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Abstract

We introduce object-centric temporal navigation for exploring time-varying information
visualizations. In our approach, navigation through time is controlled by interacting di-
rectly with any data item, enabling simultaneous exploration of the time dimension while
focusing on the changing item of interest. Subtle visualizations of a data item’s tempo-
ral trend are provided to guide navigation. To demonstrate how object-centric navigation
can be designed for different types of dynamic visualizations, we created two techniques:
DimpVis, for exploring changing visual variables in different types of varying information
visualizations, and Glidgets, an interactive glyph-based technique for exploring topolog-
ical changes in dynamic graphs. Both techniques enable intuitive investigation of spatial
queries. For example, using DimpVis to answer “Was this bar ever at 500?” in a time-
varying bar chart, one simply has to drag the bar to that height. Comparative task-based
evaluations revealed that DimpVis for the scatter plot was quantitatively competitive with
the time slider and small multiples. Additionally, both Glidgets and DimpVis were overall

subjectively preferred over the time slider by participants.
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Chapter 1
Introduction

Interactive information visualizations exploit dynamic visual representations of data, using
interaction to expedite exploration and navigation [58]. Interactivity can alleviate restric-
tive aspects of static representations, enhancing human cognition [58]. When datasets are
large or dense, interactivity presents a solution for relieving cognitive load, provoking user
engagement, immersion and enjoyment [24]. The relationship between interaction and in-
quiry, identified by Pike et al. as “interaction is the inquiry,” implies the dominant role of
interaction for knowledge construction [41].

Dynamic data changes across some evolving dimension, such as time. Visualizing time-
varying data involves representing the data, at each moment in time. Analysts are inter-
ested in detecting and characterizing changes in varying data, and interaction techniques
can help support analysis and exploration of the time dimension. Temporally evolving
changes can be observed at a low-level, such as examining how an individual data item
changes, or at a high-level, such as observing how the entire dataset changes. Low-level
changes directly contribute to higher level changes. For example, adding edges can lead
to cluster formation, in dynamic graphs. In this case, it’s important to understand how
graph elements are changing at a low level, in order to identify and describe high level
changes [6].

Many types of real world data, such as census statistics, sales revenues, stock mar-
ket prices, and twitter feeds, change over time. Familiar chart types, such as bar charts
and scatter plots can be used to represent this time-varying data. For instance, the pop-
ular Gapminder system [46] uses animated bubble charts to visualize and explore time-
varying population statistics. Additionally, time-varying datasets containing connectivity
relationships among data elements, such as social networks are typically visualized using

graph visualizations. Dynamic graphs are readily used in important domains such as social
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Fig. 1.1 The interactive node (left) and edge (right) glyphs showing when the element is
present (blue) and absent (grey) over time. Each segment of the glyph represents a single
time point. In the node glyph, the varying height of segments represents relative node
degree.

network analysis, biology (e.g., brain connectivity analysis [18]), and computer network

security.

We introduce object-centric temporal navigation, an interaction technique for exploring
different types of time-varying information visualizations. Navigation through time is
controlled by interacting directly with any data item of interest; thus the data item becomes
the focus and control for temporal navigation. Object-centric navigation is intended for

low-level exploration of an individual data item’s changing values.

In this work, we present two object-centric temporal navigation techniques: DimpVis,
for exploring changing visual variables in common types of varying information visualiza-
tions, and Glidgets, an interactive glyph-based interface for exploring topological changes
in dynamic graphs. Both techniques enable intuitive investigation of spatial queries. For
example, using DimpVis to answer “Was this bar ever at 500?” in a time-varying bar chart,
one simply has to drag the bar to that height. If a moment in time exists when the bar is at
the height, the visualization is moved to that time. The interaction is guided by visual paths
which reveal how a selected data item changes through the time dimension. Alternatively,
using Glidgets to answer “Are two nodes ever connected over time?”, one can first draw a
line connecting the nodes and examine an edge glyph that reveals if and when the nodes
were connected (Figure 1.1(right)). Furthermore, navigation directly to any time point can

be done by dragging along the glyph.
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Fig. 1.2 Temporal navigation using a time slider (top) and object-centric temporal naviga-
tion invoked directly on a point in the scatter plot (bottom).
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1.1 Motivation

Changes in data values over time are most often shown through animation, where the
speed of animation is controlled by dragging along a time slider widget (Figure 1.2(top)).
Alternatively, images of the visualization at each moment in time can be presented side-
by-side (known as small multiples [55]). However, images do not convey motion, which
is important for investigating and understanding temporal trends. Observing changes of
individual data items using separate navigation controls, such as the time slider, can be

cumbersome, mainly due to two related factors: visual instability and divided attention.

As more changes occur, consecutive views of the visualization become less similar and
navigation becomes more visually unstable. Changes may involve only one data attribute
(e.g., height of bars in a bar chart), or several attributes (e.g., element addition and removal,
as well as node degree in a dynamic graph). In particular, navigating animated graphs is in-
accurate for observing and tracing evolving local graph structures, mainly due to several
simultaneous topological changes, causing layout instability [4]. For instance, Archam-
bault et al. acknowledge that error rates found in their own and other related experiments
evaluating the readability of dynamic graphs using animation and small multiples tend
to be consistently high [4]. This suggests that while users can answer analytical ques-
tions reasonably fast (with some techniques) they are inadequately acquiring the required

change information from the visualization to correctly answer those questions.

Sometimes, temporal navigation techniques are paired with visual highlighting to em-
phasize temporal changes, such as trajectory visualizations [46] or difference highlighting
[47]. However the navigation and highlighting techniques are disjoint, requiring the user

to shift their focus between them, when navigating time.

Since the time slider is separated from the data items, tracking and understanding how
items change over time requires divided attention — manipulating the slider while observ-
ing how items of interest change. Dragicevic et al. created a non-linear video browsing
technique, where any visual object can be dragged along its motion trajectory to navigate
time [22]. Likewise, Wolter et al. designed a technique for dragging visualization objects
along their 3D motion trajectories for navigating scientific visualizations [57]. While re-
siding in different domains, both techniques were designed to solve a similar problem: the
time slider is unsuitable for answering questions targeting the visual space, such as “Find
the moment in the video when the car starts moving” [22] precisely, mainly because it is

difficult to focus on the changes of individual visual objects.

This work focuses on designing interaction techniques that invoke object-centric tem-
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poral navigation. In our approach, the changing data item is used as the control for tem-
poral navigation, enabling simultaneous exploration of the time dimension while focusing
on the changing data item of interest (Figure 1.2(bottom)). To guide navigation, subtle vi-
sual aids for portraying the temporal trend of a data item are revealed during interaction.
Object-centric navigation aims to provide a more intuitive and engaging technique for
tracking, interpreting and exploring the changes of individual data items, by reinforcing
focus on the changing item of interest. Contrary to most existing navigation techniques,

our approach enables temporal navigation directly in the visual space.

1.2 Contribution

The main contributions of this work are:

Object-centric temporal navigation An interaction technique for exploring varying
information visualizations and intuitively answering spatial queries, by directly in-

teracting with data items of interest.

DimpVis An object-centric navigation technique for querying and exploring changes of
data items in time-varying charts. We demonstrated how DimpVis can be designed
to manipulate different temporally evolving visual variables (position, size, colour),

in a variety of common chart types (scatter plot, bar chart, pie chart, heat map).

Glidgets An interface for exploring low-level, topological changes in dynamic graphs
using interactive glyphs visualizing node degree and node and edge persistence
changes over time. Object-centric temporal navigation is performed directly on a

time slider embedded in the glyphs.

1.3 Organization

Chapter 2 presents a review of work related to existing temporal navigation and object-
centric interaction techniques. Chapter 3 discusses the design of DimpVis and presents a
use case scenario. Chapter 4 describes and presents results from an evaluation of DimpVis.
Chapter 5 discusses the design of Glidgets and presents a use case scenario. Chapter 6
describes and presents results from an evaluation of Glidgets. Lastly, Chapter 7 addresses

some technique limitations and ideas for future work.






Chapter 2
Background

We review four main topics closely related to our work: direct manipulation interaction
styles (Section 2.1), existing techniques that are similar to our object-centric navigation tech-
nique (Section 2.2), techniques for representing temporal changes of items in visualizations
(Section 2.3) and dynamic graphs (Section 2.4), and lastly, temporal navigation techniques

for information visualizations (Section 2.5) and dynamic graphs (Section 2.6).

2.1 Direct Manipulation Interfaces

In direct manipulation interfaces, the visual objects of interest are represented consistently,
physical actions are simple and support continuous flow of interaction, and immediate vi-
sual feedback is provided in response to physical actions [53]. For example, dragging a
slider to navigate time, while the visualization updates in real-time. Interaction techniques
designed around these principles follow a user-centered model, providing capabilities to
express intentions and manipulate objects to perform actions. The techniques can be anal-
ogous to real world manipulation, exhibiting implicit familiarity [53].

Instrumental interaction exploits the natural and direct use of instruments for manip-
ulating objects, conforming to the metaphor of physical manipulation. The instrumental
interaction model focuses on understanding the significance, utility and properties of the
interaction instruments [9]. Beaudouin-Lafon defines interaction instruments as mediators
between a user and an object of interest [9]. A good instrument is one with low indirect-
ness, which integrates many actions with the input device, and provides highly similar
mapping from physical actions to the object’s response. For example, in interactive in-
formation visualizations, navigation instruments, such as zoomable viewports are often

provided. To reduce the temporal offset between the instrument’s action and the object’s
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response, immediate visual feedback is preferred.

Newer developments in technology (e.g., input devices) and data characteristics (e.g.,
complex size and structure) instill less traditional interaction styles. POST-WIMP inter-
faces aim to improve the constraining aspects of WIMP (Windows, Icons, Menus, Pointers)
interfaces, where elements of interest are typically indirectly maneuvered using interme-
diary widgets [9]. Such control widgets present barriers between the user and the data,
reducing interface transparency [35].

Beyond the real-time feedback and feeling of engagement provided by direct manipu-
lation interaction instruments (control widgets), direct interaction can be initiated on the
data items. Existing interaction design approaches highlight the necessity for minimizing
the distance between the interaction source and the target object (e.g. [9, 35]). Further-
more, several visualization-related interaction models have been derived from direct ma-
nipulation principles (e.g. [9, 24]). In the visual analytics domain, Endert et al. encourage
direct manipulation of the visual representations of model outputs to adjust underlying

model parameters, differing from the traditional method of using control panels [25].

2.2 Object-Centric Direct Manipulation

The principles of direct manipulation and recommendations for closer interaction between
the visual object of interest and the user, encourage object-centric interaction techniques.
In this work, we focus on direct manipulation of a single visual object as a method for
temporal navigation, facilitating visual exploration.

Our DimpVis technique was inspired by DimP, an interface for non-linear video brows-
ing initiated by “relative flow dragging,” an interaction technique for dragging objects in
a video scene along their motion trajectories [22]. The DRAGON interface uses a simi-
lar approach for in-scene video scrubbing [32]. For temporal navigation of 3D scientific
visualizations, Wolter et al. created a system where visualization objects can be dragged
along their motion trajectories, invoking corresponding forward or backward movement
in time [57].

The Design-by-Dragging interface is composed of “as-direct-as-possible” techniques
(e.g. dragging along a visualized model) to explore effects of changing simulation inputs
and outputs, and generate design alternatives [16]. DirectPaint merges the space and time
controls for video animation authoring by using the visual element’s motion trajectory as
a basis for direct space-time manipulation [50].

Direct manipulation in the value domain was introduced by Perin et al. [40] to query
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and navigate time-varying ranking tables. The Drag-Cell technique is used to scan through
the values of a data table cell over time by dragging on top of the cell. The entire table is
updated when the dragging ends. The Vis-Rank technique reveals a transient line chart
to visualize the values of a table entry and directly navigate to time points. While closely
related to our DimpVis technique, in that direct interaction invoked on the target object
is used for navigating time, an important distinction is that DimpVis leverages “embodied
interaction” [21] and a high degree of interaction compatibility [9]. Rather than adjusting
abstract numbers, in DimpVis the finger or pointer remains connected to the data item as
it is manipulated through the spatio-temporal value domain and the item’s temporal trend
is revealed during dragging to guide navigation.

Moscovich et al. introduced a topology-aware navigation technique for graph visu-
alizations, in which a slider is dragged along an edge to navigate to distant nodes [37].
While not applied to time-varying graphs, this technique exploits an object-centric inter-
action style similar to ours. In addition to exploration, direct manipulation can be used
for data editing. Baudel presented a framework for directly manipulating data attributes,
exemplified in the scatter plot view where point values are adjusted by dragging them [7].
Similarly, techniques in the form of dragging visual objects have been deployed in visual
analytic systems as a means for altering the underlying model parameters (e.g. [13, 26]).
This reduces the cognitive demand of learning complex models and their parameters, of-

fering an intuitive method for model-steering [25].

2.3 Trajectory Visualization

One common way to reveal temporal trends in dynamic data is to use a trace visualization,
which explicitly overlays a data object’s changing values at various time points, onto the
same visualization. This technique has been used to illustrate trends of points in time-
varying scatter plots. The popular Gapminder Trendalyzer system uses animation and
traces which dynamically draws a point’s position on the graph, showing its temporal
evolution [46]. Trajectories of points in scatter plots have also been used in visual ana-
lytic domains, such as analyzing time-varying financial (e.g. [52]), or medical datasets (e.g.
patient data [44]). Using a stacked-bands approach atop a map, Tominski et al. used trajec-
tory visualization to analyze spatio-temporal data, including attributes about data points
embedded in the trajectory [54].

In our DimpVis technique, we build on the idea of trajectories, by designing visual hint

paths, or indicators of all visual states of an individual data object across time. However,



10 Background

instead of simply displaying the trajectory visualization, we enable temporal navigation

along the trajectory.

2.4 Visualizing Temporal Changes in Graphs

Visualization techniques can be used to highlight changes of graph elements, presented
separately, or directly on the graph elements. Difference highlights (difference map [5],
difference layer [59]) are drawn around graph elements and colour is used to differentiate
inserted, removed and unchanged elements. They can be combined with temporal navi-
gation techniques such as animation [6] or small multiples [47] to accentuate topological
changes. Difference highlights are useful for directly comparing the graph at two consecu-
tive time slices. However, with non-consecutive time slices, the highlights show an aggre-
gation of the changes that occurred, not the process of change over the time span. Tem-
poVis partially resolves this by showing the emergence of nodes and edges using colour,
while varying the intensity to encode element aging [2]. This way, elements that emerged
prior to the current time point, appear fainter in the view.

