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Abstract

Modular� is�a�web-based�annotation,�visualization,�and� inference� software�plat-
form� for� computational� language� and� vision� research.� The� platform� enables�
researchers�to�set�up�an� interface� for�e�ciently�annotating� language�and�vision�
datasets,� visualizing� the� predictions�made� by� a�machine� learning�model,� and�
interacting�with�an� intelligent�system.

Artificial�intelligence�(AI)�research,�including�machine�learning,�computer�vi-
sion,�and�natural�language�processing,�requires�large�amounts�of�annotated�data.�
The� current� research� and� development� pipeline� involves� each� group� collecting�
their�own�datasets�using�an�annotation�tool�tailored�specifically�to�their�needs,�
followed� by� a� series� of� engineering� e↵orts� in� loading� other� external� datasets�
and�developing� their� own� interfaces,� often�mimicking� some� components� of� ex-
isting�annotation� tools.� Extensible�and�customizable�as� required�by� individual�
projects,� the� framework�has�been� successfully�applied� to�a�number�of� research�
e↵orts� in� human-AI� collaboration,� including� commonsense� grounding� of� lan-
guage� and� vision� data,� conversational�AI� for� collaboration�with� human� users,�
and�explainable�AI� in� improving� interpretability�of�the�AI�system.

Facilitated�by� the�aforementioned�Modular� framework,� the�dissertation� ex-
amines�a�notable�set�of�opportunities�that� inspire�the�new,�productive�symbio-
sis�between�human�users�and�AI�agents,�where�the�two�parties�can�successfully�
complete�a�complex�task�together�and�mutually�benefit�in�providing�advantages�
missing� from� the� other� party.� Finally,� the� dissertation� sets� out� to� evaluate�
whether� human� users� can� establish� a� level� of� appropriate� trust� and� reliance�
through�AI�explanation.

Keyword:�artificial�intelligence;�interactive�visualization;�machine�learning;�
knowledge�representation;�human-computer�interaction
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Chapter 1

Introduction

I saw – with shut eyes, but acute mental vision – I saw the pale student of

unhallowed arts kneeling beside the thing he had put together. I saw the hideous

phantasm of a man stretched out, and then, on the working of some powerful engine,

show signs of life and stir with an uneasy, half-vital motion. Frightful must it be, for

supremely frightful would be the e↵ect of any human endeavour to mock the

stupendous mechanism of the Creator of the world.

Mary Shelley, Frankenstein; or, The Modern Prometheus [144]

1.1 Motivation

The story of artificial beings imitating human characteristics remains a strong

object of fascination since classical antiquity, inspiring products that spark pol-

icy and ethical debates of today. As the legendary sculptor Pygmalion carves

his spouse out of ivory in Greek myths, the Spike Jonze film Her tells a story of

a lonely man who falls in love with his voice-activated personal assistant. Battle

of wits ensues between man and machine as the Mechanical Turk tours around

the 19th century Europe, only to turn out to be a real player-in-the-box; mean-

while, the world watches as IBM’s Deep Blue, an actual supercomputer, wins

against the chess grandmaster Garry Kasparov at the turn of the millennium.

Finally, as Victor Frankenstein desperately runs away his own monstrous, name-

less creation in Mary Shelley’s eponymous novel, we eagerly ask Amazon Alexa

1



2 CHAPTER 1. INTRODUCTION

and other smart speakers about today’s weather and news as we pour ourselves

some morning co↵ee. Beyond these fascinating stories of love, fear, and compe-

tition, however, we now live in the new reality of consistently interacting with

AI products on a daily basis.

With AI assistance firmly ingrained in our professional and social activities,

ranging from composing friendly email messages with intelligent word sugges-

tions to reviewing judicial precedents at an unprecedented scale, it is di�cult

to imagine human-computer interaction without such tools in our daily lives;

onlookers dismiss these tools as “mainstream” as they turn their attention to

more exciting, cutting edge applications, with their minds reeling in excitement

over autonomous vehicles and personal assistants with more human-like quali-

ties. In any case, artificial intelligence to its fans is a promise of e�ciency and

scalability, as well as an object of consistent reliance.

On the other hand, critics of artificial intelligence warn of a dystopian future,

fueled by our submission to AI and surveillance states that assume control over

such technologies. Beyond the infamous yet seemingly old-fashioned network

of traditional closed circuit cameras, the contemporary Chinese government

proudly presents its system of AI algorithms that censor communication and

coerce its own citizens into submission [89]; the recent controversy of an Amer-

ican facial recognition solution enterprise Clearview AI, amassing its dataset

based on publicly available social network data and then licensing its solution

to prominent law enforcement across North America [137], paints a renewed pic-

ture of Orwell’s vision state surveillance and “Big Brother.” With self-driving

car fatalities and automation-induced labour market anxieties entering today’s

conversations, the AI critics conclude that artificial intelligence should be sub-

ject to strong scrutiny and regulation, let alone fear and suspicion.

Despite the seemingly ever-present discourse surrounding human users and

artificial intelligence, as well as the recent physical proximity between the two,

the relationship continues to be an anxious, uncomfortable one. While users are

happy to take advantage of capable powerful AI solutions, they also recognize

their political implications; while researchers continue to improve AI algorithms

with additional datasets and calibrations, they consider the ethical need to ade-
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quately constrain and control them. It is abundantly clear that humans and AI

rely on each other, where AI solutions depend on human data and supervision,

and humans use such solutions for productivity. Why must their relationship

be a contradictory one, built on fascination and fear of displacement?

Over the past few decades, there seems to have been a series of e↵orts to

extend beyond mere coexistence between the two parties and establish a collabo-

rative relationship. As the users become acclimatized with AI applications rang-

ing from anthropomorphic chatbots to complex forecasting networks, demands

for more human-like behaviour and user-friendly features emerge. Users may

request their AI partners to be less operationally complex and more convincing

in their outputs, and various stakeholders in the human-computer interaction

(HCI) community set out to address such challenges from various angles, includ-

ing improved accuracy and speed, ergonomic interface design, even the system’s

attempts to explain itself algorithmically. These e↵orts just may bridge the

trust chasm once and for all, or further dampen the excitement.

1.2 Dissertation Overview

Beyond the present polarizing sentiments, this dissertation sets out to examine

a notable set of opportunities that inspire the new, productive interdependence

of human users and AI agents. In this complementary relationship, the two

parties can successfully complete a complex task together, mutually benefit

in providing advantages missing from the other party, and the human users

can establish a level of trust and reliance through AI explanation. Finally, this

dissertation presents an adaptable interface framework designed for practitioners

or researchers who wish to quickly generate and deploy projects that capture

such opportunities — complete with its technical blueprint and use cases.

1.2.1 Challenges in Human-AI Collaboration

Since the introduction of consumer-level AI technologies and business applica-

tions featuring AI assistance, such implementations have been the consistent

subject of fascination and scrutiny. From Microsoft O�ce’s Clippy to Amazon
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Alexa, many consumer products seek to imitate human interactions with some

success, while businesses are eager to incorporate AI insights as part of their

decision making processes. Despite this enthusiasm, it is di�cult to consider

AI a genuine partner rather than a mere tool designed to facilitate individual

tasks: AI assistants are yet to understand the “bigger picture” of the user’s or

the organization’s overarching objective and respond proactively as a teammate.

Chapter 2 presents a brief overview of past and present challenges surround-

ing development and deployment of AI systems with collaborative capabilities.

Featuring a range of research areas including application design, task develop-

ment, and institutional adoption, the chapter defines the current gaps in facil-

itating human-AI collaboration and sets the stage for the subsequent chapters

in this dissertation.

1.2.2 Multimodal Annotation and Visualization Platform

As the demand for more accessible, extensible AI systems emerge, there is an

opportunity to provide a more flexible solution that accommodates a variety of

needs and stakeholders: a research group may want to collect user-generated

data from a select group of annotators, or demonstrate a novel AI model to a

larger audience with a series of visualizations; the same group many also want

to deploy and conduct a large user-study to evaluate the same AI model. While

there are many out-of-the-box solutions that respond to such needs, many re-

search groups resort to building new tools specifically designed for their project

objectives — a costly endeavour prone to failures and defects common in soft-

ware development.

Chapter 3 presents a novel software platform to establishing a common

framework that enables an end-to-end experience of annotating datasets, vi-

sualizing AI output, and deploying user studies, culminating in an open-source

interface platform that accommodates di↵erent types of data annotations and

supports relationships between such annotations using a graph data structure.

Fueled by its modular and extensible mechanism where individual users can

combine di↵erent modules for di↵erent project needs, this platform serves as a

core foundation to work presented in the subsequent chapters.
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1.2.3 Annotation for Commonsense Reasoning

Committed to simulating the human ability to recognize ordinary situations and

react accordingly through the process of extrapolation and judgment, the com-

monsense grounding branch of research has a seemingly simple goal of training

AI in the fundamentals of basic human understanding of the physical world.

Ideal systems built on such insights would be able to make inferences and de-

cisions that imitate humans in similar situations, and naturally, building such

systems remains a remarkable challenge: a large-scale acquisition of knowledge

and behaviour from humans, in a form of text-based queries, image descriptions,

and movements in a digital or physical space.

In Chapter 4, the dissertation presents Aesop: a visual storytelling platform

that demonstrates the ability to collect commonsense knowledge as derived from

the cinematic history and represent them as novel knowledge graphs. Using a

full-length film as the starting point of the annotation process, Aesop allows its

users to watch and represent the entire film as a collection of on-screen entities,

text labels, bounding boxes, and more — all tightly linked as a spatio-temporal

graph representation of individual scenes.

1.2.4 Collaboration for Complex Tasks

While some worry about displacement of human workers due to the emergence

of AI-driven automation, other critics claim that some areas — such as creative

industries — are immune to such dangers [61]. Despite this sense of rivalry, there

exist complex tasks that both parties must be involved to complete with speed

and ease: a time-consuming task of investigating an overwhelming number of

court case documents could benefit from human-AI collaboration, as the human

user manually reviews the shortlist of documents identified by AI; a creative

endeavour of designing a new grocery store can be facilitated by using an AI

agent that the interior designer can speak to.

The dissertation addresses such challenges and presents two case studies in

favour of human-AI collaboration. In Chapter 5, Aesop once again presents an

opportunity for the user to take the helm of a film director: based on previously

established knowledge graph and commonsense reasoning, the user can interact



6 CHAPTER 1. INTRODUCTION

with an AI-based chatbot to build a scene, place actors, and ask for performance.

In addition, the chapter explores another creative task of generating music with

the help of AI assistance and improvising in real-time, trading jazz solos.

1.2.5 AI Explanation for Human Understanding

As alluring and inviting as the promise of artificial intelligence may be, there is

an inherent tension between performance and explainability in today’s popular

AI systems. While built on human intelligence to assist with human needs, var-

ious components remain opaque in their current behaviour and future outcome:

when the user receives a specific decision from the conventional “black-box”

AI system, it is di�cult to explain how the system arrived at this answer, and

extrapolate how the system will continue to perform in the future. Seeking to

bridge this gap are Explainable AI (XAI) systems that aim to maintain perfor-

mance of AI systems while providing rationale for its decisions. A successful

XAI system should empower users to understand its strengths and weaknesses

and even correct the system’s mistakes to improve its future performance.

Inspired by these opportunities, Chapter 6 introduces the paradigm of ex-

planation by generation, where the novel XAI system tackles the prominent

challenge of visual search and ranking using a generative framework based on

the Dense Validation Generative Adversarial Networks (DVGANs) approach.

In a typical visual search and ranking challenge, the system is given a query

and the goal to retrieve videos that contain the query. The XAI system ap-

proaches this problem by generating multiple visual hypotheses based on the

query and searching the videos using these evidences. By providing the user a

clear interactive visualization interface that supports the usual benefits of the

AI system and provides the model-generated videos, the XAI system essentially

explains its decision-making process by showing what the system “thinks” the

answer should be.

1.2.6 Trust and Reliance Between Human and AI

Despite the belief that a more explainable, less opaque XAI system will garner

a higher level of trust and reliance between human users and AI, it is unclear
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whether the XAI system will truly facilitate the user’s understanding of the

AI model and improve task performance. The user may find the XAI system’s

explanations disruptive, no matter how “benevolent” one may perceive such

assistance. Instead, the user may prefer the black-box AI system for its opaque

yet speedier and more accurate responses [65].

Chapter 7 sets out to evaluate how the generative XAI system fares in com-

parison to the conventional AI system using three main criteria: user’s mental

model of the AI system, task performance alongside the system, and appropriate

trust and reliance exemplified by the user’s confidence in the system. Prompting

the users to tackle three distinct categories of challenges that involve a large set

of video clips, the user study sets out to assess the benefits of the XAI system.

