five for the neutral state.

Mental commands are used to initiate the mode the user is currently
on. To avoid false positives on mental command detection, the user
must execute the command for two seconds straight without inter-
ruptions to initiate the mode and a power level above 65 provided by
EmotivBCI. This process uses a shutter sound effect as the feedback at
the end of the two seconds.

4.5 modes

Photo taking, object detection, and translation are the implemented
modes. These modes are chosen based on the possible scenarios that
touch-less gestures would be most effective. Photo taking is a simple
model that captures a scene. This mode acts as the camera’s main
feature that creates a photos gallery. Object detection mode combines
eye-tracking and objects localization algorithms to provide more in-
formation about the user’s object. Finally, translation mode translates
from whatever the language is detected to English using optical char-
acter recognition and translation API. These modes present a solution
to cover all the use cases for a camera by executing a hand gesture
associated with the desired mode.
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4.6 translation

Translation has been used for many purposes, and it could help
with academics or help with navigating a foreign country. When being
in an environment with a foreign language, translation will be needed
multiple times in succession. Also, without using a touch display to
specify what text to translate, eye tracking will be used to extract a
block of text from Google Vision’s optical character recognition (OCR)
[7]. Text extraction can occur whenever the fixation point changes
(i.e. fixation duration of 400ms) and when the previous translation’s
audio feedback has finished playing to minimize the user executing
the mode in succession. The extracted text will then be translated into
English with Google Translation [6] and spoken back to the user. This
mode uses the mental command to toggle on/off the translation.

4.7 object detection

Visual search is designed to search for information on the Internet
using images. Inputting images to the visual search engine could
be difficult since noise could be presented in the image, resulting
in inaccurate results. For example, multiple objects are present or
the background of the image is complex. A solution presented is to
combine eye-tracking and object localization algorithms to crop the
noise out of the image.

(a) Bounding boxes for the full image (b) Object crop
(Coffee Cup)

Figure 8: (a) A frame extract after mental command execution. Orange boxes
indicate bounding boxes of the objects detected by Google Vision
API [7] with labels and confidence levels. Green circle indicates the
fixation point. (b) The object detected determined by the fixation
point.

Figure 8 shows the process of the object detection mode. The process
utilizes Google’s object localization algorithm, Google Vision API [7],
and a custom cropping algorithm to remove noise from the image.
Using bounding boxes from Google Vision API, the software can
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isolate the object into a visual search engine without any objects
affecting the final result.

4.7.1 Improving Google’s Object Localization Algorithm

Using only Google Vision is not sufficient to detect all objects in
the scene, as seen in Figure 8. In that example, the mobile phone
beside the coffee cup has been left out and not detected. In addition,
there are bounding boxes that can be very abstract and encapsulate
multiple objects at a time. Therefore, it is not sufficient to use one pass
of Google Vision.

(a) Crop Process

(b) Crop Boxes

Figure 9: (a) The crop algorithm utilizes a box to produce multiple crops
to crop out some or all of the objects. (b) The results of the crop
algorithm.
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The solution proposed is if there are no objects detected inside the
fixation point, crop out the detected objects from the scene to pass to
the Google Vision again. Figure 9a shows the steps of the cropping
process. First, it finds the biggest box where if the edges are protruded
outwards one at a time, the edges will not intersect any bounding
boxes and contain the fixation point. Note that the box can have edges
aligned with the edge of the image. Finally, the image shrinks its edges
to the box one edge up to four edges at a time (Figure 9b). The total
of crops produced by this method is:

ctotal =
e f

∑
k=1

(
e f

k

)
Where e f is the number of edges not aligned with the image, each
crop will produce another image which will be passed on to Google
Vision again.

Two cases will continue to the next iteration and restart the process:
(1) The existing bounding boxes do not contain the fixation point
which will initiate the custom crop algorithm (left crop in Figure 10)
(2) More than one object has been detected, and at least one of its
bounding box must contain the fixation point which will be cropped
out of the image instead of using the custom crop algorithm. The
process ends if only one object has been detected and its bounding
box contains the fixation point (middle crop in Figure 10) or no object
has been detected (right crop in Figure 10). In this example, the first
pass has not detected the mobile phone, but cropping the image into
subsections can help guide Google Vision and focus on what regions
need more attention.

Figure 10: A demo of the crop algorithm where e f = 2. This demo only
shows one stage of the crop process. The left image shows how to
produce the box and the right shows how it is used to produce
crops.
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4.7.2 Better Labels

The labels provided by Google’s object localization algorithm are
not very meaningful. Using object detection to obtain more specific
labels can be effective after the noise has been reduced. Using a web
driver for Google Chrome (Chrome version 98), the upload process to
Google Lens [5] is automated to scrape results from the web page.