Metrics used to describe the changes of individual elements (e.g., node degree) or the
entire graph (e.g., number of nodes) can be visualized in separate charts, such as line
charts [42, 49], or bar charts [2]. Saraiya et al. evaluated multiple designs for visualizing
temporal changes of node attributes in dynamic graphs [51]. Specifically, they compared
encoding attributes in the node’s colour per time slice and navigating with a time slider,
to showing all attributes over time embedded as a line chart in nodes. The results from
their experiments indicate that overlaying data per time slice was better for analyzing the
entire graph at a single time slice, whereas overlaying all values over time embedded in
node was more effective for detecting outliers in a node’s changing attributes. Building on
this work, the glyphs provided by our Glidgets technique can be interactively revealed, for
detailed analysis of elements, or hidden, for global analysis.

GraphFlow uses a static, flow-based visualization technique to summarize high-level
graph changes through changes in graph metrics, making irregular or drastic temporal
changes pre-attentive [18]. Other static representations use different layouts to emphasize
the temporal dimension, such as vertically arranging graph nodes connected by lines, at
each time slice using a parallel coordinates layout [14], or showing connectivity in dynamic
ego networks using a tree ring layout [27].

Federico et al. address the problem of tracking nodes in social network analysis by vi-

sualizing the node trajectories, making nodes easier to track and locate in any given time
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slice [28]. Additionally, the trajectories can encode changing social network analysis met-
rics, such as centrality. In a 2.5D layout, the temporal trajectories are conveniently mapped
to the third dimension, reducing visual clutter and enhancing readability. However, they
become less practical when applied to 2D layouts, such as small multiples.

Our Glidgets technique extends previous approaches by embedding node and edge-
specific glyphs into visual elements. These glyphs can be used for invoking object-centric

temporal navigation and to view the dynamics of element properties over time.

2.5 Temporal Navigation in Information Visualization

Existing techniques for exploring time-varying information visualizations include of vari-
ations of methods such as filters, animation (with control widgets), and series of static
images.

Temporal filters, often employed as separate widgets (e.g. [19]), can isolate or aggre-
gate views within ranges of time. However, since all views are not visible at the same time
it is difficult to observe how the visualization changes over time. The small multiples tech-
nique displays images of the visualization at each time slice, ordered by time, in a matrix
layout [55]. While this technique separates all time steps for easy viewing, reading values,
and comparison, its effectiveness degrades as the time line and dataset size increase.

Animation techniques present each snapshot of the visualization, one after the other.
Smooth transitions can be used to ease or highlight the changes between time slices
(Kriglstein et al. have contributed a survey [34]). However, tracking individual data ob-
jects can become cumbersome if too many objects are changing or when the visualization
is highly cluttered, causing distraction (e.g. in animated scatter plots [45] and dynamic
graphs [27]). Interactively exploring the time dimension with animation typically involves
an indirect slider or a set of control buttons. Existing slider techniques can facilitate global
exploration, however the navigation control is decoupled from the changing visual ele-
ments, requiring shifting attention between the widget and the visualization [9].

While not applied to time-varying data, Scatterdice, a multi-dimensional visual explo-
ration tool for facilitating analysis and navigation of data in scatter plots, is relevant to
our work as it provides direct control of the view transition animation by interacting with
the visual space, as opposed to a time slider [23]. Likewise, our approach provides direct
control over the speed of animation by using the target object as the control and the main
focus during interaction.

Lenses can be used to explore enclosed and constrained regions of visual elements by
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showing visual representation alterations and exploring hypothetical visual states. Chron-
icle uses a temporal lens that records the creation of a graphical document and workflow
histories [31]. Sliding the lens within the document permits dynamic surveying of dif-
ferent regions and direct navigation through time. Zhao et al. introduced Chronolenses,
which facilitate exploratory and analytical tasks with time series data, visually filtering
regions of interest with a lens and coupling analytical operations with direct manipula-
tion techniques [60]. While powerful, lenses present subtle barriers to interaction by their
constrained spatial extent, and they are generally used to isolate and temporally explore
one area of a visualization while maintaining the global context. In contrast, our direct
temporal navigation techniques are provided on all visual elements, and the changes that

occur are globally applied.

2.6 Temporal Navigation in Dynamic Graphs

Dynamic graphs visualize temporally evolving datasets containing a set of entities that
are connected by some relationship. Navigating dynamic graphs can pose several interac-
tion challenges, primarily caused by layout instability due to many simultaneous element
changes.

As discussed in Section 2.5, the small multiples technique is the simplest method for
navigating dynamic graphs. However, to understand the progression of topological changes,
such as cluster formation, images of the graph must be compared manually. This requires
the viewer to remember changes from image-to-image. Alternatively, time can be mapped
to a third dimension in space [11]. However, as with many 3D visualization techniques,
issues can arise with readability (e.g., occlusion) and interactivity (e.g., 3D manipulation).

Animation clearly illustrates temporal changes using motion. However, it can still be
cognitively demanding to remember and compare the temporal changes of graph elements,
without additional effects such as coloured highlights, smooth transition effects, or algo-
rithms that prioritize graph layout stability.

Various layout algorithms have been created to alleviate the negative effect of changing
graph elements between time slices, such as by restricting node movement [48]. This is
known as “preserving the mental map” [17]. However previous studies evaluating the
effect of mental map preservation on dynamic graph readability suggest that preserving the
mental map may not have significant advantages for improving graph comprehension [4,
48].

DiffAni, a hybrid graph analysis tool, allows an analyst to freely combine small multi-
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ples, animation and difference highlight representations of the graph as tiles laid out in a
timeline, for temporal navigation [47]. By combining multiple techniques, the analyst can
select the desired combination of representations, hopefully exploiting the advantages of
each, for more flexible analysis of dynamic graphs. Another approach is to enhance the an-
imation effect used to transition between time slices. GraphDiaries uses staged animated
transitions to separate temporal changes occurring in the graph into three phases: ele-
ment removal, layout/element transformation, and element addition [6]. Coloured halos
are drawn around changing elements to denote the different stages of animation and user-
controlled temporal navigation can be performed at different levels of detail (e.g., within
the staged-animation or across multiple time steps).

Existing temporal navigation techniques are effective for examining high and low-level
topology changes between neighbouring or distant time slices. However examining all
low-level changes occurring to an individual element (e.g., when the node disappears and
re-appears), mainly relies on the user’s memory. Moreover, visual effects highlighting the
changes tend to only temporarily draw attention to a change [6]. Our Glidgets technique

reveals the patterns of change for individual elements through the entire time series.






Chapter 3
DimpVis

DimpVis (DimP [22] for information visualizations), is an object-centric navigation tech-
nique for querying and exploring the time dimension by interacting directly with individ-
ual data items. We demonstrate how DimpVis can be used to invoke temporal navigation
by directly manipulating different visual variables (position, size and colour). In this chap-
ter, we present the design of DimpVis and a scenario using DimpVis for the bar chart to

explore real data.

3.1 Design

DimpVis allows object-centric exploration of an individual data item’s temporally evolving
visual variables through direct interaction with a time slider embedded in the item. By
eliciting integrated interaction, DimpVis can engage the user and produce a “hands on”
data experience [8]. The DimpVis design extends previous work [22, 32, 57] by applying
the direct temporal navigation technique to 2D time-varying information visualizations.

The DimpVis design was guided by the following design goals:

D1 Object-centric Navigation Temporal navigation occurs along the data trajectory,

instead of the time trajectory.

D2 Navigation Flexibility Provide both controlled temporal navigation, as well as ac-

celerated navigation shortcuts.

D3 Directness Direct connection to a data object of interest is maintained during navi-

gation; the navigation control is embedded in the object.

D4 Interaction Consistency Navigation requires only a single finger or mouse pointer,

without complex gestures or modes.
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1955
1985

Fig. 3.1 The time line hint path follows temporal sequences (left), and the flashlight hint
path connects to spatially adjacent time points (right).

D5 Minimal Visual Change DimpVis can be added to existing visualizations without
changing the underlying visual representation. Visual additions should be minimally

distracting and removed when not in use.

DimpVis consists of two main components: hint paths [22], visualizing how a data item
changes over time, and object-centric temporal navigation, involving manipulating an item
along its hint path. For clarity, the design components in this section are first discussed in
terms of designing DimpVis for scatter plots. All of our web-based visualization prototypes
were implemented using the D3 toolkit [10]. Section 3.2 discusses how DimpVis was de-
signed for manipulating size, in pie charts and bar charts. Lastly, Section 3.3 discusses how
DimpVis was designed for manipulating visual variables with no spatial motion, namely
coloured cells in a heat map.

As a result of our evaluation (Chapter 4), we designed and implemented two different

types of hint paths for the scatter plot and bar chart.

3.1.1 Hint Path Design

A trajectory is an aggregated representation of all changes of a data object. In animated vi-
sualizations, trajectories are useful for trend analysis and pattern detection of time-varying
data [34]. Visual feedback, or hint paths [22] can help guide interaction. Therefore the hint
path for the active data object (point in a scatter plot) is displayed to guide the interaction

and provide contextual awareness during navigation.
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To form a point’s hint path, position is mapped to time. Following our design guide-
lines, the hint path should present the temporal evolution of a point in a clear, easily inter-
pretable way, while also guiding fast and flexible temporal navigation (D1, D2). When not
in use, hint paths are hidden (D5). We explored two design alternatives for the hint path:
time line and flashlight.

Time line hint paths (Figure 3.1(left)): The positions of a point are linearly joined
to form a path, ordered by time. Viewing this hint path reveals the patterns of change
for a point over time. This design favours temporal trend legibility and navigation along
the data trajectory (D1). It enables a user to trace the movement of a point through time,
engendering a feeling for the data sequence through direct manipulation (D3). Navigation
is linear in time, analogous to moving along a traditional time line. Interaction flexibil-
ity (D2) is sacrificed in that navigation is constrained to the temporal order of the path,

reducing the speed of long-distance temporal navigation.

Flashlight hint paths (Figure 3.1(right)): Similar to preview bubbles [16], the closest
positions of the point are dynamically revealed as the navigation progresses. As the point
is dragged, the positions nearest to the dragging direction, where the point exists at any
time, are shown, regardless of temporal order. This design favours speed and flexibility
of temporal interaction (D2). It enables fast navigation to moments in time where the
point has a certain position (value) (D2, D3). However, since positions of the point are
not connected in temporal order, the temporal trend is not apparent. While the flashlight

supports exploration of data point positions in any temporal order, it violates D1.

Each hint path design offers advantages targeted at different analyst intentions. The
time line is designed for understanding the temporal trend of a point, while the flashlight
supports direct accesss to a time when a point exists at a certain position. We selected the
time line design for our comparative evaluation (Chapter 4), because it clearly illustrates
a point’s temporal trend, making its layout similar to a time slider. Navigation using the
flashlight is more of a direct spatial query, as opposed to simulating a time slider embedded
in the point. To overcome the main limitation of the time line design and support D2, a
“fast-forwarding” feature was added to the path (Section 3.1.3), for quickly jumping to

distant times.

Labels are added along the path to mark the point’s position at each time interval [32],
to show temporal location. Following D5, the hint paths should be subtle, therefore we
blur them and use faint colours. Hint paths are only revealed for selected objects, and

disappear when interaction ends.
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Fig. 3.2 Navigation in time for scatter plots is achieved by dragging a selected point along
its hint path.

1970

Fig. 3.3 Using the flashlight hint path, any point can be freely dragged (left), and the path
reveals the closest positions. When a point is released, it snaps to the nearest position on
the path, and the scatter plot is updated to that time (right).

3.1.2 Object-Centric Temporal Navigation with Dragging

Object-centric navigation allows the user to explore how a point changes over time, while
remaining focused on it. To navigate time using a time line hint path, a point is dragged
along the path, and the rate of dragging controls the speed of temporal navigation (Figure
3.2). Dragging has a high degree of compatibility, since the target object closely follows
the action, and it lowers separation from the object of interest [9]. The position of the
finger is projected onto the path according to the minimum-distance point. Using this
method when loops or overlaps are encountered along the path, may cause the point to
unexpectedly jump if the user does not closely follow the path [22]. The temporal direction
is indicated by the time labels along the hint path. While a point is dragged, the global time

of the visualization is updated accordingly, and all other points are updated to their new
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positions.

Using the flashlight hint path, as a point is dragged, the positions where the point exists
over time that are nearest to the dragging position are revealed, regardless of temporal
order. Line segments are drawn from the dragged point to the nearest positions, indicated
by time labels (Figure 3.3(left)). Here, transparency encodes proximity: positions closer to
the dragged point are darker. The transparency is adjusted as the point is dragged. The
user can freely drag the point anywhere in the scatter plot. However when dragging stops,
the point is automatically re-positioned to the nearest position displayed on the flashlight
path, and the rest of the visualization is animated in time (Figure 3.3(right)). Since flashlight
navigation does not follow temporal order, the rest of the points are not animated when a

point is dragged. In other words, time is frozen.

Touch Input

In time-varying visualizations, depending on the rate and types of changes occurring in a
data item’s visual attributes, complex, curved trajectories may form. The mouse is a precise
input device for target selection (pointing) tasks. However, it is unsuitable for precisely
controlling and following a path of movement, such as in drawing tasks [30]. Additionally,
a mouse presents a secondary barrier which separates the user from the data, decreasing
the level of directness and transparency of the interface [35]. On the other hand, gestu-
ral interfaces reduce this separation, resulting in easier and more natural manipulation
of data objects. Through directly touching and moving a data point along a trajectory,
somatic feedback about the data values is received. Interaction techniques which engage
people in a physical experience of connection with and direct manipulation of data facili-
tate the creation and communication of meaning through doing [21]. Therefore, the need
for precise navigation and directness motivates us to prefer touch input for dragging a

point along its hint path. However, mouse input is also supported.

Temporal Ambiguity

Temporal ambiguity has been recognized as a challenge for direct manipulation video
browsing techniques [33]. Object-centric navigation along both types of hint paths be-
comes ambiguous when the point’s position does not change across two or more con-
secutive time points. Additionally, in a flashlight hint path, ambiguity can occur when
the point’s position is the same at multiple time points (since temporal navigation is un-

ordered). For flashlight hint paths, ambiguity resolution is left for future work. Below we
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Fig. 3.4 Temporal ambiguity occurs in a scatter plot when a point does not move between
time steps. Temporal navigation capabilities are provided in ambiguous using loops in
which one transit around the loop corresponds to one time step.

discuss our ambiguity resolution for the time line hint path.

We use interaction detours integrated into the time line hint path, at areas of temporal
ambiguity. The detours are designed to maintain the flow of dragging (D1) without a
loss of directness (D3) or a need for disruptive or complex gestures, such as multi-touch

interaction (D4).

When a point does not change position, we insert loops into the time line hint path
[33]. When dragging around a loop, the point does not move, but an outline of it is dragged
around the loop, to maintain connection between the finger and its temporal position on
the hint path. To enter a loop, the user continues dragging in the current 2D direction of
motion, moving in a continuous temporal direction (Figure 3.4). The dragging direction
can be reversed inside the loop, to reverse the temporal direction. One full rotation around
the loop moves forward or backward, by one time point. Labels are placed near the sta-
tionary point to show the time points covered by the loop. The current time point’s label
is highlighted.