1.3 Summary

This text presents the following chapters in support of human-AI collaboration:

• Chapter 2: Overview of present challenges in human-AI collaboration

• Chapter 3: Modular interface framework for collecting multimodal an-

notations, visualizing AI models, and deploying large-scale user studies

• Chapter 4: Application of the framework to collecting annotations for

commonsense grounding

• Chapter 5: Case for human-AI collaboration in completing complex

mixed-initiative tasks

• Chapter 6: Approach to building more explainable AI models using

generative ranking

• Chapter 7: Experiment for assessing user’s trust and reliance in human-

AI collaboration — and the findings

Finally, Chapter 8 summarizes the previous chapters and proposes opportu-

nities and directions for future research and application enabled by contributions

outlined in the dissertation.



Chapter 2

Challenges in Human-AI

Collaboration

Our coexistence with artificial intelligence hinges on combining what is humanly

unattainable — the hugely scaled narrow AI intelligence that will only get better at

any given domain with what we humans can uniquely o↵er to one another ... Narrow

AI has no self awareness, emotions, or a heart. Narrow AI has no sense of beauty,

fun, or humor. It doesn’t even have feelings or self-consciousness. Can you imagine

the ecstasy that comes from beating a world champion? AlphaGo bested the globe’s

best player, but took no pleasure in the game, felt no happiness from winning, and

had no desire to hug a loved one after its victory.

Kai-Fu Lee, A Blueprint for Coexistence with Artificial Intelligence [85]

2.1 Introduction

Recent progress in AI research presents an exciting vision of the world where

human users and machine agents can actively communicate and collaborate with

each other [96], yet today’s available solutions o↵er little more than chatbots

and smart speakers passively standing by for user requests. In order to support

collaboration as a fellow teammate, AI must interact with their human part-

ners in meaningful, significant ways by being able to engage in the process of

8
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solving a complex problem: it must be able to define a problem area, propose

potential solutions, and learn from past interactions beyond mere automation

of actions [143].

Meanwhile, the success of such collaborative e↵orts hinges on factors beyond

capabilities of AI and AI-activated applications that users interact with. Poorly

designed tasks, inadequate support systems, and unclear objectives detract ef-

fective teamwork even amongst human collaborators [26], and one must design

work practices conducive to involving multiple parties even before bringing in a

hypothetical AI partner.

Finally, it is unclear whether such proactive, sophisticated AI assistants will

be embraced by their human partners and organizations they serve. AI may

add tremendous value to existing teams in augmenting their performance and

benefits [163], even participating in co-creation alongside human users in mixed-

initiative tasks [165]; meanwhile, its presence also may be seen as a threat to the

safety of human partners and the society at large. Some pose a more optimistic

vision of AI taking over some of the more unpleasant tasks, yet there also seems

to be a necessity for large organizational change and deeper understanding of

AI training for successful business adoption [131]. In addition, whether a hu-

man user will appropriately trust and rely on such intelligent machine partners

remains to be seen [84], especially in mixed-initiative tasks where human and

machine agents take turns in completing an objective together [90].

Inspired by emergent design areas in human-AI collaboration [143], this

chapter briefly introduces various challenges found in applications that sup-

port such joint activities, tasks that are conducive to collaboration, and e↵orts

in formalizing procedures of AI adoption. In following the trajectory of these

various developments, this chapter sets out to establish emerging opportunities

that the dissertation explores in subsequent chapters.

2.2 Limitations of Existing Systems

Primarily designed to facilitate teamwork between human stakeholders, many

design features and organizing frameworks featured in today’s collaborative ap-
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plications fall short when applied to support human-AI interaction. The col-

laborative process is inherently “incremental, subject to negotiation, and for-

ever tentative,” and the ideal collaborative AI system must support interaction

that embodies the “kind of give-and-take” common in natural teamwork among

groups of people [13]: each visual and behavioral attribute found in the AI

system must be scrutinized and calibrated for successful teamwork experience.

The importance of the machine teammate’s appearance is often discounted

and considered secondary to objective performance, and its visual design and

perceived personality are generally left to the realms of science fiction and pop-

ular culture. However, a machine teammate’s appearance does indeed play a

significant role in the human participant’s perception of “likeability, engage-

ment, trust and satisfaction” [86] and a↵ects one’s willingness to comply with

its instructions and cooperate [52]. As AI solutions become more increasingly

integrated in the social realm, they are now closer to being considered friendly

companions that reflect “common assumptions and views“ of the era [27]. Be-

yond the initial novelty of interacting with such artefacts, their synthetic agents

are much more prone to criticism in terms of their visual fidelity, a↵ective capa-

bilities, and the very social values they embody [10] — presenting an opportunity

for systems that can flexibly adjust their presentation in response to changing

needs of the users.

Despite concerns surrounding of data privacy and residency, the emerging

domain of knowledge processing and machine learning has become a staple to

a generation of AI systems powered by human insights and body of knowledge,

digitized and stored for automation and replication. Though, a number of chal-

lenges emerge upon applying the lens of human-AI collaboration to this domain.

With human users, the AI system ideally should be able to di↵erentiate between

serious requests and idle actions exhibited by their teammates, and adapt its

behavior based on new findings. While conventional consumer solutions such

as Google Nest and Amazon Alexa may allow their users to trigger an inter-

action, the experience is neither implicit or collaborative: the user must utter

a specific, fixed key phrase to interact with the system [106], and while the

system can learn and update its configurations from the user’s speech-to-text
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inputs, the degree of such changes remains opaque to end-users and subject to

legal scrutiny surrounding data privacy and the Right to be Forgotten [156].

Custom AI systems are free from such controversies, yet they are subject to an-

other limitation: while these systems allow the architects to implicitly monitor

user behavior and eagerly collect their insights and actions, traditional machine

learning models often require o✏ine training based on a snapshot of accumu-

lated data, preventing true real-time decision making by AI systems [116]. An

ideal system should allow for both flexible and accurate system triggers and

establish a more complete “feedback loop” between AI and human users, or

better yet, a truly collaborative experience where the two parties can work in

parallel in mixed-initiative tasks.

The “black box” nature of conventional AI systems has been a subject of

both mystique and notoriety [64], but it is especially more detrimental to facil-

itating human-AI collaboration and erodes human users’ trust and reliance on

machine teammates [122]. In addition to improving performance and ensuring

reliable operation, AI systems can potentially combat mistrust by making their

inner workings visible to human users and help them feel at ease with trans-

parency. The benefits of such transparency over AI systems’ decision-making

processes are well documented and thoroughly discussed [30], yet conventional

AI systems o↵er little more than complex network visualization of underlying

AI models, conducive to debugging rather than understanding [134]. While

exposing the underlying algorithm is equally valuable to improving system per-

formance, there are opportunities for AI systems to gain the trust of human

users and make them understand how they operate [24].

2.3 Challenges in Designing Collaboration

Beyond the improvements made to communicative AI systems, the very ways

of interaction and collaboration between the two parties are subject to scrutiny

as well. In an ideal collaborative setting, one must be able to introduce new

constraints without radically changing the entire plan, while being able to flexi-

bly adopt innovative ideas and shift strategies for problem solving. Yet, tra-
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ditional planning representations and algorithms are less suitable in “incre-

mental, user-centered collaboration”: after all, a human planner with access

to rigid blueprints will not be able to incrementally update objectives, change

constraints, and suggest partial solutions as the situation develops [3]. Several

challenges emerge as the focus shifts from the AI agent itself to collaborative

settings that involve human users.

Similar to the way human-only organizations operate, future human-machine

teams could be assembled based on specialties and capabilities of individual

teammates. In addition to optimizing teams based on competency, some imag-

ine machine teammates that may rise to the role of a team leader beyond active

participation [143]. Meanwhile, an invisible tension between human users and

AI agents remains as machine teammates slowly assume tasks once considered

exclusive to humans [39, 145], and a compelling question surrounding the di-

vision of labor emerges [70]. Despite these existentialist concerns, however,

today’s human-AI collaboration remains a cost- and labour-intensive endeavor

that involves human facilitators who help to bridge the gap between domain

expert practitioners and novel AI systems but also serve as a key bottleneck in

the overall collaborative process [16]. E↵orts to automate away such facilitation

unfortunately remain expensive [130], and domain experts without collaboration

experience face an increased chance to fail. The current state of human-AI col-

laboration presents an opportunity to further eliminate redundancies and allow

the core members to work together with minimal human intervention.

In addition to challenges in forming an e↵ective human-AI team, individual

tasks that each party is responsible for should also be carefully optimized for col-

laboration. A creative practice, such as composing music or producing a visual

work of art, may be decomposed into a series of tasks that may be delegated to

the AI system, and such AI agents may be embraced by artists who are “open to

working in new ways” [34]. On the other hand, some high-stake collaboration

scenarios may result in negative user experiences, where the AI partner may

produce results at odds with the human user’s prior expert knowledge [8]. In

this amorphous area, there is a movement to construct a structured taxonomy

of tasks suitable for “hybrid intelligence” [32], all while determining the answer
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to the questions of “can we” and “should we” by determining delegability of

each task based on motivation, di�culty, risk, and trust [95]. Meanwhile, each

case for human-AI collaboration continues to be evaluated on a task-by-task

basis by human engineers and expert facilitators [130].

More than so human counterparts, machine teammates can be trained to

specialize in specific collaboration processes, including “coordination, knowl-

edge sharing, or evaluation” [143], and such processes can be further influenced

by the mode of communication shared by human users and AI agents. As con-

sumers interact with their smart speakers with voice, musicians may interact

with their AI assistants using MIDI-enabled digital instruments; while business

intelligence applications may rely on various explicit mouse clicks and keyboard

shortcuts, other camera-activated AI solutions may watch for specific poses by

their human partners. Such explicit interaction modes can also be supplemented

with nonverbal cues: with human users particularly sensitive to unrelated ut-

terances and expressive gestures [88], their AI assistants should also be able to

“return the favor”[15] by reading extra cues that “expose each human user’s

mental and emotional states”[102].

2.4 Barriers to Widespread Adoption

Upon further defining technical and contextual aspects of human-AI communi-

cation, one must turn attention to the way such technologies are governed and

adopted by the society at large. As AI products become more readily available,

ethical and moral challenges emerge, with questions surrounding “unintended

consequences that threaten human autonomy” as well as the moral code that

each AI agent is expected to follow [143]. Human dynamics of trust and reliance

also play a role: while adults are capable of resisting simulated social pressure

and ignore incorrect AI recommendations, children are susceptible to “caving

in” and simply following the AI agent’s lead [158]; in some cases, human experts

choose to “act defensively and ignore the systems conflicting recommendations,”

indicating that they may be feeling threatened by the e�cacy of AI assistants

and display mistrust [41]. Such social and institutional barriers may require
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specialized regulations and organizational norms amongst the human-AI teams.

Machine teammates are seemingly exempt from issues of responsibility and

liability, leaving such policy-related discussions to human stakeholders. In order

to build comprehensive AI regulation that does not stifle innovation, researchers

and regulators need to work together to bring clarity to the right and the obli-

gations of individual stakeholders and build confidence and acceptance of AI

assistance. Researchers and designers must ask themselves what decisions can

and should be deferred to AI agents, and ruminate whether they will behave in

the best interests of human partners [115]; lawmakers must support this process

by “codify(ing) overarching principles” and “adopt industry and market-specific

legislation” as certain AI systems approach maturity [19].

As the regulators and the industry proceed with building a sustainable in-

frastructure to support human-AI collaboration, human users will need to learn

to adapt and embrace their AI partners. In business settings, leaders should

“convey the urgency of AI initiatives” and “invest in AI education for everyone”

[47], training in required competencies for collaboration. Meanwhile, schools are

recommended to adopt “a staged approach” through the AI journey as part of

the required curriculum [119].

2.5 Summary

Recognizing the surge of interest in utilizing AI systems for joint activity, this

chapter identified a number of barriers preventing the widespread adoption of

human-AI collaboration. These challenges also suggest a number of opportu-

nities that this dissertation sets out to further explore in facilitating future

implementation. This chapter can be summarized as the following:

• Conventional AI systems are limited in their ability to customize appear-

ance, learn human insights in real time, and explain their actions.

• Team composition, task design, and mode of communication need to be

tailored specifically to collaborative scenarios.



2.5. SUMMARY 15

• Human stakeholders should work together to establish a sustainable socio-

legal framework conducive to human-AI collaboration and prepare busi-

ness and education sectors with the necessary training.



Chapter 3

Modular Interface

Framework

What makes a mechanism is the separation and extension of separate parts of our

body as hand, arm, feet, in pen, hammer, wheel. And the mechanization of a task is

done by segmentation of each part of an action in a series of uniform, repeatable, and

movable parts. The exact opposite characterizes cybernation (or automation), which

has been described as a way of thinking, as much as a way of doing. Instead of being

concerned with separate machines, cybernation looks at the production problem as

an integrated system of information handling.

Marshall McLuhan, Understanding Media: The Extensions of Man [103]

3.1 Introduction

To simulate a certain human ability using artificial intelligence is to understand

the surrounding context, dissect the corresponding activities into repeatable

processes, and train an AI agent to reliably do the same. Regardless of their

outcome, such endeavors truly feel as labour- and time-intensive as carving

a bronze sculpture of a human figure or conducting a nationwide census —

requiring careful dissection, collection, and analysis of human condition.