(a) Region Selector (b) List of labels (c) Web pages

Figure 11: (a) Google Lens are able to detect visual matches from a sub-region
indicated by white circles. The border indicates the sub-region
Google Lens is currently on (b) Multiple labels can be presented
with the displayed object being the most confident (c) No labels
are found, so the title of web pages are extracted instead.

Since the cropping algorithm produces many images from the
original image, a point system is used to count the occurrences the
labels appear in each of the images provided by Google Lens [5].
First, the web driver will look for if there are any detections made by
Google Lens, shown in Figure 11a, and will select the one closest to
the fixation point. Two different results are possible: (1) Google Lens
will provide a label (i.e. Spotted eagle-owl, Purple plant, SpongeBob
SquarePants, etc.) (Figure 11b) (2) Google Lens will provide any web
pages related to the object (Figure 11c). In some cases, Google Lens can
provide a list of labels and display the one that is the most confident
(Figure 11b). The most confident label is assigned for three points, and
the rest of the list is assigned one point. If Google Lens cannot provide
any labels, then the web driver will look for web pages instead. Two
lists have been created by the end of the scraping process: labels and
web page titles.

The algorithm will choose the label with the most points for the
user. If there are any ties between the labels, web page titles will be
checked for these labels and updated in the point system for every
occurrence. If the tie remains, pick one out of the tied labels randomly.
The algorithm will instead compare the web page titles if no labels
are found. Each title will check its similarity with other titles using
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spaCy [13], a natural language processing library. spaCy converts
sentences into vectors using embedding and can be compared to check
the similarity. As a result, each web page title will have a percentage
score (0%-100%) for each other titles. The arithmetic mean (average) is
then calculated to represent the average similarity of all the other titles.
The algorithm will choose the title with the highest average similarity.

Once the label has been extracted. The label is spoken to the user
using text to speech. Figure 12 shows a demo of how data is extracted
and processed from Google Lens. In summary, web page titles will be
compared when no labels are found across all of the images produced
by the cropping algorithm and will use the web page title with the
highest average similarity as the label for the object (Figure 12a). When
labels are present, the point system is used to count the occurrences
across all of the images and will take the maximum in the point system
(Figure 12b).

(a) Similarity Demo

(b) Point System Demo

Figure 12: (a) When no labels are found, each web page title will be compared
with the other web page titles and obtain the average similarity.
(b) When labels are found, the first label is assigned 3 points and
the rest of the labels 1 point.





5
C O N C L U S I O N

This section will talk about the work accomplished and its limita-
tions. It will also describe the future of this work, including potential,
evaluation and ethical considerations.

5.1 limitations

Touch-free gestures with a head mounted device can help users
focus on the present moment rather than looking at a display and
maneuvering the device. Wearing a brain-computer interface that
wraps around the head can be uncomfortable to wear for long periods
and is sensitive to movement that can hinder the quality of EEGs. In
addition, training for mental commands can be difficult for new users
who have not experienced using the BCI. Intentionally changing our
brain activity can vary differently between users, so it is difficult to
explain how it can be done. Furthermore, brain activity changes rely
on our experiences, and it is impossible to explain the experience to
another person, the same problem that arises in explaining colours.
Finally, a calibration process is required before use to check for the
quality of the EEGs, which is not practical for everyday use.

In terms of the eye-tracking glasses, the camera’s field of view does
not cover the field of view of our eyes. So, the user’s head needs to be
adjusted accordingly to fit the object of interest in the camera frame
properly, or the user’s hand needs to be at a distance away before
the hand can be in the camera frame. Like the BCI, the eye-tracking
glasses used for this work need a 5-point calibration every time it is
put on to reduce the errors in the location of the fixation points.

Since both devices are worn at the head, they can be hinder each
other’s performance as the eye-tracking glasses need to be worn
underneath the BCI, which results in lower contact quality. On the
other hand, the BCI also needs to be readjusted to ensure optimal EEG
quality, moving the eye-tracking glasses and offsetting the fixation
point.

All hardware limitations can be solved in the future. A BCI inte-
grated with eye-tracking glasses can solve both devices hindering each
other’s performance. Smaller BCIs could be more comfortable to wear
for long periods, and some technologies do not require a calibration
process for eye-tracking, which results in faster setup.