Our first design assigned one loop to navigate all consecutive time points where the
point’s position became ambiguous; time points were spaced equally around the loop.
While this design can accelerate temporal navigation, it is not visually scalable, since the
loop’s size expands according to the number of time points. In testing this design, we found
it difficult to navigate time in detail, partially violating D2.

In areas of the time line hint path where the differences in point positions are very
small, temporal navigation is challenging. In these regions, we also insert interaction de-
tours. Therefore, in the scatter plot, loops are inserted where sequential points along the

hint path are too close together.
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Fig. 3.5 In our multi-touch design, a second finger is used to control a vertical time slider
to navigate through ambiguous regions.

During early prototyping, we also designed a technique using a second finger to acti-
vate and drag along a smaller, separate time slider (Figure 3.5). However this disconnects
the finger from the point, and potentially requires more mental effort, violating D3 and
D4. Alternatively, a “sticky motion” effect [33] could be used to skip through ambiguous

regions. However this does not support detailed temporal navigation (D2).

Interaction Ambiguity

For time line hint paths, we define interaction ambiguity as points when the interaction
(dragging) cannot be resolved to a unique temporal direction. Interaction ambiguity mainly
occurs when cusps are formed along a hint path [22], where dragging in a certain direction
can navigate in both directions in time. For example, if a scatter plot point’s time line
hint path doubles back on itself, at the point of reversal dragging along the hint path is
temporally ambiguous.

Interaction ambiguity is resolved by maintaining temporal continuity at cusps. That
is, we continue the navigation in the same temporal direction as it was moving prior to
reaching the cusp (Figure 3.6). Consequently, temporal direction cannot be reversed at a
cusp. When interaction starts at a cusp, there is no information for temporal continuity. In
this case, forward time navigation is assumed. The direction can be reversed by changing
dragging direction in a non-ambiguous area.

At some cusps, such as a sharp peak in the hint path of a point, our early testing showed
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Fig. 3.6 At deep cusps, temporal direction is assumed to be forward. To continue naviga-
tion, a tolerance region (overlaid as a rectangle for illustrative purposes) detects changes
in dragging direction. This way, the user need not drag all the way to the cusp.

it was cumbersome to bring the dragged object exactly to the cusp before reversing drag-
ging direction to transit the point around the cusp. Frequently, users reversed dragging
direction slightly before the point reached the cusp, leading to an unwanted reversal in
the time direction. To ameliorate this problem, tolerance regions are applied to the cusp in
which temporal continuity is enforced when the dragging direction changes near the peak
(Figure 3.6). In this way, the cusp is ‘rounded off” in interaction space and the user need
not actually reach the peak in order to transit across it. The size of this region depends on
sharpness of the peak; the tolerance region increases as the angle decreases.

To handle missing data values in the dataset, the path is interpolated using surrounding
points. Exploring designs for differentiating missing data values from existing values on

the hint path is beyond the scope of this work.

3.1.3 Additional Features

In order to support the design goals, several additional design elements are included in all

implementations of DimpVis:

Time Slider: For high-level temporal navigation, DimpVis is paired with a traditional
time slider widget. To move forward or backward in time, a small triangle tick is

dragged horizontally.
Flexible Dragging: The finger can deviate away from the path during dragging, as though

an elastic were connected to the nearest point. This is beneficial when using touch



3.2 DimpVis for Manipulating Size 23

Fig. 3.7 Navigation in time for bar charts is achieved by dragging a selected bar vertically
along its hint path. The hint path slides horizontally to stay connected with the bar and
finger.

screens, where the hands may occlude the visualization.

Snapping to Time Points: As data values for a point exist only at labelled positions
along the hint path, after a point is released from dragging, it is automatically re-

positioned to the closest time position on the path.

Fast-forwarding: The hint path can facilitate both ordered navigation (dragging) and
jumping across time. Fast-forwarding through time is invoked by tapping any time

label on the path.

3.2 DimpVis for Manipulating Size

Similar to changing position in a scatter plot, dragging can be directly mapped to the mo-
tion of changing size. Below we describe DimpVis for manipluating changing height (bar

chart) and angle (pie chart).

3.2.1 Bar Chart

Bar charts encode scalar data values in the height of bars, one for each data item or cate-

gory.
Time Line Hint Path: All heights of a bar over time are connected by linearly inter-
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Fig. 3.8 The flashlight hint path for a bar chart. Any bar can be freely dragged (left), and
the path reveals the closest heights. When a bar is released, it snaps to the nearest height
on the path, and the bar chart is updated to that time (right).

1978

Fig. 3.9 Sine waves are introduced to provide an interaction technique to navigate through
time periods where the bar height is not changing. The period of the wave is set so that
the finger returns to the bar at each time step.
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polated lines to show variations in height, forming a line chart of heights over time from
left to right (Figure 3.7). As a bar is dragged vertically towards an adjacent height in time,
the hint path translates horizontally . When the next time point is reached, its label is
centered on the dragged bar.

Dragging Bars: To navigate time, a bar is dragged vertically, according to the time line
path. Horizontal dragging could be used, since the hint path is presented as a horizontal
time line. However, this would violate D3, as the finger would leave the bar. Vertical drag-
ging corresponds directly to the changing value. So, the horizontal hint path translation
is synchronized to the vertical dragging motion such that the finger and hint path always
intersect at the top of the bar and the current time point.

Flashlight Hint Path: As a bar is freely dragged vertically, the heights where the
bar exists over time that are nearest to the dragging height are revealed. Line segments
are drawn at each of the nearest heights and time is indicated by labels (Figure 3.8(left)).
Similar to the scatter plot, transparency of the line segments encodes proximity, and the
bar chart is updated in time only when the dragging stops (Figure 3.8).

Temporal Ambiguity: To navigate time spans when the bar stays at the same height,
sine waves are drawn on top of the time line hint path as dotted lines. The period of the
wave is set so that the finger returns to the bar at each time step, maintaining directness
(D3). For example, when encountering an upwards peak, the user must first drag up, then
down, to move to the next time (Figure 3.9). When the apex of the peak is reached, the user
is halfway between time points. Due to directional ambiguity at peaks, temporal continuity
is enforced. Therefore, navigating along a sine wave maintains interaction consistency
(D4), by using only vertical dragging motion.

Interaction Ambiguity: Temporal continuity and tolerance levels are used when
cusps are formed on the time line hint path. Sine waves are inserted to ease navigation
across very close heights along the path. Additionally, when the bar has a zero value, a

short, faded, grey bar is used as a placeholder to initialize interaction.

3.2.2 Pie Chart

Pie charts are used to display parts of a whole, such as percentage information. Angular
sizes of segments encode scalar values.

Time Line Hint Path: All angles of a pie chart segment over time are drawn and
connected by angular paths (Figure 3.10). The angles of the hint path are placed outward
on different radii: radius encodes time. When the segment is dragged, the path is animated

in the radial direction. Using the chart’s center as a reference, the path shrinks inwards
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Fig. 3.10 Pie charts are adjusted in time by dragging an edge of a segment in angular di-
rections along its hint path. Here, the purple segment is dragged and the hint path slides
in and out along the radius to remain connected with the finger position and edge of the
segment.

2010
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Fig. 3.11 Sine waves are added to pie chart hint paths when a segment doesn’t change angle
for some consecutive time points. Here, the blue segment is stationary for three years and
repeated, angular dragging is used to navigate the wave.
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when moving forward in time and expands outwards when moving backward. In our first
design, radius was increased only when angular dragging direction changed. This way,
it was possible for multiple angles over time to be drawn on the same radius. While this
design is more space efficient, informal testing with colleagues showed that it was difficult
to understand and confusing. Additionally, this design did not entirely conform to our time
line hint path, since the time dimension was not assigned a unique visual attribute.

Dragging Segments: One side of the segment remains stationary, while the other
side can be dragged to resize the segment’s angle. Keeping one side stationary controls
the dragging and makes the angles more readable. While a segment is dragged, all other
segments are resized according to data for the updated time point. The radial hint path
translation is synchronized to the angular dragging motion so that the finger and hint
path always intersect at the edge of the segment and the current time point.

Temporal Ambiguity: Sine waves in the hint path are used as detours, using angular
motion to navigate through them (Figure 3.11). One time step corresponds to half a period
of the wave, so that the finger always returns to the dragged segment at each time point.

Interaction Ambiguity: Ambiguous interaction occurs whenever a cusp is formed
on the hint path, indicating a change in angular dragging direction. Therefore, temporal

continuity is enforced at cusps and tolerance regions are also applied.

3.3 DimpVis for Non-spatial Visual Variables

DimpVis provides a temporally ordered visual scan of all values of a data item. When
the changing visual variable has spatial motion, dragging is conveniently mapped to the
changing variable, creating a direct correspondence between the visual feedback and user
interaction. However when there is no motion, such as changing colour over time, the
correspondence must be reinforced by the hint path, to maintain connection between the
finger and the data item. This interaction design is similar to the DRAG-CELL technique,
where values over time are browsed by dragging in the value domain [40]. The design
challenge here is finding an appropriate mapping between the interaction (dragging) and

the non-spatial visual variable.

3.3.1 Heat Map

A heat map can visualize information using colour. In our design, the heat map is a corre-

lation matrix plot, where information corresponding to the strength of connections corre-
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Fig. 3.12 Heat maps are adjusted in time by dragging vertically in the space of the colour
scale. The hint path slides horizontally to stay connected with the cell and finger.

sponds to row/column intersections is encoded using colour. A time-varying correlation
matrix could be used to study the changing strength of connections between friends in a

social network.

Time Line Hint Path: Using the same design as the bar chart’s hint path, the data
values are plotted along a horizontal time line, where the y-position is relative to the corre-
sponding vertical position on the colour scale (Figure 3.12). The hint path is also coloured
to show the colour at each time point, and a gradient is used along the interpolated seg-
ments to show the transition. Therefore, the hint path not only illustrates variation in
colour, but allows for relative comparisons between colours according to the numerical
value they encode. In general, the challenge of this design is that colour does not intu-
itively associate with a quantitative amount, making both the hint path and interaction

more abstract.

Dragging Coloured Cells: Dragging is initiated by touching a cell. As colour doesn’t
have an inherent spatialization, we use the arrangement on the colour scale to provide
one, thus dragging occurs vertically for a vertical colour scale. As dragging occurs, the
colour of all cells is linearly interpolated to represent the current point in time. The hint
path translates horizontally to maintain the direct connection of the finger to the hint path
while dragging in the data-space direction. Note that direct connection to the cell may be

lost, violating D3, as the cell itself does not move with the finger.



3.4 Scenario 29

Temporal and Interaction Ambiguity: Ambiguities in the heat map’s hint path and

interaction are handled in the same way as for the bar chart.

3.3.2 Public Demonstrations

Before evaluating DimpVis, our four prototypes were demonstrated at a public workshop
(Surfnet 2013), to various colleagues in UOIT research labs and to researchers involved in
the 2014 CHI conference. From these demonstrations, people offered feedback based on
their experience using the prototypes. In particular, one person suggested considering an
evaluation using a mouse, as opposed to touch interaction. Another person mentioned that
it was sometimes difficult to acquire the data items for dragging (i.e., the fat finger problem)
and that adding extra space surrounding the item to detect touches might alleviate this
program. There was some confusion with using DimpVis for the pie chart. People were
unsure which side of the segment could be dragged and, at times, it was unclear which
segment was being dragged since all segments are re-sized during dragging. An indicator
highlighting the dragged segment would help draw attention to it. Additionally, the side
of the segment nearest to the finger could be used for dragging, while the other remains
stationary. This would require two mirrored versions of the hint path, to appear at either
edge of the segment. While most of these design suggestions were not addressed in our

current design, we hope to incorporate them in future design iterations.

3.4 Scenario

In this scenario, we illustrate how DimpVis can be used to analyze a time-varying dataset
using both the flashlight and time line hint path designs.

Sue is in charge of assessing the quality of programs offered at UOIT. As part of her
assessment of program popularity, she would like to examine how the amount of students
enrolled in programs has changed over the years. In particular, she wants to investigate
and characterize temporal trends of enrollment for UOIT programs, examine the range of
enrollment amounts for programs and look for anomalies in trends, such as a decrease in
enrollment. These tasks are cumbersome using only the traditional time slider, because
the temporal trend of a data item is not visually represented, and navigation is limited
to manipulating the temporal dimension, separated from the visualization. To support
her analysis, she uses DimpVis for a time-varying barchart, visualizing total enrollment

for each program at UOIT, from 2005-2011 (http://cudo.cou.on.ca). Programs are grouped
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along the horizontal x-axis, and total enrollment is encoded by the height of bars.

To get an overview of how the entire dataset changes, Sue drags the horizontal time
slider and sees that, as expected, the enrollment of most programs increases over time.
She notices that the social science and education programs suddenly decrease, at some
moment in time. She taps the social science bar to reveal its time line hint path. She can
immediately see on the path that enrollment drops, once in 2008. She goes directly to that
year by dragging the bar and following the hint path (Figure 5.9(A)). Then, at 2008, she taps
the education bar and drags along its hint path. The path reveals that its enrollment has also
decreased in 2008, and again in 2011 (Figure 5.9(B)). She decides that these two programs
have followed an irregular pattern over time, and makes note to further investigate them.

In terms of popularity, engineering seems to have the highest enrollment overall. Sue
switches to the flashlight hint path and drags engineering towards the top of the vertical
axis and the path indicates that engineering’s highest enrollment was in 2011, at 1600
students (Figure 5.9(C)). Sue also notices that the enrollment amount of the other arts and
sciences and humanities remains low, relative to the other programs. She uses flashlight
hint path to issue a direct query, to see if and when the enrollment of these programs
reaches zero. She drags the humanities bar down to axis and sees that it reaches zero for
the first three years, which leads her to believe that the program did not exist, until 2008
(Figure 5.9(D)). She then drags the “other” bar down to the axis and sees that it goes to
zero for the last two years. Sue then decides to further investigate the programs that were

assigned to the “other” program category.






Chapter 4
Evaluating DimpVis

Using the bar chart and scatter plot, we performed a quantitative, task-based evaluation
comparing DimpVis to the traditional time slider and small multiples. In this chapter we
discuss the design of our evaluation, the results and list some implications for the DimpVis

design, based on our results.

4.1 Evaluation

We performed a comparative evaluation between three temporal navigation techniques:
DimpVis, the traditional time slider, and small multiples, measuring their performance
(time and error rate) when used to complete tasks involving reading values and observing
trends of data objects. Additionally, we created a smaller set of extra tasks (not included in
our analysis of performance measures) using the interaction detours (loops and waves). To
keep experimental sessions a reasonable length of time, we decided to evaluate two visual-
ization types (bar chart and scatter plot) from our four prototypes. Participants completed
sets of tasks using each interaction technique, with both the bar chart and the scatter plot.
We chose to evaluate the scatter plot and bar chart as it was thought that participants

would be familiar with reading them (as opposed to reading a time-varying heat map).