These monumental challenges, however, are made less daunting with the

16
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rise of crowdsourcing platforms. Some, inspired by financial incentives, flock to

Amazon Mechanical Turk platform to complete individual HITs (human intelli-

gence tasks), ranging from answering simple surveys to labelling a complex pho-

tograph [66]; many solve di�cult reCAPTCHA challenges to sign up for a web-

site account, identifying various distorted English words, without realizing they

are digitizing New York Times archives one word at a time [159]; a few dedicated

individuals may leave their networked computers overnight and “donate” their

computing resources to various scientific projects, such as Folding@Home [12].

Whether driven by tangible rewards or pure curiosity, distributed e↵orts yielded

significant progress towards large-scale datasets: Mechanical Turk continues to

serve as a popular method for researchers to generate crowdsourced datasets

with [21], and such datasets feature named entities [83], and behavioural pat-

terns [133], and emotive words and phrases [111], all contributed by people

around the world.

The excitement continues to build as machine learning applications integrate

data beyond simple texts and numbers, such as language and vision. Ranging

from simple captioning of static images to describing scenes in films, the rising

interest in such research areas has also yielded in a plethora of new datasets

released to the public, as well as an appetite for many more [46]. Such datasets

are designed to highlight visual and textual correspondence, context, and nar-

ratives, and generating one understandably requires a lot of work: each research

group ends up building a bespoke tool to collect and organize annotations [123].

While web annotation tools and services do exist for public access, such tools

are limited to specific modalities and do not o↵er joint annotation of text and

vision data. This gap in the market results in a series of fragmented and costly

e↵orts by these research groups, often prone to initial defects and multiple itera-

tions common in a software development cycle, as well as di�culty in large-scale

deployment [94].

There also exists a gap between tools for data annotation and interfaces

of machine learning systems, and understandably so, as they are created for

two distinct user groups: annotators who fuel machine learning projects, and

end users of such systems. However, with both tools sharing a large set of



18 CHAPTER 3. MODULAR INTERFACE FRAMEWORK

interface components and workflows, there lies an opportunity to o↵er a common

approach to data annotation and visualization — with applications to artificial

intelligence and machine learning.

Recognizing these present gaps between dataset annotation interfaces and

machine learning visualization solutions, this chapter presents Modular: a mod-

ular annotation and visualization framework and the accompanying proof-of-

concept software platform that enables researchers to rapidly set up an inter-

face for annotating new datasets and visualizing predictions made by a machine

learning model. The platform enables many of the standard and popular visual

and textual modalities available in conventional annotation tools, configurable

not only to collect data, but to visualize outputs of existing machine learning

systems and even launch hybrid initiatives such as user studies. Finally, as the

name Modular entails, research engineers and scientists can also extend existing

modules or create entirely new ones that are specific to project needs — opti-

mizing the workflow for researchers and enabling them to seamlessly conduct

their work without being bound by out-of-the-box solutions or building custom

software.

3.2 Related Work

Annotation tools currently available for public access exist along a spectrum

between the two distinct types of annotation: text and pixel (for static and

moving images). While the majority of tools specialize in a specific type of

annotation, a handful of multimodal tools set out to allow their users to create

di↵erent types of annotation and bind them together with mixed results.

3.2.1 Text Annotation Tools

Ranging from simple free-form text entries to structured word-based tags, text

annotations come in a variety of forms, and there exist numerous tools designed

for domain-specific use cases. BRAT [150] provides features for structured anno-

tations with fixed-form text, where the users can mark specific tokens with text

labels and color blocks and connect them with simple associations. Meanwhile,
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Webanno [36] provides a focused set of linguistic features with a multi-user in-

terface, allowing a group of users to collaborate on a larger body of text using

a strictly defined set of morphological, syntactical, and semantic annotations.

Finally, Knowtator [117] o↵ers an ability to define custom ontologies powered

by the popular, open-source framework Protégé, enabling domain-specific an-

notation tasks with hand-crafted ontologies.

Optimized for use cases that require collaborative e↵orts in dissecting large

text corpora and handling knowledge management, such text-oriented tools may

be a good fit for a range of research domains: BRAT was extensively used in

epigenetics and infectious diseases subdomains of biology, while Webanno and

Knowtator claim flexible application to di↵erent domains due to their standard-

ized knowledge representation. They, however, present some barrier to wider

adoption: limited feature extensibility by end-users, steep learning curve, and

di�culty in deployment for non-expert access. Often assuming interface designs

and workflows conducive to specific problem domains, these tools are rigidly

purpose-built and resistant to extending tool capabilities or making developer-

or researcher-initiated interface updates. The result is a suite of tools that re-

quire extensive training prior to use and prevent novice users from participating

in establishing a collective knowledge base [16].

3.2.2 Pixel Annotation Tools

Necessitated by the emergence of products that rely on AI-based image recog-

nition and generation, there are also multiple open-source tools designed for

collecting image and video annotations. Image annotation tools such as La-

belMe [138] and Annotorious [148] o↵er a standardized interface where users

can select a single image and create one or more polygonal overlay elements

that correspond to di↵erent parts of the image, complete with basic labels.

Video annotation presents a challenge beyond labeling di↵erent parts of

a single static image, as each video file features an overwhelming number of

static frame images with multiple entities actively entering and exiting a scene.

Tools such as LabelMe Video [167] and VATIC [160] adopt a↵ordances originally

demonstrated in static image annotation tools, including bounding boxes and
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polygonal annotations with class labels and attributes, and implement features

common in video editing software: basic keyframe interpolation and on-screen

motion tracking. Finally, CVAT [91], a platform created by the team behind

the open source computer vision library OpenCV, o↵ers an assisted experience

made possible with state-of-the-art algorithms [97] — allowing users to more

quickly and conveniently annotate with automatic entity detection.

Unlike their text-specific, self-hosted counterparts that largely rely on local

server storage, these pixel annotation tools fully support cloud storage and

dedicated servers to facilitate larger media assets and access for wider audiences.

Their user interface o↵erings remain largely opinionated, however, in terms of

how the user’s annotation experience should unfold, o↵ering little flexibility

in tailoring the user experience and satisfying project-specific needs. While

such conventions and practices are designed to facilitate the project at hand,

this can contribute to excessive dependence on specific tools with little to no

alternatives down the line: this potential issue is well-aligned with the software

industry, where the use of system-specific conventions render “the semantics of

the system inseparable from the tools” [107] and become a point of contention.

3.2.3 Multimodal Annotation Tools

As the demand for more human-annotated data becomes more complex, the

tasks designed to collect such data transform to be more layered and nuanced: an

annotator may be asked to transcribe an audio recording and highlight relevant

keywords, while another may be requested to connect di↵erent characters in an

excerpt from a film script to on-screen entities in static images.

While many researchers may “duct-tape” existing single-purpose tools to-

gether [42] and request users to annotate the same asset multiple times using

di↵erent methods [147], other bespoke tools set out to support multiple an-

notation modes: ELAN [82] allows users to create free-form text annotations

for a specific audio or video recording, while NOVA [161] similarly supports

text annotations for audio-video recordings and other non-verbal communica-

tion cues, such as facial expressions and gestures, represented as continuous

datasets. However, while these tools do support multiple types of assets, resul-
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Figure 3.1: When using a conventional website builder, each section of the page is represented

as a module, available for the user to customize, populate, and place as necessary [17].

tant annotations remain separate and disconnected, other than being aligned

on a timeline. The generically named Universal Data Tool [68], on the other

hand, features a large set of annotation methods designed for specific scenarios,

ranging from audio transcription to video segmentation, but forces the users

to dedicate a project to a specific annotation type without the ability to build

custom scenarios or switch between existing scenarios on-the-fly.

While inspired by common annotation scenarios, these multimodal tools fail

to allow users to jointly create text and pixel annotations and assign contex-

tual links between individual annotations. Each of these tools addresses a very

specific line of research and thus cannot serve projects that cut across computa-

tional language and vision disciplines, leaving researchers to their own devices

in producing more complex datasets.

3.3 Approach

Inspired by conventional wisdom in building contemporary web-based software,

Modular is built on three main approaches in response to the apparent gaps

in data-hungry areas in AI research and annotation tools: (1) straightforward
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Figure 3.2: Each interface can be easily constructed and customized using Modular’s web-

based layout generator, eliminating the need for ad hoc web development and easing the

initial learning curve. The dropdown menu, triggered by the “new module” button, features

all available modules.

user experience for stakeholders on both sides of the interface, (2) reusable,

configurable, and context-sensitive modules that respond to changing needs of

the users, and (3) ability to extend the functionality of the tool with project-

specific code.

Usability

Deploying personal websites is no longer a feat exclusive to programmers or

dedicated hobbyists, as today’s website building tools now allow a much larger

demographic of users to customize and publish websites with ease. As illustrated

in Figure 3.1, people can click and drag customizable elements, ranging from

text boxes to video players, into an empty canvas, and one can further arrange

the modules and insert additional editorial content as required.
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Figure 3.3: In this representation of a typical user experience in designing and deploying an

interface using Modular, the researcher (green) can define and communicate an overarching

goal. This is then translated to a web-based experience by the designer-developer (red) using

a drag-and-drop interface, coupled with reusable modules, custom implementations, and ap-

plicable datasets. The resultant interface is then accessed by the user (blue) using a unique

URL, and the collected data is delivered to the researcher.

Modular sets out to apply the above paradigm to collecting annotation data

and visualizing AI models. While each iteration of its framework can be manu-

ally constructed using a plaintext layout specification file, Modular’s web-based

layout generator sets out to ease the burden of coding for typical lay-users by

emulating a WYSIWIG (“What You See Is What You Get”) approach found in

popular website builders such as Wix and Squarespace. As illustrated in Fig-

ure 3.2, the layout generator allows the user to customize the placement and the

size of individual modules, and also dictate how the whole experience unfolds

using pagination. Using the interface, each researcher can conveniently create

a simple annotation tool, visualize datasets, or deploy a complex user study —

and the participants on the other side can easily access with a “permalink,”

eliminating the need to install dedicated software. A typical user experience of

using Modular is illustrated in Figure 3.3.

Contextuality

In out-of-the-box tools and other research-specific e↵orts, each interface com-

ponent is often rigidly configured to perform one or more specific tasks: a text

tagging component may be dedicated to receive text inputs from the user, ne-

cessitating a separate component to visualize the very same data collected from

other users. The results are costly redundancies and a lost opportunity in build-

ing reusable components whose visual elements and behavior transform based

on the context in which they are used.

Pursuing context-aware behavior with minimal redundancy, all modules of-
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fered by Modular are designed to perform dual functions: to collect annotations

(write) or to visualize a provided dataset (read), which can be toggled when

establishing the layout.

This behavior is further segmented and defined to vary based on co-location.

For instance, if an instance of a text tagging module, set to annotation mode,

exists alongside a bounding box module configured to annotate another image

in identifying notable characters, another module — namely a graph module

— can be configured to treat all annotations, textual or visual, as viable nodes

that can be connected to one another. In more granular cases, individual events

emitted by one module can trigger a response in another module: while the user

“scrubs” a video looking for a specific character, a list of pertinent characters in

another module may light up based on the video player’s temporal data. These

relationships and behaviours have been manually identified and established at

the framework level, but they can be disabled or reconfigured as per project

needs.

As illustrated in Table 3.1, Modular presents an opportunity where the same

modules can come together perform di↵erent functions based on their configura-

tion and placement, eliminating the need to build a wholly separate yet largely

redundant component each time a new project requirement emerges.

Extensibility

The various modules o↵ered by the framework are designed to su�ciently cover

common use cases explored by other tools, ranging from tagging images to

conversing with AI agents, yet there is a use case unique to a research project

that necessitates a level of customization. Consisting of standard page, style,

Annotation Visualization User Studies

Text Word Token Tags Language Parser Freetext Entry

Video Landmark Points Entity Detector Overlay AI-generated Clips

Graph Text-Visual Links Spatio-Temporal Links Audience Clustering

Table 3.1: Sample manifestation of interface modules applied to various research e↵orts,

including conversational AI, explainable AI, and commonsense grounding.
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Figure 3.4: The interface consists of text, video, and graph modules, which are arranged as a

plaintext specification file. The modules interact with a backend that loads the data schema

and saves and loads annotations, which can be exported as a single output file. Independent

by default, inserted modules can be manually configured to share the same data model and

behave as a single unit. The user can also create and inject new project-specific modules as

necessary.

and behaviour files, all existing modules follow the same construction, and other

users of Modular may freely extend existing modules or create entirely new

modules per project needs.

3.4 Interface Modules

Modular’s interface hosts a number of independent, context-free components

that can be freely arranged and combined as the research or dataset need

emerges. Summarized in Figure 3.4, they are organized into three distinct cat-

egories: text, video/image, and graph. Inspired by existing single-type and

multimodal annotation tools, these modules o↵er a variety of ways to annotate

a dataset or visualize results. The designer may create custom modules specific

to project needs, such as audio, geolocation, and spreadsheets.