On the software side, the automation of the upload process to
Google Lens relies on a web driver and scrapes data on the website.
Websites can be easily changed, making the automation fail—for
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example, different HTML structures and class names. Furthermore,
Google Vision API uses a network to send and receive data which can
slow down the process of the camera modes. These can be fixed with
local APIs, which can eliminate network latency, but it is unsure if
Google Lens will develop an API to use in the future.

5.2 future work

Many optimizations can be made to the touch-less camera but
are not implemented due to accessibility of the technology and time
constraints. Also, the methods used in this work can be easily be
changed, such as different gestures or different hardware.

5.2.1 Hardware Optimizations

Today’s market has a smaller BCI that can be worn on the back
of the head, making the BCI be integrated to have eye-tracking and
allow attachment to the eye-tracking glasses’ temple tips. Furthermore,
state-of-the-art eye-tracking glasses do not need a calibration process
and look similar to eyeglasses with exchangeable lenses. Therefore,
glasses do not need to be worn with the device. These optimizations
can allow the device to be taken off more easily and reduce the time
to set up and calibrate while being more comfortable to wear.

5.2.2 Gestures

The potential of this work can be extended with different interac-
tions, such as voice recognition and haptic. Using voice recognition can
improve false positives from the BCI. The prevention of false positives
used for BCI is executing a mental command for two seconds and
a power level above 65. Executing a mode would take two seconds
after the initial intention. Using voice recognition could eliminate this.
Wearable haptic technology could also replace hand gestures to avoid
other hands being detected and be more resistant to false positives
with a downside of a separate device that needs to be worn.

5.2.3 Predict Modes

Hand gestures were used to change different modes to fit the in-
tended use case, but eye-tracking can predict this. Translation mode
will be predicted if a foreign text is detected at the fixation point. The
software can also ask yes or no questions to confirm the intended
mode further. For example, "Do you want to translate?" If a mental
command has been detected, it will execute the mode. Furthermore,
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asking questions can combine and extend different camera modes,
such as object detection, into buying the product online.

5.3 evaluation

Due to time constraints, the work will not be evaluated with par-
ticipants, but the proposed evaluation process is as follows. First,
participants will undergo two phases of mental command training.
The first phase will let the participants explore how EmotivBCI works,
familiarize themselves with creating a mental command, and deter-
mine what is possible to detect changes in their brain activity. The
second phase will undergo the training for two mental commands
(neutral state and desired command state) that are specified in Sec-
tion 4.4.

Several objects will be placed in a free space room with colour-coded
stickers indicating which mode they will be used. Participants will be
asked to carry out all queries, in any order. Giving free space to partic-
ipants will give an experience close to a real-world application rather
than giving instructions or paths to take when using the device. This
method will reveal if there are problems with the device’s usability
and difficulty.

Since the evaluation process does not follow a single path, data
needs to be recorded for later observations to ensure the touch-free
camera is used and works as intended. The room needs to be recorded
to observe how users interact with the object and the touch-free camera.
Next, data from the hardware also needs to be recorded to ensure that
the hardware responds to the user’s intentions. Visual representations
of data have already been implemented (Figure 7). The data that has
been shown in the figure includes fixation points, camera mode, hand
model, and mental command duration, which are shown on top of
the camera feed. Finally, results from executing a mode need to be
recorded to ensure the algorithms and APIs are interacting with each
other as intended. Results include bounding boxes, current fixation
point and audio feedback. A questionnaire will be given to collect
participant feedback on performance and usability at the end.

5.4 ethical considerations

There are ethical concerns about how this work allows users to
take pictures without noticing potentially invading someone’s privacy.
Furthermore, looking at someone’s brain activity to predict or deter-
mine what the user is doing could also invade their privacy. Although
current technology only allows understanding of general cognitive
processes and not full semantics of thoughts, it could predict if the
user is processing language or engaged in some activity. Combining
with another stimulus could make more possible, so storing BCI data
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should be carefully considered as it could capture the user’s neural
signals and, as a result, could replicate the mental command.

No implementation or action was taken to solve these ethical con-
cerns. However, it is acknowledged that it is an issue that must be
addressed if this technology ever goes out to the public.

5.5 conclusion

This work presents solutions to create a fluent experience when
using a camera. It explores combining a brain-computer interface and
eye-tracking glasses to create a touchless camera and take pictures
with thoughts. Using fixation points, the user can select a frame
region for the camera to act on. Overall, the hardware used replaces
touch interactions with touch-less ones, allowing the user to be more
attentive to the present moment.
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