4.1.1 Task and Dataset Design

To evaluate the performance of each interaction technique, we created a set of short an-
alytical tasks. Our tasks targeted the visual space, as opposed to the temporal space, co-
inciding with related experiments [22, 57]. We characterize visual space tasks as finding

when a certain data object has a specified visualized property, concentrating on observing
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the data object’s value (e.g. “When is bar A at height 3?”). Conversely, temporal space
tasks involve finding a specified data object’s value given a moment in time, concentrating
on navigating the time line (e.g. “At 1995, what is the height of bar A?”).

We designed tasks which required a participant to observe and quantify a data object’s
individual value or, its trend of values changing over time. Additionally, we included tasks
for comparing changing values of multiple data objects. While DimpVis is an object-centric
technique intended to focus on changes of single data objects, comparison tasks were added
to test the effect of divided attention between navigation and other changing objects, on
technique performance. Our tasks were mainly derived from a taxonomy of low level

analytical tasks [3]. We generated four types of tasks:

Retrieve Value (RV): Read the changing value of a data object.
Comparison (CO): Compare the changing values of two data objects

Characterize Distribution (CD): Identify characteristics of the overall trend of a data

object’s changing value

Outlier Detection (OD): Find when a data object’s changing value deviates from the

overall trend of all other data objects

RV and CO are value-reading task types, while CD and OD are trend analysis task
types. We generated three objective and three practice versions of each task type, per vi-
sualization and interaction technique (See Appendix A for all tasks). Each task version’s
difficulty was assessed during pilot testing to ensure participants were able to compre-
hend and complete it. Originally, for the bar chart, the CD task was extended to target
multiple data objects, requiring participants to observe the trends of two changing data
objects simultaneously (e.g. “Find a moment when bar A and B change from increasing
to decreasing"). However, during pilot testing this task was found to be frustratingly dif-
ficult by nearly all six participants, and was much more time consuming than the other
tasks. Therefore, we eliminated this task from our evaluation. For the same reason, the
OD task was not created for the bar chart because participants had difficulty observing
simultaneous motion of bars.

To ensure the data exhibited realistic behaviour, we started with real datasets and made
adjustments to ensure each task had a unique correct answer. The specific data objects
and question details were varied across all interaction techniques, and the practice and
objective tasks. In each task version, the target data object was always different. Therefore,
a participant never encountered a task targeting the same data object, with the same values.

The time pointer was set to the starting year at the beginning of each task. For all tasks,
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the correct solution (year) was placed somewhere in between the middle to the last year.
This ensured temporal navigation was required to complete the task.

For the scatter plot, datasets always contained 20 points (axes artificially labelled as age
and height), over 10 years, and datasets for the bar chart always contained 13 bars, over
10 years. Data labels were also artificially created as 2000-2009 (for years) and randomly
assigned letters of the alphabet (for the data objects).

In summary, we used a 3 technique (DimpVis, slider and small multiples) x 2 visual-
ization (scatter plot, bar chart) within subjects design. The order of technique and visual-
ization were counterbalanced with two participants for each ordering, resulting in a total
of 12 participants. For bar charts there were 3 task types (RV, CO, CD), and for scatter
plots there were 4 task types (RV, CO, CD and OD). Task type ordering was randomized
across participants. In total, there were technique (3) x task type (4) x task versions (3) x
12 participants= 432 trials for the scatter plot and technique (3) x task type (3) x task ver-
sions (3) x 12 participants= 324 trials for the bar chart. In addition, for each visualization
type, participants completed three task versions for the RV and CD tasks (total 6 trials
per visualization) on datasets with temporal ambiguities using DimpVis with interaction
detours. These tasks trials were only used to inspire subjective feedback and not included

in quanitative analysis.

4.1.2 Procedure

The following procedure was carried out twice for each participant, once for each visual-
ization type. Half the participants started with scatter plot, and half with bar chart.

At the beginning of the session, participants watched a video explaining time-varying
visualizations and a demonstration of the steps required to complete a task. Prior to using
each interaction technique, participants were given an explanation of how to use it and a
demonstration of how it works. The participant was instructed to complete each task as
quickly and as accurately as possible. Participants were able to skip tasks, but they could
not re-do them. However, in our results, no tasks were skipped. With each interaction
technique, the participant first engaged in a set of practice tasks, followed by the objective
tasks (used in our analysis). We ensured that participants never encountered an objective
task they have not previously practiced by using the same amount and type of tasks in
both the practice and objective task sets. The participant was not informed which tasks
were for practicing.

At the start of each task, the participant was given as much time as needed to read

the task description, which remained visible during task completion. When the partici-
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pant pressed a “ready” button, the visualization was displayed. Data objects involved in
tasks were highlighted in orange during the initial time step, allowing participants to pre-
attentively locate them [47]. After passing the second time step, all data objects faded
to the same colour, permanently. Solutions to the tasks were submitted as views of the
visualization at a certain year, using the assigned interaction technique to navigate time.

For example, if using the DimpVis technique for the scatter plot, a participant would
drag the point to a position which they thought answered the task. Task completion time
was measured from when the “ready” button was pressed to when the answer was sub-
mitted (pressing a “submit” button). All completion times, submitted answers and user
interactions were logged by the system. Error rate was measured by the amount of in-
correct tasks out of the total number of task trials, using the logged answers. Participants
were also video recorded, from over-the-shoulder. On screen feedback about correct and
incorrect answers was provided after task submission.

After completing all objective tasks, participants were invited to rate each technique
subjectively, using a 5-point Likert scale (1-Strongly Disagree to 5-Strongly Agree). Al-
though the interaction detours are an extension of DimpVis, during pilot testing we found
that participants had specific comments about them. Therefore, the interaction detours
were rated separately.

Participants were then invited to use a full-featured version of the DimpVis technique
in the bar chart and scatter plot prototypes, to explore real datasets. We provided some
open-ended questions focusing on temporal trends of the data to inspire exploration (e.g.,
“Is there any common trend across all programs of how enrollment varies over time?”).
Participants were instructed to freely explore the data by dragging the points or bars and
while speaking aloud their analysis of the data.

Following the open exploration, participants completed a subjective feedback ques-
tionaire about the hint path. Then, the whole procedure was repeated for the second visu-
alization type. Lastly, participants engaged in a short, semi-structured interview regarding

their experience using DimpVis for both visualization types.

4.1.3 Interface Designs
We created three technique interfaces for each visualization type:

DimpVis: DimpVis with a restricted version of the time line hint path, revealing only
the immediately adjacent time steps during dragging (Figure 4.1). A non-interactive

time slider is included to show temporal location.
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Fig. 4.2 The small multiples display used in the scatter plot evaluation. The white border
shows an image that a participant has selected as their answer.
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Fig. 4.3 The interface used during the scatter plot evaluation, consisting of the task de-
scription (left) and interactive scatter plot (right).

Time Slider: An interactive horizontal time slider bar is placed underneath the visual-

ization, where years are shown at each tick mark.

Small Multiples: Equal-sized static images of the visualization at each year are dis-
played on the screen (Figure 4.2). The images are ordered by time, spanning from
left to right, then top to bottom. Year labels are placed on top of the images. We

ensured that data objects necessary to complete a task were clearly visible.

A constrained version of the DimpVis hint path was used for the experiment in or-
der to focus on the feature of most interest — object-centric temporal navigation. This
hint path indicated available dragging directions in the immediate area of interaction, but
the whole hint path was not shown. This prevented simple reading of the complete hint
path to answer task questions. No additional interaction capabilities (pan, zoom, filter,
fast-forwarding) were provided. All colours were selected from a colour-blind friendly
palette [12]. The task question was displayed in a left-hand sidebar, and the main part of
the screen was used to show the visualization (Figure 4.3). Axes lines and data object labels
were added to the visualizations.

While solutions to the tasks may be revealed on the restricted hint path, early pilot

testing showed it was not practical to use DimpVis without a path, because the dragging
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Fig. 4.4 In our evaluation, participants interacted with a large touch screen, while standing,

direction is unknown. In any case, the effects of the hint path are an integrated part of the
design of DimpVis, so it was included in the evaluation.

4.1.4 Pilot Test

Pilot testing helped refine the design of our experimental interfaces and assess the tasks. In
the DimpVis experimental interface, one participant repeatedly attempted to drag the time
slider despite being informed that the slider was only provided as a temporal indicator.

Therefore, we removed the moveable tick used to interact with the slider and add time
labels to the partial hint paths. Pilot testing also helped us improve the training materials.
For instance, one participant suggested adding a clip to the tutorial video that demonstrates
how a task is answered. Some tasks were modified, because the answer was not easily

visible on the screen. For example, in one comparison task, the heights of two bars were
too close, and not easily distinguishable. Additionally, grid lines were added to the charts,

to help with reading data item values. The size of the loops was reduced because some

participants commented that they were unnecessarily large and that they sometimes felt
fatigued when dragging around them.
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4.1.5 Experimental Setup

All experiment sessions were conducted in the same, private laboratory, with lower light-
ing conditions. A standard workstation computer and a wall-mounted 46-inch Phillips TV
(1768x992 screen resolution) with a PQ Labs multi-touch overlay were used to run and dis-
play the visualization prototypes in a Google Chrome browser window. Participants used
the touch screen to complete the tasks while standing (Figure 4.4). On average, the study
lasted two hours. Participants were allowed to take breaks between tasks as needed, and

received a gift card as compensation.

4.1.6 Participants

We recruited 13 participants (11 male and 2 female), aged between 19 and 30 years, from our
university and surrounding area. One female participant’s data was excluded from analysis
due to an observed lack of effort to correctly complete the tasks, resulting in frequent
incorrect answers and many skipped tasks. All remaining twelve participants self-declared
as at least beginners in reading both bar charts and scatter plots, reading them for visual
analysis at least a few times a year. All participants used touch screens daily (mainly

phones or tablets), and the DimpVis technique was new to them.

4.1.7 Hypotheses

The tasks fall into two main categories: reading values of data objects (RV, CO) and ob-
serving the trend of a data object’s changing values (CD, OD —scatter plot only). We argue
that while DimpVis may not present a faster or more accurate method for reading values
from visualizations, it may be more efficient for characterizing the trends of data objects.
We suspected that the small multiples technique would perform better for reading values
from a visualization, as opposed to observing trends, because motion is not apparent. Con-
versely, the slider and DimpVis might perform better for characterizing trends. Although
sliders are effective for understanding global changes, tracking changes of individual data
objects can be difficult due to the simultaneous motion of other data objects. DimpVis,
however, reinforces focus on target data objects. Therefore, we hypothesize that, for both

the bar chart and the scatter plot:

H1: Overall, DimpVis will be the fastest and most accurate for completing tasks, followed

by the slider and then small multiples.
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Table 4.1 RM-ANOVA results for scatter plot task completion times.

Factor F-score p-value

technique F1.33’14.65 = 11.725 P = 0.002
task type F2_43’26.73 = 13.602 | p < 0.001
technique x task type | F3.413751 = 4.031 | p=0.011

H2: Overall, tasks involving reading values (RV, then CO) will be faster and more accu-
rate than trend-based tasks (CD, then OD).

H3: For reading values tasks (RV, CO), small multiples will be the fastest and most accu-
rate, followed by the slider and then DimpVis.

H4: For trend-based tasks (CD, OD -scatter plot only), DimpVis will be the fastest and

most accurate, followed by the slider and then small multiples.

4.2 Results

Below, we present quantitative (time and error rate) and qualitative (interview responses,
subjective ratings and observations) results for the scatter plot and bar chart, as well as

observations gathered during exploratory periods.

4.2.1 Scatter Plot: Quantitative Results
Task Completion Time

A two-way repeated measures ANOVA, with factors technique (3 levels) and task type
(4 levels) was performed. The dependent variable, time (measured in seconds), was log-
transformed to reduce skewing in the data caused by outliers. After transforming the data,
Shapiro Wilk Tests indicated one variable was not normally distributed (p < 0.05), there-
fore one outlier was removed and replaced with the next value at least two standard devia-
tions from the mean. Performing Shapiro Wilk tests again indicated that all variables were
normally distributed (p > 0.05). Mauchly’s test showed that the assumption of spheric-
ity had been violated for main effects of technique (x*(2) = 6.972,p = 0.031,¢ = 0.67)
and technique x task type (x*(20) = 44.979,p = 0.002,¢ = 0.57). Therefore, degrees of
freedom for both effects were corrected using € of the Greenhouse-Geisser estimates of
sphericity. We adjusted significance values for all post hoc pairwise comparisons using

the Bonferroni correction.
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Fig. 4.5 Scatter plot task completion times by task type: retrieve value (RV), comparison
(CO), characterize distribution (CD) and outlier detection (OD).

The results are summarized in Figure 4.5. The main effect of technique was signif-
icant (p = 0.002), with post hoc tests showing that DimpVis (M = 10.2s) and slider
(M = 11.3s), were significantly faster than small multiples (M = 16.4s). However, the
difference between DimpVis and slider was not significant. Therefore, H1 is only partially
supported. There was also a significant main effect of task type (p < 0.001), with post hoc
tests showing that RV (M = 11s), CD (M = 11.1s), and CO (M = 11.6s) were signif-
icantly faster than the OD task (M = 16.7s). However, the differences between RV, CO
and CD were not significant, only partially supporting H2. Lastly, the interaction effect be-
tween technique and task type was significant (p = 0.011), due to the differences between
DimpVis (M = 11.9s) and small multiples (M = 26.6s) in the OD task, as well as, slider
(M = 11.8s) and small multiples in the OD task, as determined by post hoc tests. This
result only partially supports H4, and H3 is rejected.

Small multiples required participants to scan through each image to locate the target
point, resulting in slower completion times. Unsurprisingly, animation seemed to acceler-

ate trend-based tasks, since times were faster for the CD and OD tasks using DimpVis and
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slider. The OD task was significantly slower using small multiples, and was tedious to an-
swer, according to participants. This suggests that the small multiples technique becomes

distinctly slower as the amount of moving points to observe increases.

Error Rate

Table 4.2 Scatter plot error rates produced by each technique, for each task type.

RV CO | CD | OD
DimpVis 0 |1/36]2/36| 0
Slider 1736 | 1/36 | 3/36 | 4/36
Small Multiples | 1/36 | 0 | 0 | 3/36

Overall, error rates were low for each technique (DimpVis= 3/144, small multiples=
4/144, and slider= 9/144) and nearly uniformly distributed, therefore, no significant dif-
ferences were found. Despite its relatively fast task completion time, the slider produced
the highest error rate overall, especially seen in the CD and OD tasks. Thus, although
horizontal dragging can be performed quickly, locating a specific moment in time when a
change occurs is less precise. Unexpectedly, very few errors were produced by each tech-
nique in the RV and CO tasks, however for trend-based tasks (CD and OD), error rates
were higher. Trend tasks were intended to be more difficult, as they require locating a
specific time while interpreting the motion of a point, whereas RV tasks involve moving

points directly to a known position.