3.4.1 Text Module

Consisting of simple word token tagging and free-form text input components,

the text module enables each user to mark di↵erent terms or create comments
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pertaining to a specific part of a text-based dataset. These user-provided an-

notations can also introduce an element of collaboration (or contention) as the

interface may o↵er a visual indication of previously tagged terms, as well as a

visualization of agreement amongst uploaded entries as deemed necessary by

the developer. These features are further described in subsequent sections.

Tagging

The tagging component, illustrated in Figure 3.5, tokenizes individual words,

paragraphs, and sentences to enable token-based tagging across the interface.

Upon discovering a notable word or phrase in the dataset, the user can click to

select one or more individual tokens. The component also captures other types

of metadata such as time stamps or presence of other interface modules, as

manually configured in the layout generator, for persistent storage. The module

also enables colored tokens to allow for importance annotation or visualization

of output from probabilistic models producing importance weights per token,

such as models that feature learned attention.

Figure 3.5: The tagging module (top) enables marking specific words. The user is asked

to inspect the question-and-answer pair, along with a series of relevant word tokens and

visualized importance weights based on the dataset injected by the developer. The user

may flag individual tokens pertinent to the question with mouse click: flagged tokens, now

in inverted color to indicate selection, are communicated back to the researcher for future

reference.
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Figure 3.6: The free-form module (bottom) allows the user to submit plaintext data, whether

to answer specific questions or record observations.

Free-Form

Also illustrated in Figure 3.6, this component allows the user to submit free-

form text entries that further annotate or describe the dataset. Each submission

serves as an accompanying annotation to token tags or as a standalone comment,

and contains the same set of comprehensive metadata as token tags.

3.4.2 Video Module

The video module features a full-motion video player with a set of interactive

overlay components, informed by existing video annotation tools and available

datasets. The user can activate each component to reveal more insights per-

taining to the video, and further interact with individual entities to insert an-

notations or augment the original dataset.

Bounding Boxes

Visual entities, ranging from algorithmically detected objects to manually an-

notated counterparts, can be represented as 2D bounding boxes illustrated in

Figure 3.7. Each box displays above the player component, moving in real-time

along with the video. Based on the parameters provided by the developer, each

box may be marked in a di↵erent color, display in a varying opacity, or con-

tain text-based labels such as attributes. Using the module, the user can also

directly interact with bounding boxes to adjust their size or position, edit their
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Figure 3.7: The video module (top) with the entity seek module (bottom) displaying di↵erent

entities present in the video and their temporal annotation. Each bar in the entity seek

module indicates the presence of individual entities, marked by their index numbers, across

the timeline.

labels, or create additional boxes as required.

Polygons / Segmentation

The user can also create and modify polygonal annotations. Taking cue from

popular graphics editor applications, the component allows the user to click on

specific parts of the frame to construct a polygon and place it upon an object.

The generated polygon serves the same function as bounding boxes, including

spatial interpolation between keyframes.

Landmark Points

The video module also o↵ers the ability to visualize a group of anchor points

over video, as illustrated in Figure 3.7. Suitable for representing skeletal and

facial feature tracking data, the resultant overlay dots can also vary in their
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opacity, size, and color as per user-specified parameters, and are also available

for user modifications and annotations. These visual attributes can be used

to visualize di↵erent dataset properties, such as confidence scores and entity

identifiers, as applicable.

Text Attributes

In addition to visual entities that display (and move) in synchronization with

on-screen objects, text-based overlay options are available for the user as illus-

trated in Figure 3.7. Text-based subtitles and captions coincide with dialogues

in the video, and o↵er the user the same degrees of interaction as the token

tagging component found in the text module: the user can click on one or more

individual word tokens to simply mark as notable or annotate with free form

text comments.

Entity Seek

This module allows the user to look for occurrences of a certain entity across the

video timeline illustrated in Figure 3.7. Characterized by a timeline visualiza-

tion situated below the video progress bar, the feature displays an on-screen or

in-script presence of an entity with a series of dots, indicating that the user can

“scrub” the video to a specific point of the timeline to discover that particular

entity. As the individual timeline components “light up” when the correspond-

ing entities are displayed on-screen, the module also allows the user to easily

identify co-occurrence of two or more distinct entities.

3.4.3 Graph Module

Many annotation tools are designed to support a limited set of media files and

annotation types, and a disconnect between tool design and user needs quickly

emerges as the tool starts to support flexibility [31]: to bridge the gap between

di↵erent types of annotation, Modular introduces a unique graph module. This

module serves as a versatile method of generating 2D node-link graphs in direct

relation to on-screen visual entities and/or text token nodes. Each generated
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Figure 3.8: A 2D graph visualizing the relationship of di↵erent on-screen entities and text

tokens using nodes, icons, and edges. Initially created using force-directed graph drawing, the

graph can be manually modified by the user with click and drag.

graph can be presented as a single static image or a spatio-temporal animation

displayed in synchronization with video playback.

Utilizing SVG, the popular vector graphics format, the two-dimensional

graph component features an ability to generate vector-based network graphs

that visualize relationships between di↵erent entities, including individual on-

screen visual tokens and text tokens, in the dataset illustrated in Figure 3.8.

Each entity is represented as a node, with its various visual attributes, in-

cluding size, opacity, color, and icon, mapped to user-defined characteristics

of the corresponding entity. Two or more nodes may be linked using one or

more path objects, each equipped with its own set of modifiers: path type (dot-

ted, solid), direction (bidirectional, unidirectional, or non-directional), and a

text-based annotation.

Finally, the resultant graph can visualize hierarchical information by using

a tree-like approach: each of the larger, main nodes can have a series of child
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nodes, which in turn have the capacity to have their own set of child nodes.

While each node in the graph can be placed randomly in the canvas, the user

may toggle a trigger that maps the position of each node to the corresponding

entity in a video clip allowing the graph to capture the on-screen spatio-temporal

information as well: for instance, a graph node representing a main character

may move in accordance with the character’s on-screen movement across the

scene.

Instead of simply inspecting the resultant graph in a passive manner, the

user may actively interact with nodes and links to induce changes to the dataset.

The user may click and drag a child node and simply migrate it from one parent

node to another in order to swap the two entities’ characteristics at the dataset

level. Alternatively, the user may remove a link between two nodes to sever the

relationship between the two entities, or reverse the direction of the inter-node

link to update the nature of the relationship.

3.4.4 User-Defined Module

Beyond the original o↵erings of the framework, the developer may wish to define

entirely new experiences specific to project needs, ranging from modules that

provide data summary based on previously created user annotation to those

designed to allow users to directly interact with external AI agents or solutions.

Below are some of the user-defined modules necessitated by the collaborative

work discussed in the subsequent chapters.

Summary

With all user-provided annotations stored in a database table, the module em-

braces and promotes collaboration and collective e↵orts by visualizing the sum-

mary of prior user activities. Illustrated in Figure 3.9, the summary module also

may integrate with the previously described graph module to generate a simple

network visualization of relationships among the user annotations, and o↵er a

download link that allows the user to download all the accumulated annotations.

This module was originally constructed for a prototype of a crowdsourced an-

notation project, designed to allow the administrators to have a consolidated



32 CHAPTER 3. MODULAR INTERFACE FRAMEWORK

Figure 3.9: An example of a user-defined summary module, designed to display a list of

annotations created by di↵erent annotators.

view of annotations created by a large number of anonymous users.

Activity

Upon entering the interface, the user can immediately identify the in-text key-

words that have been annotated or tagged by other participants. Each previously-

tagged token is displayed with varying visual attributes as inspired by micro-

encoding techniques [14] — font weight, opacity or color saturation — alerting

the user to how popular (or unpopular) that token is. The user can then click

on the token to reveal all submissions associated with the term illustrated in

Figure 3.10. The existing video player module may be extended to visualize

the level of user activity across the timeline, indicating more popular (or con-

tentious) points of each clip. The opacity or saturation of each color block

represents varying degrees of user activity at a more granular level.
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Figure 3.10: An example of a user-defined activity module, where green indicates entries

that support a specific question-answer pair, while red indicates those that serve as refuting

evidence. The developer may highlight individual word tokens to accommodate stylistic needs

or visualize user activity surrounding them. The underline below the token indicates selection

state, and upon click, the user can further explore detailed activities surrounding the selected

token.

Agreement

This module also provides a more thorough visualization of user submissions,

clustered by their response categories. Each bar, illustrated in Figure 3.10, be-

low the corresponding statement displays the makeup of associated responses,

allowing users to quickly identify the popular opinion (or lack thereof) pertain-

ing to each statement. Like the previously mentioned Summary module, this

module too was created to reduce the visual and cognitive load that may be

imposed on the administrator in reviewing raw database table content.

Conversation

Featuring a modality similar to today’s messenger applications, the conversation

module, illustrated in Figure 3.11 allows the user to directly engage with an ex-

ternal solution using a chat-style interface. Whether it be an AI model featuring
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its own natural language parser or another web service pertinent to project re-

quirements, the external solution processes and returns an output. This output

take a form of a simple text message or a complex payload, which can simply be

printed by the conversation module or interpreted by other modules that can

take advantage of it: this module was especially useful for projects that support

text-based collaboration between the human user and the AI system, described

in the future chapters.

3.5 Back End

Built with simplicity and extensibility in mind, Modular relies on a series of

popular core web technologies with little dependence on niche plugins. The

Bootstrap framework serves as a basis to the various interface modules, while

PHP and MySQL serve as backend supports that handle record storage and re-

Figure 3.11: A conversation module, where the user can provide a text input to directly

engage an external AI model or web service. This module can simply display the returned

text message, or trigger other modules to react to the available output.



3.5. BACK END 35

trieval. Finally, JavaScript and jQuery serve an instrumental role in integrating

the various interface modules into a cohesive experience. Separation between

visual elements, presentation style, and behavior present in individual modules

is inspired by precedents established by these technologies.

General Data Structure

The dataset file structure is designed to support weighted text tokens, free-form

text, bounding boxes, text attributes, and landmark points. Weighted text

tokens consist of the token identifier along with the associated weight. In the

case of unweighted tokens, the value of the associated weight is simply set to

“null”. Associated free-form text is saved directly as a string.

Bounding boxes consist of the coordinates of the box’s location, width and

height, and an object label, a confidence score (automatically generated by a

machine learning model), and a tracked identifier derived from any pertinent AI

model. Finally, landmark points for facial or body pose comprise a list of 2D

coordinates along with the confidence value for each point (provided by a pose

estimation algorithm), tracked identity, and other miscellaneous attributes.

Database

While the user is expected to directly manipulate the visible data using the

various interface modules, the underlying dataset remains intact without any

permanent, irreversible changes. Instead, the interface pushes an incremental

change, or a “delta,” to the database table in order to maintain version control

and activity history.

Each delta entry consists of three main components: the timestamp, the

session identifier (which doubles as a username), and the text fragment designed

to replace the original counterpart. Upon detecting the user’s interaction with

the applicable entity, whether it be a text token or a bounding box, the interface

creates a copy of the underlying data object’s schema. This schema is then

populated with the user-generated values, and then committed to the table.

When initializing the interface, the database module loads all the incremen-

tal changes and the original dataset into the memory. Upon completion, the
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interface proceeds with merging the two datasets by “injecting” each relevant

delta into the dataset, producing a merged version for the interface to reference.

This process takes place regularly in the background as the user continues to

make corrections and annotations.

Version Control and Data Exporter-Loader

Similar to version control systems such as Subversion or Git, this feature allows

the user to identify the di↵erences and revert to previous annotations or original

data and download all the accumulated annotations, along with the schema

supporting them. Once the user acquires the file, one can load it back to the

interface to visualize, modify or augment.

Module Structure

Each module consists of visual element (HTML), presentation style (CSS), and

behavior files (JavaScript). Upon passing a series of basic syntax validations to

prevent compilation error, each module can be readily added to the user-facing

interface via the layout generator. Element and style files work to define the

look-and-feel of an individual module, while the more complex behavior file is

responsible for establishing the available actions in each module, as well as its

behavior in relation to other co-located modules and their own events.

For example, the developer may wish to build a custom module that presents

visual interestingness of an image, and ensure that this module refers to the

image content of the present video player. Upon establishing the visual elements

of the module, the user can instruct the module to look for the video player

module, capture the still image, and analyze its image content. This particular

custom behavior can then be “scheduled” to trigger every time the player moves

to the next video frame.

3.6 Use Cases

Described in Table 3.1, this framework can applied to a number of di↵erent

aspects in interdisciplinary research e↵orts across visualization, annotation, and
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user studies.

Visualization

The user can build an interactive visualization of available datasets or results

without resorting to creating bespoke software. After constructing the layout

and inserting the necessary modules, the researcher can attach a large dataset, a

plain text file, or a video file to each relevant module prior to deployment. The

resultant interface will automatically load the assets as specified in the modules.

These aspects of the framework are thoroughly explored in subsequent chapters.

Annotation

Beyond passive visualizations, the user can actively interact with the modules

and create new annotations to build a new dataset or contribute to an existing

one. The user can watch a video, identify a series of on-screen entities, and

create a series of bounding boxes. All the activities are recorded and become

available for download as a plaintext file. A large-scale annotation project,

designed to synchronize multiple discrete datasets and allow human users to

further augment the dataset, described in Chapter 4 relies on this use case.