4.2.2 Scatter Plot: Subjective Feedback

The majority of participants agreed that DimpVis was easy to use (see Figure 4.6). However,
opinions on the loops were divided: half of the participants reported them as generally easy
to use (some even found them fun), whereas the other half felt frustrated. One participant
suggested that it would be nice to be able to fast-forward through ambiguous regions,
because they slow down navigation. Some participants clarified that different techniques
were more useful for different types of tasks. Specifically, two participants found that
DimpVis was easier for completing the CD and OD tasks, compared to the slider. Lastly,
participants expressed their excitement for DimpVis, that they “would use it to look at
data,” it “increased engagement with the data," and that it could be “useful for teaching

[charts to] students.”
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Table 4.3 RM-ANOVA results for bar chart task completion times.

Factor F-score p-value

technique Fy90 = 3.064 | p = 0.067
task type Fy90 = 62.313 | p < 0.001
technique x task type | Fyqq = 2.325 | p=0.071

4.2.3 Bar Chart: Quantitative Results
Task Completion Time

A two-way repeated measures ANOVA with factors technique (3 levels) and task type (3
levels) was performed. The dependent variable, time (measured in seconds), was log-
transformed to reduce skewing in the data caused by outliers. After transforming the
data, Shapiro Wilk Tests indicated one variable was not normally distributed (p < 0.05),
therefore one outlier was removed and replaced with the next value at least two standard
deviations from the mean. Re-running Shapiro Wilk tests indicated that all variables were
normally distributed (p > 0.05). Mauchly’s test showed that the assumption of sphericity
was satisfied for all main effects. We adjusted significance values for all post-hoc pairwise
comparisons using the Bonferroni correction.

The results are summarized in Figure 4.7. On average, slider was the fastest (M =
13.2s), closely followed by DimpVis (M = 13.5s) and then small multiples (M = 15.7s).
However no signficant differences were found for technique. There was a significant main
effect of task type (p < 0.001), with post hoc tests showing that the differences between
the CO (M = 17.2s), CD (M = 14.6s) and RV (M = 10.6s), tasks were all significant. No
significant interaction effect between technique and task type was found. Therefore, H4 is
only partially supported and all other hypotheses are rejected.

The CO tasks were consistently the slowest across all interaction techniques. During
these tasks, we noticed that some participants stepped away from the display to compare
the bars when using slider and DimpVis, which may have lead to slower times. This may

also indicate that the screen size selected was too wide.

Error Rate

Overall, error rates were low for each technique (DimpVis= 0, slider= 4/108 and small
multiples= 7/108), and nearly uniformly distributed. Therefore, no significant differences
were found. Error rates varied between each type of task (RV= 1/108, CO= 4/108 and
CD= 6/108) and DimpVis produced no errors on any tasks.
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Fig. 4.7 Bar chart task completion times.
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Table 4.4 Bar chart error rates produced by each technique, for each task type.

RV | CO | CD
DimpVis 0 0 0
Slider 0 0 |4/24
Small Multiples | 1/24 | 4/24 | 2/24
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Fig. 4.8 Bar chart subjective ratings.

4.2.4 Bar Chart: Subjective Feedback

The subjective feedback indicates participants generally preferred DimpVis over the small
multiples (see Figure 4.8). Three participants mentioned that dragging the bars was con-
fusing. One participant stated that it was “difficult to understand the simultaneous height
and time change” The majority of the feedback pertained to the wave interaction detour.
Only three participants commented that the waves were easy to use. The remaining seven
participants expressed various concerns regarding the usability of the waves, such as feel-
ing “lost in the wave,” or how the wave “refused to respond during dragging.” Overall,
majority of participants stated that they preferred the slider, mainly because it was easier

to use and learn quickly (e.g., horizontal dragging motion).
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Despite being informed that dragging must follow the path, we observed at least four
participants attempting to drag away from it, multiple times during the tasks. For instance,
in the RV task, they would try to drag directly to the height, even though the path indicated
a different dragging direction. Five participants also used a second finger to either drag
other bars not involved in the task or mark a significant spot on the chart, such as another
bar in CO task, or the target height of an RV task. Additionally, some interesting attempts
to accelerate navigation were observed, such as: swiping up to reach far heights, horizontal
dragging along waves or shorter bars, and even tracing the wave. These may suggest ways

to refine the design.

4.2.5 Exploratory Period

For the scatter plot, a dataset representing total internet users for some of the world’s
major economies from http://gapminder.org was used. For the bar chart, we used a dataset
showing total enrollment in different programs at our university from http://cudo.cou.on.
ca. These datasets were chosen as they may be interesting to our participant population.

Common strategies were observed for exploring the data. Some participants (3-bar
chart and 4-scatter plot) would focus mostly on reading the trends of individual points
or bars using the hint paths, performing less temporal navigation. However, other par-
ticipants (3-bar chart and 5-scatter plot) preferred to drag only a few points/bars, while
examining the motion of other data objects in the visualization. Lastly, the remaining par-
ticipants almost evenly divided their attention between the hint path and dragging; by
first examining a hint path and then dragging along it to explore time (6-bar chart and
3-scatter plot). Notably, one participant used a storytelling approach, where they narrated
the trends of the points and bars, while dragging them. The hint paths and interaction
technique seemed to supplement the story.

Subjective feedback on the hint path was uniformly positive across both visualization
types. The hint path was rated as beneficial (Mcarterpior = 4.8, Mparchart = 4.7), helpful
(Mscatterplot = 4.6, Myarchare = 4.6) and useful (Mscatterplot = 4.8, Myarchart = 4.2) during
exploration. Generally, participants did not find the hint paths distracting (Mcqsterpior =
1.3, Myarchare = 1.4) or confusing (Mscatterpior = 1.4, Mparchare = 1.3) when exploring the
visualizations.

All participants agreed that DimpVis was a suitable interaction technique for touch-
screens, mainly because it seemed to “enhance engagement with the data” Three partic-
ipants suggested that a mouse may be more suitable for navigating the loops and waves,

because they felt more precision was needed for navigating along them. The visual com-
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plexity of the detours may give the impression that more precision is required (e.g., fol-
lowing the sine waves closely), when in fact they require a similar dragging motion as the

regular hint paths.

4.3 Design Implications

The main goal of our evaluation was to determine the benefits of using DimpVis for an-
swering questions targeting the visual space, and compare its performance to the time
slider and small multiples technique. DimpVis for the scatter plot was significantly faster
than the small multiples and subjectively preferred by participants. DimpVis did not sig-
nificantly out-perform the time slider, however there was no loss in time or accuracy. This
null result suggests that DimpVis may be useful for supporting some object-centric tasks
that are cumbersome using the slider or small multiples, without any loss in performance.

Based mainly on findings from the evaluation, we note some implications for the design
of DimpVis for the scatter plot and bar chart:

Hint Paths Aligned with Dragging Direction: We expected that DimpVis for the
bar chart would to be easier to learn and use, because it requires only vertical dragging
and a single changing visual variable over time, whereas the scatter plot has two changing
data dimensions over time. All participants appeared to use DimpVis for the scatter plot
consistently: dragging along the path using one finger. Whereas, for the bar chart, a diverse
set of unsuccessful interaction actions were observed, including using a second finger and
dragging in a direction opposite to the path. This indicates that participants may have
expected DimpVis for the bar chart to have different capabilities, suggesting that dragging
the bars was a less intuitive interaction than dragging the points. The mix of vertical
dragging and horizontal hint path translation seems to cause some confusion, as opposed
to the scatter plot’s stationary hint path.

This might suggest that restricting dragging to the direction of the hint path is pre-
ferrable. This is a difficult design challenge, as it competes with our design goal (D3) of
keeping the finger on the bar (meaning only vertical motion is possible for bar charts).
Given these constraints, for bar charts this would mean hint paths should clearly indi-
cate vertical motion. One approach is to provide vertical arrows, scaled to the amount
of change, which indicate at any instant in which temporal direction dragging will move
time (however, this would not support fast-forwarding). Alternatively, our flashlight hint
path may be a solution as it allows for direct dragging to any year of interest . However,

navigation is no longer restricted to following the temporal order.
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Multi-touch Ambiguity Resolution: The usability of the wave interaction detours
was a concern raised by some participants. This may have been due to the lack of an
anchor to explicitly indicate the position along a wave, which was provided for the loop.
Also, better tuning of the tolerance region around the peak of the wave may help prevent
unwanted direction reversals. However, a more complete solution may be to take a differ-
ent approach to temporal ambiguities, such as relaxing our goal of interaction consistency
(D4) in favour of introducing a second finger for scrolling through time steps where the
value does not change.

Provide Time Line and Flashlight Hint Paths: Initially, we selected the time line
hint path design because clearly illustrating temporal trends was considered an impor-
tant requirement for guiding temporal navigation (D1). However, during our evaluation,
some participants attempted to drag bars directly to a desired height, an action that may
be better supported by our flashlight hint path design (Section 3.1.1). Different types of
tasks may be better supported by different hint path designs. Additionally, both detailed
(dragging) and accelerated (fast-forwarding) temporal navigation are important (D2), since
one participant found the interaction detours slowed down navigation when completing
the tasks, and wanted to quickly skip through them. The fast-forwarding feature was not
provided in the evaluation, as we wanted to focus on the dragging interaction.

We initially hypothesized that the time line hint path could sufficiently support direct
queries such as: “Was this bar ever at 500?”. However observations of participants using
DimpVis for the bar chart suggested that the type of navigation may be task-dependent.
Therefore, we designed flashlight hint paths for the scatter plot and bar chart (Chapter 3).



Chapter 5

Glidgets

Glidgets was originally intended as an application of DimpVis to dynamic graph visualiza-
tions. Since dynamic graphs are different than the types of visualizations explored during
the design of our DimpVis examples (e.g., multiple, changing visual variables), we distin-
guished Glidgets as its own technique. However, to relate these two techniques, Glidgets
demonstrates another example of DimpVis, for non-spatial visual variables.

Glidgets (glyph widgets) consists of subtle, yet informative glyph representations of
low-level node and edge changes and corresponding interaction techniques for issuing
temporal queries directly on dynamic graphs. Specifically, the changes visualized by our
technique are: node/edge presence (disappearance and reappearance) and node degree
(number of incident edges). The topological changes are visualized in interactive time line
glyphs, acting as time sliders embedded in an edge or node, used to invoke object-centric
navigation. This allows a user to first query graph element changes and then investigate
those changes by directly controlling temporal navigation, while remaining focused on the
element of interest.

In this chapter, we discuss the design of Glidgets and present a use case scenario illus-

trating how Glidgets can be used to explore a dynamic social network.

5.1 Design

Glidgets consists of a set of interactive glyphs for visualizing changes of graph elements
and guiding object-centric temporal navigation. The Glidgets design has three main com-

ponents:

1. Directly query an element or a group of elements of interest to ask hypothetical
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questions about changing elements such as “Are these two nodes ever connected

over time?” (Section 5.1.1)

2. In response to a query, a visualization of element changes is presented in a detailed
glyph (Section 5.1.2)

3. Use the glyph as a guide for object-centric temporal navigation, to explore the changes

visualized by the glyph (Section 5.1.3)

Below, each listed component is discussed in detail.

5.1.1 Directly Querying Element Changes

The user can select any element, or multiple elements, and receive immediate visual feed-
back, showing how the element changes over time. To select elements we use gesture-
based sketching interaction with a stylus. Mouse input lacks the necessary control for
sketching and touch input lacks precision for selecting small objects, as the hand can oc-
clude the visualization [30]. Precision is particularly important when selecting elements
from graph visualizations, where visual elements tend to be small and densely packed. In
addition, direct interaction with elements using touch or a stylus can bring a feeling of
direct connection or embodiment to the analysis process [9, 21].

Our technique is designed to work alongside existing techniques that can effectively
portray high level changes (e.g., animation) or visualize the union of all changes between
time slices (e.g., difference highlights). Consequently, we designed a set of querying ca-
pabilities that can answer questions targeting the changes of individual or sets of graph
elements in the context of the whole graph.

The core querying capabilities were designed to answer following types of questions:

Q1 Element(s) existence Whether or not an edge or a group of elements ever exists in
the dataset. Example questions: Are these nodes ever connected? Does this path of

nodes ever exist?

Q2 Changes of single elements Observing how a single element changes over time.
Example questions [4]: How does a node’s degree change over time? When does a

node disappear and re-appear?

Q3 Changes of element groups Observing how groups of elements change over time.
Example questions: When does this group of nodes appear together over time? When

does this group of edges appear together over time?
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18 18

28

Fig. 5.1 An edge glyph is revealed by sketching a line between two nodes.

To answer these questions, we created two different types of queries: single-element
(Q1 and Q2) and aggregated (Q1 and Q3). Single-element queries are issued by simply
selecting the element of interest to reveal its change glyph (Section 5.1.2). For nodes, se-
lection is done by tapping it. To select an edge, a line can be sketched between any two
nodes (Figure 5.1(left)). Note that the line need not be straight — it is simply a stroke
starting at one node and ending at another, allowing for flexible query sketching. Using
the same selection techniques, multiple elements can be selected, and are correspondingly
added to or removed from an aggregated query. After an element is selected, its change

glyph appears. Aggregated change glyphs are updated according to the query elements.

5.1.2 Visualizing Temporal Changes of Elements

Due to the temporal nature of dynamic graph data, it is common for elements to be added or
removed from the network, at different moments in time. For instance, in a social network,
edge addition and removal shows the formation and breakage of friendships among people
in the network. Node degree is an important social network analysis metric to measure the
level of engagement of a person in the network. We visualize these three low-level changes
in change glyphs: node and edge presence (addition and removal) and node degree.

Highlighting techniques can draw attention to and help users understand changing
graph elements (e.g., [5, 6]). Change glyphs are designed to represent a time line of changes,
highlighting the presence of graph elements.

Our two main design goals for the glyphs were:
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D1 Minimal, yet useful representation Graph visualizations tend to be cluttered, due

to the presence of nodes and multiple edges. Therefore, it is important for any addi-

tional visual elements to not clutter the graph. However, graph elements tend to be

small, so the glyphs should be legible among the surrounding elements.

D2 Intuitive, time-line visual metaphor The structure of the glyph should convey a

time line of changes, visually separating each time slice. The time line arrangement

of the glyphs should integrate well with the graph element. The temporal direction

should also be clear, since the glyph guides temporal navigation.

Presence only has two values to encode: present or absent. We visually encode pres-

ence with colour, grey for absence and blue for presence. We explored alternative designs

for encoding presence, such as altering the geometry of the glyph (e.g., as a sine wave).

However, different hues can be easily distinguished (D1) and do not depend on the ori-

entation of the glyph (D2). The glyphs are structured as small time lines evenly divided

into segments for each time slice. Marks are added along the segments of the glyph to

explicitly indicate the time slices (D2). To integrate the glyphs with the graph elements,

they are placed around or on top of existing graph elements (D2). In the next sections we

discuss the node and edge glyph designs and another version of the glyphs for conveying

an aggregation of changes in presence across multiple elements.

Node Change Glyphs

A clock metaphor is used to arrange the time slices. The time
line begins at the top of node and is wrapped around the node
(D2, Figure 5.2). The glyph is divided into equal-sized annu-
lus segments, coloured according to the node’s presence. One
segment is assigned for each time point, and the start points
of time intervals are marked by a darker, coloured line at the
start of glyph segments (D2). Our design is similar to the
pie chart glyphs used in the DGD system, however they do
not show how a node metric varies over time [42]. Alterna-
tively, to show presence and degree, small visualizations of
changes could be embedded inside the node, such as a line
chart (e.g., [51]) or a pie chart (e.g., [1]). However this can in-
terfere with existing visual encodings applied to nodes (e.g.,

node colour showing group membership, node labels) mak-

/ : \
Fig. 5.2 A node’s glyph is
revealed by tapping it. This
glyph shows that node 16
disappears once, at time 3.

The orange segment indi-
cates the current time slice.
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ing it less visualization-independent.

The varying heights of the glyph segments encode the relative node degree. The height
is proportional to the ratio of current degree at a segment and max degree of the node
over time. The maximum and minimum heights are the same for all nodes. Varying the
height forms a circular barchart, similar to Nightingale’s rose (coxcomb) diagram [39],
making differences in degree distinguishable even though the glyph is small (D1). We also
considered interpolating the height differences to smooth the degree changes, forming a
spider plot. However this implies that node degree is continuously changing, whereas the
coxcomb-like design is more truthful to the data, by presenting node degree values only

at specified time points.

Fig. 5.3 Aggregated node change glyphs are shown for three selected nodes. Blue segments
indicate all nodes are present at that time slice, while grey segments indicate at least one
node in the group has disappeared.
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Fig. 5.4 Aggregated edge change glyphs are shown for two selected edges. Blue segments
indicate all edges are present at that time slice, while the grey segment indicates one of
the edges has disappeared.

Edge Change Glyphs

A linear time line metaphor is used to arrange the time slices (i.e., time begins at left-
most node) and the glyph is drawn as a temporary highlight on top of the edge (D2, Figure
5.1(right)). The segments of the glyph are equally divided, one per time step. The beginning
of each segment is marked with an arrow pointing forward in time, indicating the temporal
direction (D2). For any two nodes, the arrows always point toward the right-most node,
matching the layout of the horizontal time slider. If the edge is vertical, then the arrows
point towards the top node. The edge change glyphs are coloured according to the edge’s
presence using the same blue and grey colouring as the node glyphs. When the edge is not
present during a time step, a grey dotted line is drawn. The dotted line in the glyph allows
an analyst to see the underlying edge disappear during temporal navigation (Section 5.1.3)
by tracing the edge glyph. We also considered drawing a coloured highlight around the
edge. However this glyph would be thicker, occupying more screen space (D1).

Aggregated Change Glyphs

When mutliple graph elements are selected, an aggregated change glyph is created (Figure
5.3 and Figure 5.4). The visual encoding of this glyph is identical to the single-element
change glyphs, however it is recoded to show when multiple elements appear together
over time, or, the intersection of presence. This is analagous to an AND query about pres-
ence at each time step. Therefore, a blue segment means all selected elements are present
at that time slice, whereas a grey segment means at least one element has disappeared.
We designed this glyph to support exploring and comparing temporal changes of element

groups.
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Fig. 5.5 The global view shows the global glyphs of all elements (top). Elements can be
interactively selected (middle), and the user can transition directly to any time point by
dragging a glyph, which also cancels the global view (bottom).



58 Glidgets

Global Presence Change Glyphs

In order to select an element and reveal its glyph, the element must be present in the view.
Moreover, the independent change glyphs of elements cannot be visible at once because
glyphs are automatically aggregated as mutliple elements are selected. To support global
analysis of changes over time, we created a global view. This view uses global change glyphs
to show presence changes of all elements, across all time steps (Figure 5.5 (top)). The global
change glyph design is similar to the normal change glyphs, except only presence of an
element is represented as blue segments, and the grey regions (absence) are left blank.
This makes the glyphs smaller and conserves some space. Global presence glyphs can be
used to locate elements of interest by presenting a comprehensive overview of presence
changes among elements.

Elements can be selected in the global view, and the change glyphs of selected elements
are highlighted by fading all other elements. When multiple elements are selected in the
global view, the change glyphs remain independent. That is, they are not aggregated. Orig-
inally, our global presence glyphs were revealed as a non-interactive, temporary overlay
that was disconnected from the regular graph view. However after pilot testing, partic-
ipants found the global presence glyphs useful, mainly as a starting point for locating
elements. They wanted it to be interactive, particularly to jump directly to a time point
when an element is present. Therefore, we decided to add interaction techniques to the
global view enabling easy transitioning between the global and regular graph views, and
interactive selection of elements (Figure 5.5 (middle)). Thus, the global view can be used to
visually locate an item of interest and jump directly to any time step. For example, a user
can select a node in the global view and the other elements are faded to simplfy the view,
bringing attention to the node’s global glyph. Then, transitioning out of global view can
be done by activating an embedded slider on the node (Figure 5.5 (bottom)), as described

in Section 5.1.3.

5.1.3 Object-Centric Navigation

We designed object-centric navigation for exploring dynamic graphs by embedding time
sliders in the change glyphs which can be invoked on any selected element. This way,
navigation is performed where the visual analysis takes place. For example, if a user is
examining a node’s degree changes on its glyph and wishes to see the details of connection
changes over time, they can use the embedded time slider to scan through time while

focusing on the node.
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Fig. 5.6 Dragging along the glyph moves in time and other elements are faded in and out
(left). When a selected node disappears, its glyph and label remains visible until it is de-
selected (right).

Embedded Time Sliders

When an element is selected, the user can drag along the change glyph to navigate time.
Thus, the glyph becomes an interactive, embedded time slider. Dragging allows for in-
tuitive, user-controlled navigation, where the user’s actions correspond to the immediate
visual outcome [53] and the rate of animation is synchronized to the rate of dragging, cre-
ating interaction compatibility [9]. Furthermore, pen input provides a high level of control,
when following small objects along arbitrary paths [30]. If an element disappears during
dragging, the glyph remains visible providing continuous temporal navigation through pe-
riods where the selected element is not present. The glyphs show relative changes, there-
fore, the embedded time sliders can be used to explore or verify the details of the changes,
while remaining focused on an element. In the case of an aggregated query, the glyphs
show the intersection of presence. Using the embedded time slider, a user can review the
detailed presence information for the selected elements. For example, grey regions indi-
cate that at least one element has disappeared. The embedded time sliders can be used to

identify which element(s) disappeared.

Node Time Slider Since the node’s glyph is arranged using a clock metaphor, when
dragging around it, the temporal direction is designed to be intuitive: rotate clock-
wise to go forward in time (Figure 5.6(left)). This is intended to be similar to moving

the hands around a clock. To improve visual tracking during navigation, the node’s
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18

28 28

18

Fig. 5.7 Dragging along an edge glyph moves in time. It is shown here that the edge between

18 and 28 disappears at time 3.

incident edges are highlighted in blue. If a node disappears, its label remains visible,

in order to identify it (Figure 5.6(right)).

Edge Time Slider The temporal direction when dragging along an edge glyph is always

left-to-right, to move forward in time. However, as edges are sometimes steeply

vertical, the time direction is also indicated by the arrows (Figure 5.7).

Navigation Cues

When dragging along an edge glyph, a short slid-
ing bar appears perpendicular to the glyph, and can
be dragged along the glyph, similar to a traditional
time slider. When dragging around a node, an elas-
tic tether is drawn, connecting the pen tip to the
glyph. As the user is navigating in time, the entire
glyph segment is highlighted in orange to mark the
current time position and visually reinforce that the
data is constructed from discrete time steps (Figure
5.8). During pilot testing, participants suggested a
label for the time slice be added, so that they did not
have to look at the horizontal time slider to know
the current time step. Thus, the current time slice
label is drawn near the pen tip as an explicit time

indicator during navigation.

Fig. 5.8 When navigating time using
an embedded slider, the current time
slice is displayed next to the pen tip
and the corresponding segment on

the glyph is highlighted in orange.
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The time sliders may be acquired at any point in time, jumping time to that position.
For example, tapping an edge slider in the middle will initiate time navigation at the middle
time point in the data. This fast navigation technique was designed to allow immediate

movement to time points with interesting presence information shown on the glyphs.

Regular Time Slider

Since our technique focuses on observing local, element-level changes, it is important to
include a regular time slider, in order to observe high-level changes occurring in the graph.
The time slider is synchronized with all embedded sliders, to show the current location in

time.

5.1.4 Graph Layout and Representation

We used an unweighted, undirected node-link representation, where nodes (circles) rep-
resent the individual entities in a network, and edges (lines) are drawn to connect nodes,
showing a relationship between them. In our first design iteration, the dynamic graph was
created using a force-directed layout generated independently for each time slice and node
position was animated during temporal navigation. After early testing we found the node
movement to be distracting and inconvenient when interacting with the embedded time
sliders. In order to overcome the interaction challenge, we temporarily fixed the node po-
sitions during dragging and then animated them to their new position when the dragging
ended. However, it was easy to lose track of the node in focus even when the glyph was
still visible. After releasing the slider, it was disruptive to move the pen to the new node
position in order to continue using the slider.

In our current prototype, we calculated a single layout, using a force-directed algorithm
on the union graph of all time slices (all nodes and edges ever present). This is a form of the
“flipbook” technique, used to display dynamic graphs [36]. After calculating this layout,
the nodes are fixed in position, unless manually moved by the user.

Cubic ease in and out functions are applied to nodes or edges that are fading in and
out. The animation timing function is centered on the beginning of time step, with the
complete animation taking place over one third of the time step. Since temporal navigation
is always performed by dragging a time slider, the fading speed is directly controlled by
the user. We also explored other animation timings and found that cubic functions focused
the transition closely to the boundary between time slices, whereas, linear was too gradual

to attract visual attention to fading elements.
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Glidgets was implemented in Java, rendered with Processing [43]. The graph layout
was generated using the force-directed layout (Fruchterman-Goldman algorithm) with all
default parameters, provided by the JUNG library [29]. The interactivity was designed for
pen input, using a Lenovo x220 tablet laptop, running Windows. Glidgets has also been
tested on our 3m Anoto pen-enabled wall display and is compatible with any Windows

Touch-compliant systems.

5.1.5 Public and Lab Demonstrations

Glidgets was demonstrated at the 2014 GRAND conference, where useful feedback and
suggestions were received from researchers. Many commented on the novelty of the tech-
nique, stating that is was an interesting temporal navigation method. However, some were
skeptical about the scalability of the glyphs, when the time line increases. We noticed that
Glidgets required a learning curve, as some people spent quite some time figuring out how
to use each feature.

We demonstrated the earliest design of Glidgets to some colleagues, where we obtained
feedback regarding the visual design. For example, aggregated glyphs were originally ap-
plied by holding down a key, which was found to be a complex and made the interaction
feel less fluid. This was changed to automatically applying aggregation during multiple
element selection, such that all interactions could be performed with the pen. The origi-
nal design of the global glyphs portrayed the proportion of presence and absence across
all time points. For example, the node global glyph was a pie chart surrounding the node
with two segments showing presence and absence. The global glyphs were not found to
be useful, since the presence proportion could be approximated using the regular glyphs,
and the global glyphs were generally difficult to read and compare. Without increasing the
amount of space for drawing the glyph, we changed the global glyphs to represent detailed

presence information.

5.2 Use Case Scenario

Glidgets can be used to investigate temporal changes of graph elements. The change glyphs
allow for fast and easy analysis of how an element changes over time, and the embedded
sliders support direct navigation to a time point of interest on the glyph. Suppose Spencer
is analyzing the Van De Bunt social network, where the dataset represents friendships

among undergraduate students over time [56]. In particular, he wants to discover and
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investigate groups of friends within the network, including when friendships in groups

form and end, as well as people who are added and removed from the groups.

The Van De Bunt network consists of 31 nodes, 111 edges, and 6 time slices. For illus-
trative purposes, the nodes were artificially labeled with human names.

Spencer begins his analysis by examining the global view to search for nodes of interest.
He scans the view to find people that are always present, indicated by a solid blue highlight
and selects those nodes as he finds them. After selecting a group of nodes, he transitions

directly to the regular graph view at time 0 using an embedded node time slider.

He notices that the group of people actually forms three, separate sub-groups of friends.
He decides to focus on one of these sub-groups, particularly the one containing people with
higher node degrees (more friendships), as indicated by the node glyphs. Therefore, he
hides the node glyphs of the other two groups, by de-selecting them. The group of interest
consists of five people: Eva, Esther, Jack, Edna and Erica (Figure 5.9(A)). He notices that
not all members of the group are friends initially, at time 0. Specifically, Edna is not friends
with Erica nor Jack.

He wants to investigate the friendship between Edna and these two other people. To
do so, he first sketches a line between Edna and Erica. The edge glyph reveals that they
become friends at time 1 and remain friends for the rest of the time. He de-selects the edge
glyph and then reveals a more interesting edge glyph between Edna and Jack. The edge
glyph shows that they become friends at time 1, end their friendship momentarily at time
4 and then reconnect at the last time slice.

Focusing on the moment when they briefly end their friendship, he uses the edge slider
to go directly to time 4 (Figure 5.9(B)). At time 4, he reveals the node glyph of Edna and
notices that Edna has a new friend, Rosa, who was not previously noticed as part of the
original group. Spencer decides to investigate Rosa’s friendships, to see if she is friends
with any other people in the original group.

He brings his attention to Rosa, by de-selecting Edna and revealing Rosa’s node glyph
that shows she was not present in the first two time slices, meaning that she didn’t have
any friends in the network. He activates the node time slider on Rosa’s glyph to navigate
directly to time 3, when she first emerges into the network and has only one friend, Irene.
Continuing to move forward in time, at time 4, he notices that Rosa’s degree increases
as she befriends Jack and Edna, who are part of the original group, along with two new
people: Jacob and Rob (Figure 5.9(C)). He wonders if Jacob or Rob are ever friends with
Edna. He stops at time 4, hides Rosa’s node glyph and then sketches an edge between Rob
and Edna. He immediately sees they are never friends, as indicated by the dotted grey
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glyph. He does the same between Jacob and Edna, and discovers that they were friends, at
two consecutive time slices.

He wonders if there was ever a time when Edna, Jacob and Rosa were ever all friends
with each other, indicating the formation of a small clique. Leaving the revealed edge
between Edna and Jacob, he adds another two edges between Jacob and Rosa, as well as,
Edna and Rosa. The resulting aggregated edge glyphs reveal that they were all friends
with each other once, at time 3 (Figure 5.9(D)). Spencer decides to further investigate the
friendships of Jacob to see if he is friends with any other people in the original group.
By combining Glidgets techniques, he was able to identify a group of friends within the
network and investigate how friendships among the group vary over time. This lead to
new discoveries, such as a small clique within the group and new members of the group

that were added over time.