User Study

The framework also supports a lengthier, more complex experience where the

user is guided through a series of di↵erent annotation, inference, and analysis

tasks. Spanning multiple pages and equipped with a variety of editorial con-

tent, the interface presents an opportunity for deploying large-scale user studies

without deep technical knowledge. Chapter 7 relies on this use case to record,

observe, assess trust and reliance in human-AI collaboration.

Target Users

Modular is designed to facilitate planning, prototyping, and deployment pro-

cesses that often involve multiple stakeholder groups from a larger organization.

The framework, by design, allows all stakeholders — researchers, developers,
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designers, and other curious enthusiasts — to independently oversee the end-to-

end process of building a user-oriented web experience with minimal disruption

as the provided modules are su�cient for basic projects. However, using Mod-

ular in a highly collaborative environment will most likely result in a positive

experience as all stakeholders can contribute to further augmenting the “vanilla”

Modular framework and tailor to project needs.

Commercial License Agreement

While Modular is freely available for academic and non-commercial research

use, the framework has been commercially licensed to SRI International, whose

resident researchers served as close collaborators for projects introduced in the

subsequent chapters, with Ontario Tech University serving as the Intellectual

Property agent. Modular remains in use for SRI International’s projects beyond

those discussed in the dissertation.

3.7 Summary

Having identified opportunities for improvement in tools currently available for

data annotation and model visualization in areas of AI research, this chap-

ter introduced Modular, a new interface framework underpinning the projects

discussed in the subsequent chapters of the dissertation. This chapter can be

summarized as the following:

• Research e↵orts surrounding data annotation and AI model visualization

remain fragmented due to lack of flexibility of existing tools.

• Popular approaches in web development can be applied to deploying anno-

tation and visualization projects in a user-friendly, cost-e↵ective fashion.

• Module-oriented approach to building a user interface can be used to con-

struct user experiences with minimal redundancy and flexible configura-

tion.



Chapter 4

Annotation for

Commonsense Grounding

Common sense is not a simple thing. Instead, it is an immense society of hard earned

practical ideas — of multitudes of life-learned rules and exceptions, dispositions and

tendencies, balances and checks. If common sense is so diverse and intricate, what

makes it seem so obvious and natural? This illusion of simplicity comes from losing

touch with what happened during infancy, when we formed our first abilities. As

each new group of skills matures, we build more layers on top of them. As time goes

on the layers below become increasingly remote until, when we try to speak of them

in later life, we find ourselves with little more to say than “I don’t know.”

Marvin Minsky, The Society of Mind [109]

4.1 Introduction

As artificial intelligence takes center stage with impressive and even controversial

advancements in areas including facial recognition, self-driving vehicles, and

even e-sports, a more primal question emerges: can AI view and interact with

the everyday world at large in the same fashion as humans do, beyond controlled

environments and tightly defined domains?

Despite its name, simulating “common sense” (dubbed commonsense) con-

39
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tinues to be an illusive, distant goal for today’s AI research. Whether it be an

ability to identify a father in a family photo or attribute a pronoun to a cor-

rect object in a sentence [29], commonsense seems well-illustrated with various

examples, though lacking a concrete, clear definition in the context of artificial

intelligence. Reaching out to the formative years of the AI domain, however,

reveals a foundational idea: “we shall therefore say that a program has common

sense if it automatically deduces for itself a su�ciently wide class of immediate

consequences of anything it is told and what it already knows” [101].

Concerned with the challenge of imitating human understanding of ordi-

nary situations with real-world knowledge, commonsense reasoning is a crucial

element in various AI tasks [29]: from disambiguating pronouns in complex

sentences to explaining why a character bursts into a laughter, there are many

problems that humans can naturally solve with a limited set of clues as we

can infer the existence of objects not described in the paragraph and recall the

theme of the film to better analyze the scene. Yet, AI continues to struggle with

the same challenges, despite the wealth of data collected from people around

the world as it struggles to “connect the dots” and “read between the lines”

without careful annotation provided by human users.

Scene understanding is a popular challenge in the domain of commonsense:

humans, with one glance at an image, can “immediately infer what is happening

in the scene beyond what is visually obvious” [170]. On the other hand, AI may

be able to identify the characters in the scene with its computer vision model,

it certainly could not tell you the motive of the main character on its own.

This current challenge, however, presents a unique opportunity where humans

can “teach” their AI counterparts how to better interpret a scene and build a

cohesive narrative.

In addition to identifying where the characters are standing in the scene and

what is being uttered by the main character, AI should be able to tell a co-

herent, if not compelling, story — and we can enable this shift by contributing

more complex annotations beyond narrow text and computer vision data. In

doing so, the human partner will also be contributing to commonsense reason-

ing through the process of “commonsense grounding,” where AI gains a better
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understanding of the world as a result of this process. After all, a story is more

than a sequence of events: storytelling requires multiple types of interactions,

such as making logical continuations of the narrative, understanding common

story arcs and tropes, understanding non-verbal communication including facial

expressions and gestures, and even responding to audience cues. A well-crafted

story generated via interactive storytelling must be logically coherent, requiring

commonsense knowledge.

Complex and creative tasks are involved dissecting an existing story and

transferring the resultant insights to existing or new AI models, and there is

a strong need to build a platform that can facilitate human-AI communication

and support various annotation types as well as interaction modes. Built in

response to such emerging opportunities, this chapter presents the annotation

component of Modular-powered Aesop [104, 105]: a new collaborative visual

storytelling platform designed to enable bidirectional communication between

human user and AI to understand and relate both stakeholders’ perception of

the world. Designed to clarify implicit human knowledge and collect common-

sense insights, Aesop enables users to define and ground complex sentences on

visual information, such as videos or animations, in order to create shared under-

standing and establish commonsense with the AI. These capabilities are powered

by novel knowledge graphs, which enable spatio-temporal event representation

essential for storytelling.

4.2 Related Work

Aesop’s annotation component builds on two distinct areas of research: com-

monsense grounding and narrative analysis. Prior work in these domains, while

providing a strong anchor point for Aesop, presents some of the underexplored

opportunities in coherent storytelling and implicit representation of the physical

or fictional world.
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4.2.1 Commonsense Grounding

Consisting of hard-coded physical and linguistic rules and two-dimensional rep-

resentation, SHRDLU [164] attempted to ground language in a physical world

with symbolic abstraction. Wubble World [62] was later introduced to augment

this work initiated by SHRDLU, motivated to help the computer learn language

in the same fashion as young children. This work enabled learning language used

in a physical world by interactive gameplay with an evolving 3D environment

and a multimodal symbolic framework [75], achieved by parsing language and re-

trieving probabilistic semantic representations from the perceived environment.

Additional work in language-based interactions [76, 121] presented a blocks

world platform for building structures. The system combines natural language

understanding, planning, and dialogue management, and supports communi-

cation about structures where goals are shared between the computer and the

human using natural language. However, these platforms are limited to simplis-

tic and rigid environments with communication about abstract structures using

explicit instructions and well-defined goals.

New platforms that build on existing video games, such as the Minecraft-

based Project Malmo [71], focus on end-to-end learning by solving various tasks

in 3D environments, ranging from navigation to collaborative problem solving

using language. Similarly, the Quake III Arena-based DeepMind Lab [11] fo-

cuses on a maze navigation task and has been extended to incorporate language

and learning, via an end-to-end approach which combines reinforcement and

unsupervised learning [60]. While these platforms are more advanced and con-

ducive to lower barrier to entry, they are limited by the rigidity caused by boxy,

inexpressive worlds and narrowly defined tasks assigned to the agents, o↵ering

little in the way of interaction with human users.

4.2.2 Visualization of Stories and Scripts

In the domain of visualizing and interpreting narratives in a scalable fashion,

tools such as CARDINAL [98], LISA [140], and CANVAS [72] emerged to assist

in authoring and analysis of movie scripts.

CARDINAL visualizes the plots of scripts via a number of views: the textual
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script view, a timeline and interaction-centric view, and 2D and 3D previews of

the scene itself. While presenting a flow feature to enable scriptwriters visualize

their script in a semi-automated way, CARDINAL lacks any notion of shared

meaning or continual learning as it follows the handling of directive in a very

rigid form with no underlying representation or direct way of interacting with

the system to define meaning and streamline visual storytelling. CANVAS [72]

is a computer assisted visual authoring tool for synthesizing animations from

sparsely-specified narrative events. Unlike CARDINAL, CANVAS produces a

series of storyboards rather than a live temporal animation, and provides an

interface for authoring and pre-visualizing narratives with AI assistance.

Unlike CARDINAL and CANVAS, LISA and PICA [45] focus on the narra-

tive structure. LISA is an assistive tool for story writers that provides feedback

on inconsistencies in the story using artificial intelligence, whereas PICA is a

conversational agent for interactive narratives with an underlying knowledge

base with encoded belief models for multiple users and autonomous agents in

addition to the actual story knowledge. LISA and PICA have some similarities

to Aesop, with a single focus on narrative, whether through user interaction or

conversation. However, the focus stops at the text level without integration of

any visual information.

The above tools and their capabilities are illustrated in Table 4.1, along

with the Aesop counterparts. In this comparison, Aesop emerges as the only

tool capable of establishing a complex knowledge graph, accepting a variety of

media assets, and facilitating both annotation and visualization tasks.

Knowledge Map Media Assets Use Case

CARDINAL Entity, action Script text Story assistance

CANVAS None Storyboard images Pre-visualization

LISA Entity, action Plot text Content feedback

PICA Entity, action, event Chat message text Knowledge-belief model

Aesop Entity, action, event Multimedia Annotation, visualization

Table 4.1: Comparison between Aesop and other tools for authoring and analysis of movie

scripts, in the context of shared knowledge representation, accepted media assets, and primary

use cases.
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Figure 4.1: Aesop’s annotation mode with commonsense grounding component, consisting of

a number of interface components supported by a language parser and various computer vision

pre-processing tools. The user, in sequence, can focus on di↵erent aspects of the film scene to

establish and augment knowledge graphs, which can be later used to ground the AI system

and recreate the scene via another animation software application. The user can additionally

establish relationships between characters and objects, and indicate the sequence of events

that take place in each scene.
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Figure 4.2: An brief illustration of the overall Aesop system, an end-to-end visual storytelling

platform that allows the user to deconstruct individual film scenes using an annotation system

and instruct the AI system to recreate the film using di↵erent interaction modalities. The

top section illustrates Aesop’s two main modes — annotation with commonsense grounding

component and collaboration with conversational AI mode (top right, further expanded in a

separate chapter) — and the bottom illustrates the visualized animation (bottom left) and

the underlying knowledge representation graph (bottom right). All aspects of the system

was built with Modular’s default and project-specific modules, with Muvizu providing visual

storytelling assistance.
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4.3 System Architecture

Built using the previously introduced Modular framework, Aesop features two

main modes as illustrated in the top section of Figure 4.2: commonsense ground-

ing responsible for collecting annotation from human users, and conversational

AI that relies on grounded concepts from the former.

Both modes are based on the underlying spatio-temporal knowledge graph,

which serves as an intermediate representation between language, vision and

animation. This graph, represented as a complex network of nodes and edges,

is communicated to an external animation software Muvizu [114] as a series of

API calls, visualizing the system’s understanding of a scene as a pre-rendered,

full-motion animation.

4.3.1 Annotation with Commonsense Grounding

In order to capture human insights surrounding film scenes, script segments, and

individual on-screen entities and synthesize otherwise discrete AI detector out-

puts, Aesop provides a flexible interface as part of the commonsense grounding

mode. Displayed in Figure 4.1, Aesop’s commonsense grounding mode consists

of a number of underlying components: a language parser [136] that accepts a

user-provided story to build a semantic representation; various computer vision

pre-processing tools, which parse a video and produce object, face, and pose

detection, along with depth and tracked landmark points for simultaneous lo-

calization and camera mapping. The user can use available detector output in

order to establish and augment knowledge graphs, which can be later used to

ground the AI system and recreate the scene via the licensed animation soft-

ware, Muvizu. Recognizing the interaction cost involved in deconstructing and

annotating di↵erent aspects of each film scene, the annotation interface pro-

vides page-based navigation that allows the user to focus on specific data types

or contexts, and each page features its own set of relevant modules.
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4.3.2 Collaboration with Conversational AI

Built to take advantage of accumulated commonsense to construct new and

original film scenes, Aesop’s conversational AI mode, shown in Figure 4.2 (right),

consists of an equally complex set of components: a speech language parser [4],

which takes speech input and constructs a semantic graph; an external gesture

tracking application that interprets depth and color information of the human

user’s camera image to produce the corresponding deictic coordinates; a dialog

manager, which parses user inputs, tracks the trajectory of individual parsing

processes, and adds them to the shared knowledge graph. This mode engages

various movie-making agents responsible for analyzing the knowledge graphs

and triggering corresponding API calls to Muvizu. The components relating

to the conversational AI mode and its collaborative capabilities will be further

discussed in the subsequent chapter.