Chapter 6
Glidgets Evaluation

An exploratory evaluation was conducted to compare Glidgets to the regular time slider,
when used to complete different types of tasks. In this chapter we discuss the design of
our evaluation, our results and list some implications for the design of Glidgets and the

evaluation.

6.1 Exploratory Evaluation

We performed a comparative, exploratory evaluation between Glidgets and the regular
time slider, when used to complete tasks targeting low-level topological changes in a dy-

namic graph. Task completion time and error rate were measured for each task.

6.1.1 Task and Dataset Design

Our tasks were derived from previous experiments ([4], [6]) evaluating the readability of
dynamic graphs. Related to the task taxonomy created by Bach et al. we created temporal
tasks, requiring participants to locate a moment in time when an element, or set of ele-
ments had a certain temporal characteristic [6]. Our tasks focus on observing node degree
changes and element presence/absence changes of both individual and sets of elements:

Node Degree (ND): Observe how a node’s degree changes over time.

Node Presence (NP): Observe how the presence of a node changes over time.

Node Presence Set (NPS): Observe how the presence of three nodes changes over time.

Edge Presence (EP): Observe how the presence of an edge changes over time.

Edge Presence Set (EPS): Observe how the presence of three edges changes over time.
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The tasks also relate to the questions that inspired the design of Glidgets (Section 5.1.1).
We grouped the types of tasks into two sets: node-centric (ND, NP, NPS) and edge-centric
(EP, EPS) (See Appendix B for all tasks). In order to simulate realistic data we altered an
existing dataset, the Van De Bunt social network [56], to ensure each task had a unique an-
swer. The same dataset was used in both technique conditions. In total, the graph consisted
of 31 nodes, 111 edges, and 6 time slices. Nodes were labelled with numbers, according to
the original dataset.

In summary, we used a 2 technique (Glidgets, regular time slider) x 2 task set (edge-
centric, node-centric), within-participants design. The assignment order of technique and
task set was counter-balanced across participants. In total, technique (2) x task set (9 node-

centric + 5 edge-centric) x 8 participants = 224 trials were measured.

6.1.2 Procedure

Prior to the tasks, the experimenter explained the basics of a dynamic graph and graph
properties, such as node degree, that were part of the tasks. Prior to each technique,
participants engaged in a training phase where the experimenter demonstrated and ex-
plained each technique. The participant was then given as much time as needed to famil-
iarise themselves with the technique. All participants were instructed to complete tasks
as quickly and as accurately as possible. At the beginning of the task, the participants
were provided with as much time as needed to read and understand the task description.
The task description was presented on an iPad, with only one description visible at a time.
Then, the participant pressed a “ready” button and the graph was displayed on the screen.
Participants interacted with the graph using a stylus to solve the task. When a solution was
found, participants spoke their answer aloud, which was recorded by the experimenter and
pressed a “done" button. A blank screen was displayed in between tasks. At the beginning
of each task, the time slider was re-set to the first time slice.

Task completion time was measured as the difference between the time when the graph
was displayed (pressing the “ready” button) and the time when the task was completed
(pressing the “done" button). Completion times were automatically logged by the system.
The experimenter observed and recorded participant interactions while they solved the
tasks. Participants could not re-do any task, however after pressing the “done" button, they
could cancel their submission by pressing a “cancel” button, which displayed the graph and
resumed the timer. In this case, task completion time was automatically adjusted by the
system to account for the extra time.

Four questionnaires collecting subjective ratings were administered, each at the end of
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a task set for both techniques. The study session ended with a semi-structured interview,
to collect feedback from participants regarding the Glidgets design and their experience

using the glyphs.

Fig. 6.1 The interfaces used in evaluation, for the two techniques: regular time slider (top)
and Glidgets (bottom).
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6.1.3 Interface Designs

We created different experimental interfaces for both the Glidgets and regular time slider
technique conditions. In the experiment graph, the node positions were fixed using a “flip-
book” style layout. The fading in and out of graph elements was timed using a cubic ease
in and out function, and animation speed was user-controlled by dragging the time sliders.

Below we describe the two types of technique interfaces used in the evaluation:

Glidgets The following Glidgets techniques were accessible: node and edge change glyphs,
aggregated glyphs, embedded time sliders and the global view. A regular, horizontal
time slider was provided, mainly for locating a nodes not present in the current view.

We did not provide the edit mode, for re-positioning nodes.

Regular Time Slider A horizontal time slider was provided for navigating time. Par-
ticipants were able to interactively select nodes. Selected nodes had a solid, blue
halo drawn around them, and incident edges were highlighted in blue. Similar to the
change glyph, the halos remained visible until deselected, even when the node dis-

appeared. Nodes could be deselected by tapping the node again, or the background.

All interface colours were verified using VisCheck, to ensure they were discernible by

colour blind users [20].

6.1.4 Pilot Test

During pilot testing before running the evaluation, we received some useful feedback and
suggestions. As mentioned in Section 5.1.2 the global view was re-designed as an inter-
active temporary mode because participants found the view useful as a starting point and
wanted to transition directly into the regular graph view. Originally, the edge of a glyph
segment was highlighted orange, as a temporal indicator. Since the highlighted edge was
in between two glyph segments, participants were unsure which segment represented the

current time slice. In the current design, the entire segment is highlighted orange.

6.1.5 Experimental Setup

The task descriptions were displayed on an iPad. A Lenovo x220 tablet laptop with a
1366x768 screen resolution, running Windows, was used to run and display the graph.
The laptop’s display was mirrored on a second, larger monitor, for the experimenter to
observe the participant’s actions. Participants interacted with the graph to complete the

tasks using a stylus, while seated, in a private laboratory with lower lighting conditions
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AR

Fig. 6.2 Participants interacted with the graph using a pen,
while seated.

(Figure 6.2). Participants were informed that they could take breaks, any time between
tasks. On average, the study lasted around 1 hour. Participants received gift cards as

compensation.

6.1.6 Participants

Eight participants (6 male and 2 female), aged between 20 to 30 years, were recruited from
UOIT and surrounding area. All participants were right-handed and Glidgets was new to
them.

6.2 Quantitative Results

For each task, participants performed differently because they used different combinations
of techniques to solve the tasks. Not only did it take them time to plan which techniques
to use, but, time was also spent switching between techniques when solving a task. This
resulted in highly variable task completion times. Overall, the task completion time for
Glidgets (M = 44.3s) was higher than the regular time slider (M = 35.5s). Error rates
were low, and nearly uniformly distributed for each task. Overall, the regular time slider
(Errors = 12/112) performed more accurately than Glidgets (Errors = 18/112). Due to

the variability in our measures and small number of participants, no significant differences
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Fig. 6.3 Subjective ratings comparing the Glidgets techniques to the regular time slider,
when used for completing node-centric (NT) and edge-centric tasks (ET). Ratings corre-
spond to a 5-point Likert scale (1-Strongly Disagree to 5-Strongly Agree).

could be found in our quantitative measures.

6.3 Qualitative Results

In this section, we summarize our qualitative results gathered from subjective ratings and

observations.

6.3.1 Subjective Feedback

Subjective ratings were measured after each task set, giving participants an opportunity
to rate each Glidgets technique for the edge and node-centric tasks. If a participant did not
use a certain technique to complete some of the tasks in the set, then they did not rate it,
and were excluded from our mean ratings.

Overall, the node glyph and node slider were well received by participants. One of
the participants expressed that the node glyph was “really representative of how the node
changes over time.” Another participant stated that the node glyph and node time slider
“highlight all the information that’s needed,” and another stated that they were “useful,

easy and intuitive.” Subjective ratings revealed that, overall, completing node-centric tasks
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compare degree
changes
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cluttered

| | I I
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Mean Rating Error Bars: +/- SD
Fig. 6.4 Subjective ratings for the visual design of edge and node glyphs, and global view,

when used to complete tasks. Ratings correspond to a 5-point Likert scale (1-Strongly
Disagree to 5-Strongly Agree).
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time slider
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Fig. 6.5 Subjective ratings for the edge, node and regular time sliders when used to com-
plete tasks. Ratings correspond to a 5-point Likert scale (1-Strongly Disagree to 5-Strongly
Agree).



74 Glidgets Evaluation

felt slightly faster and easier using the node slider (Figure 6.3: Measy = 4.3, M fast =
4.0), compared to the regular time slider (Figure 6.3: Measy = 4.0, M fast = 3.7). Addi-
tionally, edge-centric tasks felt faster and easier using the edge (Figure 6.3: Measy = 4.2,
M fast = 4.0) and node (Figure 6.3: Measy = 4.1, M fast = 3.8) sliders, compared to
the regular time slider (Figure 6.3: Measy = 3.6, M fast = 3.0).

Six participants stated that they preferred using the node time slider over the edge time
slider for completing the tasks, whereas two others thought that the choice of using either
was task-dependent. One participant commented that sometimes using the regular time
slider was faster than the other time sliders, but it required a lot of attention, and using
the edge and node time sliders was more relaxing because the change information was
displayed in the glyphs, while navigating through time by directly interacting with time
sliders embedded in elements.

Related to the visual design of the glyphs, participants seemed to agree that the glyphs
were easy to understand (Figure 6.4: Medge = 4.3, Mnode = 4.4) and that they easily
show how an element changes over time (Figure 6.4: Medge = 4.1, Mnode = 4.4). Ratings
for the usability of the embedded time sliders were mainly positive. Participants mainly
agreed that both the node (Figure 6.5: M = 4.6) and edge (Figure 6.5: M = 4.1) time slider
behaved as they expected. The node time slider received the strongest rating for ease of
use (Figure 6.5: M = 4.6), followed by the edge slider (Figure 6.5: M = 4.0) and then the
regular time slider (Figure 6.5: M = 3.8).

6.3.2 Use of Glidgets Techniques

Overall, few participants used only one Glidgets technique to solve a task; mainly combi-
nations of techniques were used. These combinations varied for nearly every participant,
in all the tasks. For each task, we counted the number of participants that used a technique
at least once in solving a task. In doing so, we determined which techniques were used
to solve a task, and how many participants used each technique to derive their solution
(Figure 6.6). The use of glyphs was counted if a participant revealed the glyph, but did not
use its slider.

Unexpectedly, some participants used the node glyph and slider to complete edge-
centric tasks (See tasks EPS(12), EPS(13) and EPS(14) in Figure 6.6), however the edge
glyphs and sliders were not used in node-centric tasks. While the node glyphs and sliders
were designed to answer node questions, they can also be used indirectly to answer edge
presence questions. However, the opposite is true in that the edge glyphs could be used

to answer node presence questions. We suspect that participants might have been more
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Fig. 6.6 The number of participants that used each technique at least once for solving the
tasks. Each bar represents a count out of eight participants, however many participants
used multiple techniques to solve a single task. The vertical axis is labelled as task type,
followed by task number, in brackets.
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P 1 - Node Glyph
. Node Slider
. Global View

P2 _ . Regular Time Slider
Edge Glyph
P3 - . . . Edge Slider
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a U

p7
e I I
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Fig. 6.7 The Glidgets techniques used by each participant for an EPS (14) task, ordered by
time from left to right. No time information was recorded, therefore the coloured blocks
differentiate the order of techniques and do not represent the duration of use. At the
bottom, we present an ideal sequence of techniques to solve this task (global view, followed
by edge time sliders).
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comfortable using the node glyphs and sliders. One participant explained that they became
comfortable with using the node glyph and slider, so it was more convenient to use them
for solving all tasks.

Seven participants used the global view to solve at least one task. One participant
described the view as “more like a starting point,” implying that it was useful for locating
nodes. Two participants used the view for almost every task, and were able to solve some
tasks using only the global view. Seven participants used the regular time slider to solve
at least one task, where the majority appeared to use it for either locating nodes involved
in the tasks, or as alternative navigation technique alongside the embedded time sliders.
The regular time slider was always used in conjunction with at least one other Glidgets
technique.

Figure 6.7 provides a detailed representation of the different combinations of Glidgets
techniques used by participants to solve task 14 (“After the first moment these edges appear
together, which edge, out of edges A-B, A-C and A-D, is the first to disappear?”). Our ideal
sequence of techniques to solve this task is: using the global view to select the edges,
followed by dragging along an edge time slider to transition out of the global view and
identify the disappearing edges. It is evident that all participants, except P1, deviated from
the ideal sequence and created their own strategies to find a solution (Figure 6.7). Switching
between embedded and regular time sliders (P7, P8 in Figure 6.7) may indicate a usability
problem with the embedded sliders, as some participants reported that the edge slider was
difficult to acquire. Additionally, P8 stated that they were confused by the automatic query
aggregation of edge glyphs, for this task.

6.4 Technique Design Implications

Based on observations and feedback obtained from our exploratory evaluation we list some
implications for the design of Glidgets:

User-controlled query aggregation: We observed that some participants expected
multiple element selections to reveal change glyphs independently, and were confused by
the automatic aggregation of the glyphs. Therefore, query aggregation should be provided
as a separate mode activated by the user. Additionally, there were complaints about un-
intended de-selections by accidentally tapping the background. A separate area such as a
border surrounding the graph, could be allocated for de-selecting elements.

Show both relative and exact values: Some participants referred to the regular time

slider when using the node or edge glyphs to solve tasks, despite the current time slice was
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displayed next to the pen. One participant suggested displaying all time slice labels along
the glyphs. This reduces the simplicity and conciseness of the design, but does not require
users to refer to the time slider as a navigation cue. The node glyphs portray relative node
degree. During the node degree tasks, we observed some participants using the glyph to
locate highest or lowest degree, but then they would verify their answer by counting the
edges. This may indicate a need for access to both relative and exact values of change
metrics. The node degree values could be overlaid on the glyph when the user wishes to

see exact amounts, but hidden otherwise.

Perceptible disappearing edges: Disappearing edges were not very perceptible
when using the edge time slider because of the occluding edge glyph, particularly when
multiple edges were selected. Thus, disappearing edges should be more visually prominent.
Other than experimenting with different colours, we could consider one of our original de-
signs where the glyph surrounds the edge, as a border. This would resolve the occlusion,

but require the glyph to be thicker.
Easily comparable glyphs: Three participants stated that since the arrows along the

edge glyph can be oriented in opposing directions, making comparisons between multiple
glyphs was difficult. This is an interesting finding, as since the glyphs are automatically
aggregated, all glyphs of the selected edges are the same. This further supports that par-

ticipants did not understand or detect the automatic aggregation.

Nevertheless, the readability of multiple edges was not considered in our design. Cur-
rently, the edge glyph is drawn to ensure the arrows point toward the right-most node. We
assumed that this would improve the readbility of edges by matching the glyph’s time line
layout to the natural, left-to-right reading order of the regular time slider. For aggregated
edge glyphs, we could try to match the arrow directions such that edges point towards
a similar direction. However, a more substantial solution might be reconsidering the ag-
gregated glyph design. For instance, multiple glyphs could be combined in a single glyph,

aligning the time segments for easier comparison.

Effective overview of changes: When using the global view to search for elements of
interest, many participants requested a faster method of locating the elements. In partic-
ular, one suggestion was adding a search function. Additionally, some participants found
the fading effect made it difficult to search for other elements, suggesting that the trans-
parency should be an adjustable parameter. To improve the global view’s capabilities, we
could consider generating interesting initial views of the graph (e.g., all nodes that are al-
ways present over time) or, provide sorting functions to order nodes (e.g., alphabetically,

overall degree amount).
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6.5 Study Design Implications

Below we list some notable issues with our study design that could be used to inform the
design of future evaluations:

Feature overload: Since our evaluation was exploratory, our initial goal was to deter-
mine if and how participants used the different Glidgets techniques to solve tasks. How-
ever, five out of eight participants commented that they felt overwhelmed initially with
the multitude of features offered by Glidgets and expressed that there is a steep learning
curve. In future evaluations, it may be beneficial to isolate the Glidgets techniques. For
instance, providing only the node glyph and slider to solve node-centric tasks, and directly
comparing its performance to the regular time slider. While this imposes constraints on
task completion strategies, we can ensure that completion times are directly measured
from the use of the same techniques.

Overhead of the search task: We frequently observed participants spending time
searching the graph for nodes required to complete a task, and this search task was time-
consuming. In future evaluations, node(s) required to solve a task should be discernible
from the rest of the nodes (e.g., automatically highlight them).

Inadequate amount of training: It would be optimal to have participants practice
each task to ensure they do not encounter a task they have not previously practiced.

Potential learning effects: In both technique conditions, the same dataset was used.
Even though each task had a unique answer, while not tested, there is still a possibility of
learning effects to impact results, especially since the node positions were fixed. Future
evaluations should use different datasets in each condition, or randomize the layout.

Other comparison techniques: The regular time slider was at a slight disadvantage
because no change information was displayed in the highlights. A fairer comparison to
Glidgets would be presenting the same change information (element presence and node de-
gree) in a separate view, perhaps using a small line chart. Additionally, the small multiples
technique with difference highlighting could be added as another comparison technique.

Considering the effect of time line size: Six time points were selected for the evalu-
ation, because that was the size of our original dataset, and we wanted to keep the study un-
der a reasonable length. However, based on our observations, using more time points may
produce different performance results. Participant actions to complete tasks demonstrated
an example of the GOMS (Goals, Operators, Methods and Selection rules) model [15]. Par-
ticipants were selecting Glidgets components to develop a method that would help them

reach their goal (i.e., solving the task). Here, participants were planning and then execut-
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ing their task solution strategies, whereas when using the time slider, a single operator,
there was only execution. Due to this lack of planning and the mental effort required to
manually track and remember element changes, it may be increasingly difficult to complete

tasks using only the time slider, as the time line size increases.



Chapter 7
Conclusion

Temporal navigation controls are traditionally employed as separate widgets, that are typ-
ically distant from the changing visualization objects. Manipulating separate controls to
explore time is incompetent for tracking and understanding changes of individual data ob-
jects, because it requires the user to deviate their focus away from the object of interest.
In our approach, the navigation control and visualization of object changes are embedded
in a data object, harmonizing temporal navigation and analysis of changes.

In this chapter we summarize our contributions, discuss the scalability of our object-

centric techniques and present ideas for future work.

7.1 Contributions

Our main contribution is object-centric temporal navigation, a technique for exploring
time by embedding a time slider visualizing temporal changes in the visual object of in-
terest. To illustrate object-centric temporal navigation, we designed two techniques: Dim-
pVis, for navigating information visualizations and Glidgets, for navigating dynamic graphs.
For both techniques, we presented results from evaluations comparing our techniques to

existing temporal navigation methods.

7.2 Limitations

While not investigated in detail, we discuss the scalability and limitations of our tech-

niques, DimpVis and Glidgets.
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Fig. 7.1 A node glyph for 30 (left) and 60 (right) time slices.

7.2.1 Scalability of DimpVis

Larger datasets generally make trend detection and tracking items of interest more difficult
in animated plots, and this may be true for the scalability of DimpVis too. Techniques for
filtering or focusing on subsets of data items of interest could be used, such as lenses or
highlights. DimpVis may encounter interaction usability challenges in dense regions of a
visualization. For instance, if a scatter plot is too dense to perceive individual points, then
directly interacting with them may not be feasible without filtering the dataset. Also, if the
time scale of a dataset is large, the hint path will become long and potentially cluttered. A
cluttered hint path may require aesthetic (e.g., thinner lines, aggregating time points) or

functional (e.g., a scrolling hint path) enhancements.

7.2.2 Scalability of Glidgets

In general, representing and navigating dynamic graphs is challenging due to known scal-
ability issues that arise when the graph grows in size. Similarily, Glidgets may suffer from
these known scalability issues. As the time line increases, the change glyphs become less
readable, as it is difficult to discern and track time slices (Figure 7.1). Similarily, the edge
change glyph requires a minimum amount of space between nodes for it to be legible. For
this reason, nodes can be interactively re-positioned in Glidgets. In both cases the glyph
could be temporarily enlarged during interaction, to see its details. Furthermore, time la-
bels may need to be added to improve readability of the glyphs. However, this could clutter
the view. As the number of graph elements increases, the global view becomes more clut-
tered. As suggested by participants, a search function may help the user locate elements,
or sub-trees could be compressed into a single visualization showing an overview of the

element changes in the sub-tree (e.g., [1]).
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Glidgets eliminates the effect of node movement by fixing the positions of nodes. This
limits the versatility of our technique because certain types of graph datasets (e.g., doc-
ument similarity networks) use node position to convey a data attribute. We could ex-
periment with different layout algorithms optimizing node and edge position to lower the
effect of node movement during temporal navigation. Lastly, the parameters of the force-
directed algorithm did not produce an ideal layout and consequentely node positions ap-

peared random. Better tuning of the algorithm parameters should be investigated.

7.3 Conclusion

Popular temporal navigation controls for exploring visualizations tend to be disjoint from
the changing data items. Therefore, the user must shift their focus between observing an
object of interest to see visualized temporal changes, and using a separate control, such as
a time slider, to see temporal location. We introduced object-centric temporal navigation
that narrows the gap between the user and visual items of interest, by directly manipu-
lating items along their visual trajectory of temporal changes. To illustrate object-centric
temporal navigation, we designed and evaluated two interaction techniques: DimpVis, for
exploring varying information visualizations, and Glidgets, for exploring dynamic graphs.
We implemented DimpVis for touch interaction with bars (bar chart), points (scatter plot),
coloured cells (heat map) and angular segments (pie chart), and Glidgets as a pen-based
interface for exploring dynamic graphs.

While DimpVis did not significantly out-perform the traditional time slider in our com-
parative evaluation, DimpVis for the scatter plot was subjectively preferred by participants
overall and was significantly faster than the small multiples technique. Participant feed-
back and results from the evaluation motivate us to further explore and evaluate different
design components, such as alternative hint path designs and navigation methods. Our
study results also indicated the need for multiple types of hint paths, which encouraged
us to add a flashlight hint path to the scatter plot and bar chart prototypes.

In our exploratory evaluation, Glidgets was generally subjectively preferred by partic-
ipants for solving tasks, compared to the regular time slider. While the quantitative mea-
sures were not in favour of Glidgets, we were able to gain a better understanding of how
users might combine multiple Glidgets techniques to answer different types of analytical
questions.

We intended object-centric temporal navigation as a navigation technique complimen-

tary to existing techniques, such as the time slider. By integrating our technique time-
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Fig. 7.2 An illustration of a time line hint path encoding changing position and size. As the
user drags along the path, the point changes in position and size.

varying visualization systems can offer methods for exploring data object changes and
object-focused temporal navigation, tasks that existing techniques were not designed to

support, and improve interface flexiblity [38].

7.4 Future Work

Both DimpVis and Glidgets are initial examples of how object-centric temporal navigation
can be applied to different types of information visualizations. We have some ideas for
future work related to expanding the capabilities of our techniques, considering design
alternatives for specific components of our design and additional evaluations for assessing

different aspects of our techniques.

7.4.1 DimpVis

Multi-attribute hint paths and manipulation:

The generality of DimpVis can be expanded by applying it other types of dynamic
information visualizations, with different types of changing visual variables. For instance,
items in a time-varying bubble chart (e.g., [46]) often have two changing visual variables:
size and position. This would require both a multi-attribute hint path and potentially more
complex interaction techniques for manipulating data items, such as multi-touch gestures.

For instance, a time line hint path could show how the point’s position changes over time,
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Fig. 7.3 A sketch showing the transition from a time line to flashlight hint path. Starting
with the time line hint path (left), as the finger deviates from the path, the flashlight path
gradually appears and the time line fades away (middle). Then, the point snaps to meet
the finger (right).

with the added size attribute (e.g., encoded in the thickness of the different line segments,
Figure 7.2).

Additionally, one might be interested in how size and position of a point change to-
gether or independently. A flashlight hint path could be designed to query changing visual
variables simultaneously and independently. For example, to answer the question, “When
is this point the largest?”, two fingers could be used to drag the point outwards, enlarging
it’s size without changing it’s position. When the dragging ends, the point can be trans-
formed to the nearest size on the flashlight path, and then translated to it’s position at that
time. Querying both variables simultaneously may involve a sequence of gestures, where
the user first drags the point to the desired position and then manipulates the size of the
point to see if and when it had a certain size, at that position.

Alternative hint path design and navigation: Since the hint path has a direct
effect on the type of temporal navigation, exploring other hint path designs would expand
the flexibility of DimpVis. Currently, the time line and flashlight hint paths are separate
interface modes. While not implemented, we have given some thought to a combined hint
path enabling seamless transitioning between the two path types, supporting both direct
queries and temporal trend analysis. For instance, the user begins with the time line hint
path and if they deviate from the path, the hint path could gradually transform into a
flashlight hint path (Figure 7.3).
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Enabling multi-item comparison: While our DimpVis design was mainly data
object-focused, some participants suggested better support for comparing the hint paths of
multiple items. This may involve simply providing the ability to reveal multiple hint paths,
or creating more sophisticated querying capabilities, such as presenting all hint paths that
have a similar characteristics to a selected path.

Application to interactive storytelling Inspired by our evaluation, we would like
to study the usefulness of DimpVis for storytelling or presentations of dynamic data visu-
alizations, as hinted at by our subjective feedback. For instance, when a presenter wishes
to draw emphasis to a data item’s trend they can show the hint path and then navigate to
time points when the item has an interesting value, while maintaining focus on the item.

Additional evaluations: Although we initially argued that DimpVis was suitable for
touch input, we would be interested in comparing touch and mouse input. Also, our evalu-
ation is limited to bar charts and scatter plots. Therefore performing additional evaluations
with other types of visualizations may reveal other usability issues with DimpVis, when
applied to other types of visual variables. Lastly, we would like further comparatively

evaluate our flashlight and time line hint path designs.

7.4.2 Glidgets

Stronger comparative evaluation: We plan to perform another comparative evaluation
with Glidgets and the regular time slider, incorporating most of the changes discussed
in Section 6.5. Additionally, we would like to measure the effect of time line size on the
Glidgets and time slider techniques, by using a larger number of time points in the dataset.

More elaborate queries: We would like to expand the querying capability to an-
swer other types of questions, such as: “When do all selected nodes disappear together?”.
Though we focused only on visualizing element presence and node degree changes, other
temporal changes could be integrated with the current glyph design (e.g., edge weight
changes over time, shown by increasing thickness of glyph segments), or added as another
type of glyph (e.g., node position changes could be visualized as trajectories).

Faster selection techniques: In order to select multiple elements, each element must
be selected individually. Alternative selection techniques for multiple elements, such as a
lasso selection for multiple nodes, or drawing a continuous path through nodes for multiple
edges, may be more efficient techniques for selecting many elements at once.

Scaling the glyph design: Some limitations of our change glyphs is that they may
not scale well to larger time lines and it is difficult to compare multiple glyphs. Exploring

additional designs that are more scalable is necessary to expand the generality of Glidgets.
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For instance, the node glyph could be layered to show aggregations of time and explore dif-
ferent levels of time. To support comparison, glyphs could be combined into a single glyph
that presents all glyph segments encoding changes near each other, for easy comparison.
Alternatively, we could offer more layout flexibility to overcome orientation constraints.
For instance, to support comparison tasks, node glyphs could be rolled out into a straight

line.
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Appendix A

DimpVis Evaluation Tasks

Table A.1 The versions of each task type created for the scatter plot evaluation. ’A’ and B’
refer to labelled points, and "X’ and ’Y’ represent scatter plot point values.

Task Type

Task Versions

Retrieve value (RV)

When is A’s age < X and height = Y feet?
When is A’s age < X and height = Y feet?
When is A’s age = X and height = Y feet?

Comparison (CO)

When is A’s age and height greater than B’s?
When is A’s age and height less than B’s?
When is A’s age and height equal to B’s?

Characterize Distribution (CD)

After the age and height of A have been increasing, find
the first year when they are both decreasing.
After the age and height of A have been decreasing, find

the first year when they are both increasing.

Outlier Detection (OD)

Find the first year when A is moving in the opposite direc-

tion of the other points.
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Table A.2 The versions of each task type created for the bar chart evaluation. A’ and "B’
refer to labelled bars, and "X’ represents a bar chart height value.

Task Type

Task Versions

Retrieve value (RV)

When is A’s height = X?
When is A’s height < X?
When is A’s height > X?

Comparison (CO)

When is A’s height greater than B’s?
When is A’s height less than B’s?
When is A’s height equal to B’s?

Characterize Distribution (CD)

After the height of A has been increasing, find the first year
when it is decreasing.
After the height of A has been decreasing, find the first

year when it is increasing.
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Appendix B

Glidgets Evaluation Tasks

Table B.1 The different types of tasks used in our exploratory evaluation, this set of tasks
was repeated for both technique conditions. Node-centric tasks are listed above the double
line, and edge-centric tasks are below.

Task Type Task Description

Node Degree (ND) When node A is present, when is its degree the lowest?

When node A is present, when is its degree the lowest?

Node Presence (NP) Find the first moment when node A disappears.

Find the first moment when node A reappears.

After its first appearance, how many times does node A
disappear?

After its first disappearance, how many times does node A
reappear?

Node Presence Set (NPS) | When do all of node A, B and C appear together?

Find the first moment when none of node A, B and C are

present.
After the first moment they all appear together, which
node, out of A, B, and C, is the first to disappear?

Edge Presence (EP) Are nodes A and B ever connected?

After the first moment they are connected, find the first
moment when nodes A and B disconnect.

Edge Presence Set (EPS) | When do all of the edges A-B, A-C and A-D appear to-
gether?

After the first moment these edges appear together, when
do all of the edges A-B, A-C and A-D disappear together?

After the first moment these edges appear together, which
edge, out of edges A-B, A-C and A-D, is the first to disap-

pear?
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