4.3.3 Animation Software

To further visualize its knowledge graph in the form of a conventional animation

movie, Aesop relies on a separate software and its preset props and animations

called Muvizu [114]. Designed to emulate an actual movie production pipeline,

Muvizu cuts out many of the barriers associated with the creation of an ani-

mated film and assists Aesop for visual storytelling. Muvizu provides a large

library of built-in assets to rapidly assemble a scene, and enables users to select

characters, customize their appearance, position cameras and lights around the

set. In turn, the users can quickly prepare for each scene’s key shots, issue

directions to the actors, and record on-screen action in real time.

Its internal library of pre-generated assets includes 80 characters, 600 props

(complete with the ability to import custom 3D object file), 1000 character

accessories, 6 types of lights, 900 pre-animated character actions with mood-

based modifiers (“pointing angrily” vs. “with fright”), and 19 visual e↵ects

for cameras. Shots are layered with visual and audio e↵ects, voice tracks, and

music, and finally exported as a video file. A user can direct character eye and

head movement, and automatically lip sync characters with audio tracks. All

internal assets are directly exposed via API endpoints, enabling its interaction
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Figure 4.3: Muvizu software mimicking an instance from a movie.

with external applications such as Aesop. Figure 4.3 illustrates Muvizu’s ability

to replicate a frame from a movie to a relatively realistic level of detail.

4.3.4 Knowledge Graphs

Defined as a directed graph representation of a scene, Aesop’s knowledge graph

is used to encapsulate the spatio-temporal and object-attribute relationships

within a scene — and serves as an intermediate representation between natural

language, vision and the animation domain. Inspired by Modular’s graph mod-

ule, actors and props are represented as discrete modules, each associated with

various descriptors and attributes. As illustrated in Figure 4.4, these nodes are

bound together with links that correspond to spatial relationships, and temporal

relationships such as interactions with other actors and actions.

Aesop uses the knowledge graph as the core representation of the corre-

sponding scene, and implements a bidirectional interface between each module

in Figure 4.4 to the central knowledge graph. Users can also incrementally

build the graph using natural language in the conversational AI mode, as Aesop

can extract relationships from the output of the speech language parser to add,

remove, or modify nodes in the graph. Finally, users can also ground the knowl-

edge graphs on Muvizu and visual and textual representations from movies by

highlighting visual or textual tokens creating a knowledge graph that is directly

linked to Muvizu assets.
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Figure 4.4: An example of a knowledge graph with the various entities (people and props)

and relationships (spatial and temporal). The “Actors, Actions, Props, and Position” module

(first) displays all actors, their various actions, and other relevant scene components; The

“Event” module (second) indicates which specific actions were performed by individual actors,

complete with start and end time; the “Relationship” module (fourth) defines positional links

between actors and props, as well as interpersonal links between individual actors; finally,

the “Graph” module (second) presents a summary view of all nodes and links. Though

contextually rigid in this interface, all entities share the same data schema in the backend and

are amenable to new entity types as required. The current set of available entity types was

informed by Muvizu software capabilities.
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Figure 4.5: This figure is a courtesy of MovieGraphs dataset [155]. Each instance comes with

a video, textual description of the scene, a situation label and a graph representation of the

situation.

4.4 Commonsense Grounding

Building upon prior work in commonsense grounding and visualization of nar-

ratives and scripts, Aesop’s annotation mode utilizes a number of components

to collect human insights and establish a complex knowledge graph of film nar-

ratives: previously available datasets, pre-processed textual and visual assets,

and a web-based annotation platform.

4.4.1 MovieGraphs Dataset

The MovieGraphs dataset [155] is a collection of 7,637 annotated video clips

from 50 movies. Movies are a rich source for human interactions: in the dataset,

clips are annotated with characters who appear in the scene, complete with

their various attributes (both physical and emotional) and relationships and

interactions between each other. The dataset also features timestamped actions

performed by individual characters, as well as a brief description of the scene’s

narrative content.

Illustrated in Figure 4.5, each situation instance includes a video, subtitles,

a brief description of the scene, and a corresponding situation graph. Cur-

rently, MovieGraphs are annotated with human-centric annotations, lacking
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objects, spatial relationships and common sense grounding. Aesop relies on the

MovieGraphs dataset as an initial source of knowledge and commonsense, and

allows the system’s users to further augment it with spatial relationships, vi-

sual features extracted from the source video, and user-provided annotations

— all to teach the AI agents how to translate visual and textual concepts into

grounded knowledge graphs.

4.4.2 Textual Data Processing

Aesop augments the MovieGraphs dataset using information extracted from text

data, such as entities, spatio-temporal relationships, and context, and utilizes

SLING [136], a frame-semantic parser for natural language, for story text pars-

ing. SLING uses a semantic frame that represents a collection of facts, features,

and attributes of a detected object and its relationship to others. The resultant

data is again processed and used to further train the parser.

SLING was an advantageous choice for Aesop as it can flexibly adopt di↵er-

ent schema for representing entities and their relationships in di↵erent ways. For

instance, one schema that the pre-trained model understands is the PropBank

schema [77]: a corpus of text annotated with information about basic semantic

properties. PropBank annotations, when adapted by SLING, enable the parser

to identify both the subject and the object a↵ected by the subject. The benefit

of using the PropBank schema is using the links between frames to identify the

corresponding subject and object or relational arguments of the event in ques-

tion. Furthermore, one can use the graph output of SLING and PropBank to

generate text based knowledge graphs for reasoning over spatio-temporal object-

attribute relationships. Once an event is extracted, corresponding nodes and

edges are automatically created in the shared graph representation illustrated

in Figure 4.4.

4.4.3 Visual Data Processing

Aesop also uses additional visual features extracted from the MovieGraphs

dataset. In addition to the available graphs, each clip was pre-processed by
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Figure 4.6: Preprocessing of a video clip from MovieGraphs. Each video is processed through:

a face detector, tracker, and attribute classifier; human pose and facial landmarks estimator;

a monocular depth estimator; and a landmark detector for SLAM (simultaneous localization

and mapping) of the camera.

running it through an additional set of detectors. Illustrated in Figure 4.6, a

number of unique detectors run on individual frames from the available clips.

YOLO [132] is a real-time detector designed to detect humans and inanimate

objects, and provides context, enabling the users to understand more about the

surroundings of the actors and better ground the scene layouts (the movie set).

Facenet [5] and MXNet [23] are used to detect human faces, identify individual

characters and their facial attributes, such as gender, facial hair and hair color.

This detector enables extraction of character attributes and grounding them in

Aesop. Openpose [20], a human pose and facial landmark detector, is used for

activity detection, as this detector detects human skeletons, where activity nodes

are grounded on. Finally, Simultaneous Localization and Mapping [113] is used

to track the camera’s path throughout the scene’s 3D space. This is achieved by

detecting persistent landmark points and tracking them. This detector enables

understanding of the camera relationship with objects and actors, as well as its

motion through the scene.

Each of the detectors creates a corresponding node in the knowledge graph,

augmenting the current MovieGraphs dataset with additional context. As movies

are a two-dimensional projection of a 3D world, Aesop requires depth estima-

tion of the scene. Monocular depth estimation [51] is used to detect the relative

distance from the camera to objects and surfaces in each frame of the shot,

and this information is made available to all other detectors to facilitate the

commonsense grounding process. Individual outputs from the above AI detec-
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Figure 4.7: An example of grounding a scene in Aesop. The sentence is about “Mrs. Gump

reads Forrest a bedtime story.” This would entail that Mrs. Gump and Forrest are in a bed,

most likely sitting or laying on bed, with Mrs. Gump holding a book and reading from it. In

grounding such knowledge graphs, created from textual and visual knowledge, augments the

knowledge of the AI clarifying the implicit information.

tors have been manually parsed, transformed, and collated for the use on Aesop

per standard Extract-Transform-Load (ETL) procedures common in business

intelligence activities [152].

4.4.4 Grounding on Aesop

As multiple datasets converge into Aesop, the user is invited to join the common-

sense grounding process and contribute to human-in-the-loop automation. The

augmented MovieGraph dataset is then visualized alongside the source video

clip using the web-based interface, illustrated in the right top section of Figure

4.2, where users can manually map those graph nodes to entities within Aesop.

The mappings in the grounded graph, illustrated in Figure 4.7, are saved for

future retrieval — allowing the AI system to learn from them and continue to

resolve nodes as required.

Character nodes map directly to Aesop’s Character-type (e.g. “Young For-

rest Gump” maps to “Boy”). Each of the nodes gets its casting information

from the detected character attributes and mapped to the corresponding Aesop

entity’s attributes e.g., hair color, shirt color, height, etc., provided they exist

within Aesop’s asset library. Object nodes are instantiated as Aesop’s prop type

(furniture, vegetation, decorations, etc.). Monocular depth values are averaged
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across an object’s bounding box to determine the order of proximity to the

camera relative to other objects in the scene.

Action and interaction nodes, grounded on skeletal data from OpenPose

along with their timestamps grounded via Aesop’s animation engine, are matched

to the list of available actions within the Aesop animation library. These de-

cisions are based on the action node description, and the selected character

actions are executed at the designated timestamps within the scene.

Finally, camera tracking from the ORBSLAM detector provides a motion

path for Aesop’s camera node, over which Muvizu provides full control. The

grounding of MovieGraph nodes via entities in Aesop’s 3D world can take one

of three forms:

• One-to-one: A single MovieGraph node maps to a single Muvizu entity,

e.g. “Young Forrest” maps to Aesop’s “Boy” character.

• One-to-many: A single MovieGraph node maps to multiple Muvizu en-

tities, e.g. “Principal’s O�ce” maps to “Desk,” “Chair,” “Lamp,” etc.

• Many-to-many: Multiple specific MovieGraph nodes are understood to

map to multiple Aesop entities, e.g. “Forrest walks over to the doctor”

resolving to two character nodes and an action node.

While annotation conflicts are rare, the interface prevents potential erro-

neous mapping (e.g. “Young Forrest” mapping to “Lamp”) using a dialog win-

dow that presents the preexisting mappings and further confirms user actions.

4.4.5 Web-Based Annotator

The web-based interface additionally provides a suite of tools that enable the

users to refine previous annotations and create new annotations as necessary.

Building upon the original iteration [104] designed with expert users and a

command-line interface in mind, this Modular-based interface allows users to

perform such tasks with minimal training using a familiar web browser.

Consisting of simple word token tagging and free-form text input compo-

nents, text modules enable each user to mark di↵erent terms or create comments
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pertaining to a specific part of a text-based dataset. These user-provided anno-

tations can also introduce an element of collaboration as the interface o↵ers a

visual indication of previously tagged terms, as well as a visualization of agree-

ment amongst the uploaded entries. The tagging module tokenizes individual

sentences and paragraphs to enable token-based tagging, while the free-form

module allows the user to submit free-text comments.

Video annotation modules o↵er a variety of methods to annotate individual

frames in a single video clip: bounding boxes and polygons can be created to

mark di↵erent on-screen entities, while landmark points can be used to represent

skeletal and facial feature data. These annotations are presented as overlays

above the original frame, and allow the users to directly move and resize. In

addition, the visualization below the video player displays a series of dots across

the timeline, indicating occurrence and co-occurrence of individual entities.

Finally, the graph module allows for visualization of knowledge graphs that

underpin individual scenes using node-link representations that encapsulate

spatio-temporal and object-attribute relationships. Just as importantly, the

module also allows for directly updating links between such nodes using a mouse

cursor. This module is especially instrumental in grounding discrete datasets

such as MovieGraphs by allowing human users to intuitively map nodes between

discrete datasets.

4.5 Application

An external collaborator with deep experience in script writing and video editing

was recruited to demonstrate the utility of Aesop’s capabilities as an annota-

tion platform. Over the course of three and half months, the domain expert was

able to accurately ground the previously disconnected datasets — MovieGraphs,

SLING and PropBank, and various image detector outputs — across all 162

scenes of Forrest Gump. With the exception of initial tutorials and adhoc tech-

nical troubleshooting due to occasional user error and software bugs, the expert

was able independently complete the data annotation and commonsense ground-

ing process without relying on other annotation software. A partial result of this
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annotation process is illustrated in Figure 4.4, where the annotator was able to

identify the on-screen characters, observe their actions, and establish positional

and interpersonal links between the characters. Accumulated annotation data

was then used to demonstrate the collaborative creative process available in the

conversational AI component of Aesop, further elaborated in the subsequent

chapter.

4.6 Summary

Recognizing prior work and present opportunities in establishing generalizable

knowledge base for artificial intelligence, Aesop, a visual storytelling system,

introduces a novel end-to-end commonsense grounding process. This chapter

can be summarized as the following:

• Previous e↵orts in commonsense grounding lie in simplistic and rigid en-

vironments bearing little resemblance to the physical world.

• Aesop’s knowledge graph encodes scene information with flexibility for

augmentation and modification by the human user, and fuels the AI

agent’s deeper understanding of the scene.

• Aesop’s annotation mode, as evident in experience with an external collab-

orator, establishes a case in augmenting previous datasets with external

detectors and a web-based interface.



Chapter 5

Human-AI Collaboration in

Content Creation Tasks

Artificial intelligence is becoming good at many “human” jobs — diagnosing disease,

translating languages, providing customer service — and it’s improving fast. This is

raising reasonable fears that AI will ultimately replace human workers throughout

the economy. But that’s not the inevitable, or even most likely, outcome. Never

before have digital tools been so responsive to us, nor we to our tools. While AI will

radically alter how work gets done and who does it, the technology’s larger impact

will be in complementing and augmenting human capabilities, not replacing them.

H. James Wilson and Paul R. Daugherty, Collaborative Intelligence [163]

5.1 Introduction

Beyond the debate of AI-driven automation and technological unemployment,

there exist complex tasks where human and AI parties can work together to

complete: AI agents may be responsible for reviewing a large set of available

documentations and making the necessary recommendations, as the human user

focuses on the creative endeavor of completing a work of visual design; con-

versely, the human user may submit a series of speech commands to the AI

worker, which then proceeds with building the product.

57
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While interaction between humans and machines commonly focuses on han-

dling directives given by the human user, the future of artificial intelligence

holds potential for more mixed-initiative collaboration where human users and

AI agents act as equals [33]. An AI agent may try to communicate a goal to

a human collaborator, evaluate the decisions made by the human user, and

intervene or contribute additional ideas as an equal in a process.

The two previous chapters respectively focused on gathering human insights

for commonsense grounding and improving explainability of AI decision-making

processes and system inner-workings. In a next natural step, this chapter sets

out to explore the domain of symbiosis between human users and AI assis-

tants by focusing on two case studies in application of human-AI collaboration

to content generation tasks. Aesop’s content generation mode presents an op-

portunity for the user to take the helm of a film director with AI assistance,

and MUSICA provides an application to interact with a musically talented AI

system to generate music and even perform alongside it in real time.

5.2 3D Animation Content Generation

As discussed in the previous chapter, Aesop primarily serves the goal of facil-

itating collation of discrete AI detector outputs and user-provided annotation

and resolution of knowledge graph. On the other hand, Aesop can alternatively

function as a system with the goal of content creation by conversing with a

set of AI agents using verbal and non-verbal communication to co-create an-

imations. Aesop provides a rich platform that enables research in language,

gestures, vision, and planning in the context of storytelling. Aesop uses shared

knowledge graph representations created from language and vision, using the

Modular-powered interface, to generate a 3D animation sequence. The user

also can engage with Aesop and receive corresponding animations using a chat

window similar to today’s messenger applications. This section elaborates on

the conversational AI mode of Aesop, consisting of the speech language parser,

the gesture and gaze analysis module, and the conversational module.
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Figure 5.1: TRIPS parser logical form of “create a man and name him John.”

5.2.1 Speech Language Parser

Aesop uses a symbolic language parser TRIPS [4], a broad-coverage domain-

general deep semantic parser that produces a Logical Form (LF) grounded in

a general ontology. It generates a semantic representation structured around

events. TRIPS uses a general language-level ontology, augmented with domain-

specific knowledge about the visual domain. The output LF is a directed acyclic

graph of ontology tokens representing entities, events, and their spatial, tempo-

ral, and lexico-semantic relationships. The LF is used to determine a grounded

problem-solving act that represents a common goal between the human and

computer. We illustrate a speech parse in Figure 5.1 showing an example of

a LF for a speech parse: “create a man and name him John.” The LF is an

encoding of the semantic content of a sentence that can be mapped to a knowl-

edge representation. TRIPS also identifies the agent performing the act and the

objected a↵ected by the act.

5.2.2 Gestures and Gaze

Similar to prior work on incorporation of pointing gestures and gaze for linking

semantic entities with objects [74], communication with physically embodied

agents [100], and disambiguation of expression reference and reference resolution

using non-verbal communication [146], Aesop o↵ers its own component that

addresses such challenges.

Aesop integrates a Multimodal Integrated Behavior Analytics (MIBA) sys-

tem illustrated in Figure 5.2. MIBA allows Aesop to watch for the user’s gestures
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Figure 5.2: Multimodal Integrated Behavior Analysis (MIBA) architecture (top) and a dash-

board of MIBA analytics showing the di↵erent non-verbal behavior analytics performed (bot-

tom), developed by another project collaborator. Though not designed as the primary method

of interaction with the Modular-powered Aesop, the user can use this alternative method to

interact with Aesop and manipulate objects in Muvizu animation software.
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and gaze in concert with the verbal utterances to manipulate the objects and

characters in Muvizu, and to do so, MIBA relies on a Microsoft Kinect as the

underlying sensor. The sensor provides a high resolution RGB video stream, a

3D depth video stream of the person, and a high quality audio stream via an on-

board microphone. For noisier venues, we can utilize a wireless lapel microphone

for the audio stream in place of the Kinect audio.

The user interacts with Aesop by sitting or standing in front of a large

screen. Emblematic gestures and the 3D deictic gestures arising from the user’s

pointing at things and user’s gaze on screen emerged as the most utilized MIBA

components during the prototyping process. MIBA integrates with the object

stream from the Muvizu software in the form of bounding boxes on the screen.

The 3D deictic vectors from the deixis and gaze are projected onto the Aesop

display and their intersections with the object bounding boxes allows MIBA to

identify the objects of reference and objects of attention. This makes it possible

to resolve references to specific objects and locations within the Muvizu world

to place actors and props exactly where the user (director) wants them to be

placed. The deixis also allows the director to explicitly define (i.e., draw) paths

for object and actor trajectories within the Muvizu animations.

5.2.3 Module for Conversational AI

Using the web-based controller, the user can engage with Aesop and receive

corresponding animations based on its interpretation of the user’s request. Built

on popular web technologies and hosted on a publicly accessible server, this

platform-agnostic interface allows the user to interact with Aesop without the

need to use a dedicated client application.

Featuring a familiar chat window similar to today’s messenger applications,

the interface allows the user to submit a text input and take advantage of the

text parsing mechanism constructed by a project collaborator. User-provided

text is then committed to a database, which triggers Aesop to utilize TRIPS to

parse the text: as per the previous example, “create a man and name him John”

is tokenized, flagged, and converted to an internal graph representative of the

scene. Upon completion, Aesop responds with a series of messages describing its
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Figure 5.3: The “Generate” tab of MUSICA, where users can create short melodies using a

chat-style interface or a traditional point-and-click interface.

parsing process and prompts the user to review the results: a knowledge graph

displaying various nodes and edges representative of the scene as described by

the user, and Aesop’s reconstruction of the very same scene using Muvizu.

The user can then choose to continue interacting with Aesop using the chat

window, or directly interact with the resultant nodes and edges (corresponding

to Aesop’s internal state) to further refine the graph. The interface provides a

number of modules that allow the users to create manually create nodes and

edges that are compatible with Muvizu assets, and Aesop updates its animation

according to the user’s additional updates.

5.3 Interactive Jazz Generation

MUSICA (MUSical Interative Collaborative Agent) is a project that focuses on

interaction and communication between human musicians and machine assis-

tants. Built on computational models of music and natural language processing

for musical operations [126, 129], the project o↵ers di↵erent methods in which

the human user can interact with machine to generate new music, as well as

various opportunities to inform future research regarding musical language and

human-computer interaction.
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Figure 5.4: The “Organize” tab of MUSICA, where users can collate, manipulate, or delete

existing musical segments to build a longer piece of music, visualized with varying-length

gray blocks representative of individual musical notes (top). Users can freely construct the

composition using available segments with drag-and-drop (bottom left), and toggle between

between AI and human performance modes (bottom right).

The user can ask the algorithm to automatically generate bars of music,

remove a specific set of musical notes, and listen to the work-in-progress with

simple text commands using a familiar chat window [125]. The user can interact

with the same piece of music using other methods, including using a mouse

pointer to manipulate individual notes or playing a specific piece of music with a

MIDI controller. Finally, the user can organize a collection of completed musical

segments into a larger piece and practice using the interface, alone or with AI

accompaniment that respond to user’s performance patterns. The web-based

interface, once again, is powered by the Modular software platform.

5.3.1 Music Composition

Unlike most existing music software, MUSICA features a natural language in-

terface to create scores. Users start by creating one or more short musical

segments, where each segment can have a melody and an accompanying chord

type. Illustrated in Figure 5.3, the primary tool for creating and editing each

segment is a chat-style interface. Those with limited musical experience can

leverage the system’s generative capabilities and high-level transformations to

easily create music. MUSICA also features a help system to o↵er suggestions
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Figure 5.5: The “Jam” tab of MUSICA, where users can improvise with the system in real

time using the keyboard or an external MIDI controller. The system monitors the user’s

performance in real time, and uses the collected notes and the corresponding segment’s musical

key as seeds for latency-free generative music.

when it doesn’t understand the request and to familiarize users with the various

operations available to them.

Built on MusECI (elementary composable ideas), a specialized framework

designed to establish a language for score-level music representation [128], the

chat-style interface relies on the aforementioned TRIPS parser to process nat-

ural language commands, select a specific part of the music, and manipulate

accordingly. More advanced musicians can assume a greater level of control by

using domain-specific terminology to add or change specific notes in the chat.

Users have the ability to manipulate the score at more than one level of granu-

larity, working on whole measures, individual notes, or collections of notes. The

system also accommodates a range of syntactic variation to support di↵erent

preference for how to phrase commands: the user may ask the system to ”add

a C note,” ”raise its pitch by one octave,” and ”move the note to the second

bar” in three separate queries, or simply request the system to ”add a C3 note

to the second bar.” Finally, a point-and-click interface o↵ers an alternate way

to accomplish some of these changes.
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5.3.2 Real-time Improvisation

Once a collection of musical segments has been composed, the user can organize

them into a larger piece and then perform it as illustrated in Figure 5.4. Users

can leave the performance entirely up to the computer, or they can improvise

with the system in real time and trade solos in several di↵erent playing styles.

Extending prior work in grammar-based generative music [127] based on

user-provided input [67], the AI system stands by as the improvisation session

begins and the human user starts to perform using the device of choice. As

the performance approaches the boundary between the end of the human turn

and the start of the AI counterpart, individual MIDI messages are passed to

the AI agent, which quickly generates the musically compatible set of notes

represented as the corresponding MIDI messages. These messages are queued

for synchronized playback, and the result is a real-time exchange of jazz solos.

Illustrated in Figure 5.5, the user has access to an interface that indicates

the current state of the improvisation experience using the segment list, the

log window, and the classical music notation. The user may change the tempo

or the accompany style prior to commencing the jam session, and individual

measures and notes change their colours in synchronization with the rhythm of

the music in order to visualize the pace and the progress of improvisation. The

performance can also be generated entirely by the computer, based on the user’s

preferred style and each segment’s musical key.

5.4 Summary

Inspired by a range of use cases in human-AI collaboration for mixed-initiative

tasks, this chapter presents two distinct incarnations of the Modular framework

and demonstrates the following:

• 3D animation generation with AI assistance is possible with the use of

natural language parsing, human gesture integration, and chat interface.

• Musicians can compose and improvise music with AI by combining repre-

sentation framework, natural language processing, and music generation.



Chapter 6

Approach to Improved AI

Explanation

Explanations are used to manage social interactions. By creating a shared meaning

of something, the explainer influences the actions, emotions and beliefs of the

recipient of the explanation. For a machine to interact with us, it may need to shape

our emotions and beliefs. Machines have to “persuade” us, so that they can achieve

their intended goal. I would not fully accept my robot vacuum cleaner if it did not

explain its behavior to some degree. The vacuum cleaner creates a shared meaning

of, for example, an “accident” (like getting stuck on the bathroom carpet ... again)

by explaining that it got stuck instead of simply stopping to work without comment.

Christoph Molnar, Interpretable Machine Learning [112]

6.1 Introduction

As consumers increasingly entrust their personal information and security over

to AI solutions, lawmakers continue to push back on industry players and call

for more regulation [28]. On the other hand, AI models continue to absorb

human-provided data to further automation, and concerned commentators re-

cently talk of existential risks imposed by such technologies. While these de-

bates surrounding trust and reliance on artificial intelligence continue, a more

66
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fundamental question, troublingly, often goes unanswered: did we ever fully

understand the decisions made by artificial intelligence over the years?

Transparency and explainability seem have emerged as important attributes

in artificial intelligence, as we focus on how data-hungry and powerful AI deci-

sion making processes have become. While AI has become ubiquitous in con-

sumer products as they make a number of decisions for us, ranging from film

recommendations to advertising preferences, it is no secret that many of us

continue to treat an AI system as a black box: the system’s algorithms su↵er

from lack of transparency, as it is di�cult to determine the internal mechanism

functions other than to infer based on a collection of inputs and outputs. In life-

altering, high-stake decisions such as disease diagnosis or legal determination,

it is crucial that these predictions and results must not simply resemble those

made by human counterparts, but also provide reasons behind such decisions:

after all, it is di�cult to trust a system that cannot explain itself [1].

Explainable Artificial Intelligence (XAI) has emerged as an area of potential

solution in response to interest in AI systems and their ethical conundrums.

XAI enables new machine learning techniques, specifically deep learning, to

yield explainable models. These explanations can be developer-focused (to help

in understanding, designing, and improving models) or user-centric (to help in

knowing how and when to trust the outputs of AI tools). From the user-centric

point of view, it is of crucial importance to explain the decisions of an AI

system with e↵ective explanation techniques to enable end users to understand,

appropriately trust, and e↵ectively manage the AI-originated decisions. An

e↵ective XAI system assists in the human decision-making supported by the

system, in particular whether to accept the recommendations or classifications

suggested by the model.

In modern AI systems, the most critical and most opaque components are

based on machine learning. There is an inherent tension between machine learn-

ing performance (predictive accuracy) and explainability; often the highest per-

forming methods, such as deep learning, are the least explainable, and the most

explainable, such as decision trees, are the least accurate. From a decision-

making point of view, the goal of XAI systems is to maintain performance while
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being explainable.

The target of XAI is an end user who depends on decisions, recommenda-

tions, or actions produced by an AI, and therefore needs to understand the

rationale for the system’s decisions. For example, a test operator of a newly

developed autonomous system will need to understand why the system makes

its decisions so that they can decide how to use it in the future. A successful

XAI system should provide end users with an explanation of individual deci-

sions, enable users to understand the system’s overall strengths and weaknesses,

convey an understanding of how the system will behave in the future, and in

some cases even suggest how to correct the system’s mistakes.

Inspired by practical challenges of visual search and ranking in areas of

commerce and surveillance, this chapter explores the paradigm of “explanation

by generation” using a novel generative XAI system for human activity search

and ranking in motion capture data. Recent work on visual search and rank-

ing largely focuses on black-box discriminative methods [7], where the system

searches for a specific video clip given a query with little to no insights into

its mechanism. The presented XAI system, on the other hand, features a more

transparent mechanism based on the Dense Validation Generative Adversarial

Networks (DVGANs) approach [92]: given a query, the system generates mul-

tiple video hypotheses and use them to search for the answer. As a result, the

system provides the user an insight on what the model “thinks” the query looks

like using a web-based interface — instilling an element of explainability. This

web interface, as was the case for Aesop, was built upon the Modular software

platform.

6.2 Related Work

The XAI system, consisting of an explainable model presented using a user-

focused dashboard interface, is inspired by prior work in three main areas of

research: the recently emerged XAI domain, generative adversarial networks,

and information visualizations conducive to interpretability and explainability.
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Figure 6.1: Sample explanation of a black box AI classifier [55]. The visualization provides

clear division between two possible outcomes and explanation of which inputs are responsible

for such outcomes via di↵erent types of visualization. While this visualization may be useful in

illustrating the decision-making process of the AI system, it may not be readily interpretable

or conducive to understanding by non-expert audiences.

6.2.1 Explainable Artificial Intelligence

Recent work produced in the XAI domain as well as new opportunities that

emerged therein serve as the main underpinnings of the generative system. Tra-

ditionally, as various inference systems extended their capabilities, there has

been a need to trace and represent each system’s decision-making process in

order to justify its conclusions, identify any contradictions, and further improve

the corresponding operations [30]. In response, there has been a demand for

more transparent, explainable AI systems as an extension on the need to un-

derstand both automatically and manually coded rules.

Global explanations focus on analyzing overall learned representations: for

example, understanding and visualizing representations in deep learning (e.g. con-

volutional neural networks) [73, 118, 169], analyzing representations learned by

deep reinforcement learning agents (e.g. deep Q-networks) [168] or learning dis-

entangled representations [63]. In the global explanation case, after the model

is learned, the explanation is then extracted from the representation learned by

the model itself, as illustrated in Figure 6.1.

Local explanations focus more on grounding the explanations on specific

data, for example, finding influential features [134] and grounding them on the
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Figure 6.2: Sample visualization of convolutional neural networks in relation to the input

image and the corresponding results [169]. Influential features are identifiable in the form of

heatmaps and highlighted edges, though not explicitly announced as such for non-experts.

input image as illustrated in Figure 6.2. Other methods focused on finding

influential data points [79] and parameterizing training batches, and some fo-

cused on generating textual explanations by training a second deep network to

generate explanations without explicitly identifying the semantic features of the

original network [59]. Finally, attention-based methods for explanation, such as

show and tell networks, couple captioning with attention on images [157], using

attributes for attention [22] or using guided attention [87].

Beyond the above developer-centric, expert-oriented explanations that fo-

cus on AI models and corresponding data points, however, there is also a call

for more intuitive and interpretable explanations for human users. Some XAI

projects pursue “human-in-the-loop,” user-centric systems that produce trust-

worthy answers without significantly compromising the system performance [81,

134]; other applications seek di↵erent ways to ensure fairness and accountability

by providing users alternative outcomes using counterfactual statements (“had

a number of conditions been di↵erent, the outcome would change”) using intu-

itive visual interfaces [53] and voice assistants [149]; finally, ideal systems also
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provide contextually relevant recommendations and explanations to their end

users who may have little to no technical knowledge in AI, but are experts in

their own domains [57].

6.2.2 Generative Adversarial Networks

Generative Adversarial Networks [54], which the model of this chapter’s genera-

tive XAI system is based on, are a class of implicit generative models that learn

directly from examples. Employed successfully in many problems, GANs are ac-

tive mostly in the area of computer vision where they are trained directly on pix-

els. There are multiple variations of GANs, many of which propose a variation

of the objective function to address di↵erent needs. Starting from the original

formulation [54], the extension to Conditional GANs (CGAN) [49] was intro-

duced to enable conditioning on a class label; Wasserstein GANs (WGAN) [6]

was introduced to improve the stability of GANs; finally, WGANs with Gra-

dient Penalty (WGAN-GP) [56] improved WGAN’s stability even further by

replacing weight clipping with a gradient penalty in the loss function.

The system specifically draws from approaches for human motion generation,

which features two main types of synthesis: (1) motion completion, starting

from a short clip and extrapolating to a longer clip, and (2) motion generation,

starting with a label and generating full clips. Recent work on human mo-

tion modeling for motion completion successfully used recurrent neural network

(RNNs) [48, 50, 69, 99], although human motion generation relied on previously

available dataset instead of from scratch. Recently, GAN-based approaches

have been applied successfully to synthesize human motion from text [2, 9, 92]

by formulating a sequence-to-sequence model using a GAN framework [99].

6.2.3 Explanation Interfaces

The system’s explainable interface is largely inspired by recent advances in

interpretability, trust, and explainability in the information visualization and

human-computer interaction fields [24, 25, 93]. Information visualizations are

often populated with the outputs of machine learning techniques, however, sim-

ply visualizing the outputs of an ML system is insu�cient as an explanation.
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Figure 6.3: Comparison of two video search engines powered by two ranking algorithms:

discriminative ranking (left) and generative ranking (right). The discriminative model (left)

is trained to rank a list of videos by extracting features from them and relate to the text

query. On the other hand, the explainable model (right) is trained to generate video instances

of what it thinks the text query should look like, and use these instances, accessible in the

right sidebar, to rank the videos. Each vertical bar in the list encodes spatial information

pertaining to the sweeping action in each clip, specific to the selected point in video timeline:

red-orange hues indicate that the action is most likely present in that particular point in time,

while green-blue hues indicate the opposite.

Where visualizations such as a topic model plot [40], rendering of features in

convolutional neural networks (CNNs) [93], or a t-SNE (t-distributed stochastic

neighbor embedding) model visualization [154] may be useful for those familiar

with the workings of the algorithm, they are inappropriate for users of the sys-

tem with little expertise in machine learning as indicated in preliminary expert

case studies [40].

Provenance is a key consideration for supporting decision-making in data

analytics, and providing traces of both data provenance and analytic provenance

has been used to enhance the trustworthiness of analytic outcomes using visual

analytics [139, 162]. Analytic provenance tools have recently been the focus of

much visual analytics research, and are often a variation of an automatically

populated storyboard showing the history of interaction [43, 171].

6.3 Visual Search and Ranking

Recognizing the opportunities in “opening the black-box” with explainability,

the XAI system, dubbed GenRank, tackles the challenge of visual search and
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ranking with generative models inspired by GANs, pitted against the black-box,

discriminative AI model as briefly illustrated in Figure 6.3.

6.3.1 Challenge

Human activity understanding is a rich area of research in robotics, computer

vision and machine learning, due to the challenges it o↵ers. GenRank, however,

focuses primarily the surveillance use case [7].

Search and ranking, a process that involves querying a video database for

certain activities of interest, is a data-intensive exercise: due to the large size

and number of video frames, instead of searching the pixels directly, each video

is processed by extracting visual abstractions such as objects, parts and their

spatial configurations. This is usually achieved using detectors [20, 132, 151],

but by using a database of captured motions where human body joints are

accurately localized in 3D using motion capture devices, one can conveniently

access the spatial motion of human body parts connected to the query of interest.

CMU Mocap [153] is a large-scale motion capture dataset of open-ended

activities. It contains 2,548 high frame rate motion capture videos from 113 ac-

tors performing 1,095 unique activities, complete with text descriptions. There

are activities with di↵erent styles and transitions such as “walk on uneven ter-

rain,” “dance - expressive arms, pirouette,” “punch and kick,” and “run to

sneak”: Having such fine-grained activities brings us close to human activity

understanding in the wild, and CMU Mocap is the largest dataset of its kind.

Available in the BVH format [58], the dataset features human body skeletons

represented by 31 joints, closely resembling those from the previously introduced

DVGANs approach [92]. The joint angles are pre-processed into the exponen-

tial map representation and activities spanning less than 8 seconds are filtered

out. The filtered dataset contains 573 actions across 1,125 videos totaling 8

hours. We use 757 videos for training the AI retrieval system and 368 videos

for evaluation.

The AI retrieval systems spot query activity using frame-by-frame sliding

windows of 8-second clips. As part of this work, two state-of-the-art deep models

are compared: (1) a discriminative ranking model which does not provide global
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Figure 6.4: Illustration of discriminative ranking vs. generative ranking. (left) Given a fixed-

length video clip in the video database and a query “sweep floor,” discriminative ranking uses

a CNN-RNN model to score the clip. (right) Generative ranking first generates exemplar clips

of what the model thinks is “sweep floor” then uses the clips to score the video database

through a CNN-CNN similarity function. The score is indicated by the confidence bar, where

red indicates a higher level of confidence.

explanation, and (2) a generative ranking model which provides exemplar-based

global explanations about the retrieval decisions. The discriminative ranking

and generative ranking systems are illustrated in Figure 6.4.

The discriminative ranking algorithm may provide a competent solution to

this problem, and this may be perfectly acceptable should the answer happen to

be correct. It is unclear, however, exactly how the model may have arrived at a

certain solution, should the solution be incorrect, leaving the user confused. Can

the generative ranking algorithm perhaps explain to the user its inner-workings?

6.3.2 Discriminative Ranking Implementation

Inspired by the state-of-the-art model for ranking image captions [44], the dis-

criminative ranking model, illustrated in Figure 6.5, computes a ranking score

of how well the clip matches the query. The input action text is encoded into

a query vector using the skip-thought vectors model [78], and fed to a GRU
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(gated recurrent units) RNN language model. The input video clip is encoded

into a video clip vector using a 1D residual convolutional neural network, and

the matching score between the query and video clip is computed as the dot

product between the query vector and the video clip vector. The AI system,

powered by this model, selects videos with highest average score over all its afore-

mentioned 8-second sliding window clips as the output. The ranking scores for

sliding window clips are visualized to the user to explain the retrieval decisions

— and model parameters are learned such that matching score is high when

text matches the video, and low when the text does not.

The discriminative ranking model has been trained, with the help from an-

other project collaborator, jointly for action classification and retrieval of human

activity videos. The action classification task is: “given a fixed-length video clip,

retrieve its original description from a pool of 250 descriptions.” Similarly, the

action retrieval task is: “given an action description, retrieve the video clip that

corresponds to the action description from a pool of 250 fixed-length video clips.”

The negative log-likelihood action retrieval and action classification losses are

optimized to learn parameters of the CNN, via the Adam optimizer with learn-

ing rate of 1⇥ 10�4 over 100 epochs.

6.3.3 Generative Adversarial Networks

In a typical GAN, there are two components which learn as adversaries: a

generator and an discriminator. The generator is tasked with creating videos

which will fool the discriminator into classifying them as real videos of the target

action, while the goal of the discriminator is to assign high values to real videos

and low values to generated videos as a “video appraiser.”

Training of this system is through a cyclic game in which the discriminator

learns to improve its classification performance, followed by the generator learn-

ing to improve the quality of the fake video it creates. In traditional GANs,

the end output is a high accuracy discriminator which can detect and classify

videos representing an action. In the approach used for the XAI system, the

outputs of the generator are also examined as representations of how the system

understands the supplied action term.
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Figure 6.5: Illustration of the black box AI system designed as a counterpoint to the generative

XAI system. Given a query and a video clip, discriminative ranking computes a ranking score,

computed with cosine similarity, of how well the clip matches the query (top). Based on this

mechanism, the system can parse through the video database and create a list of ranked

videos.

The objective function is the average score assigned to real videos of the

target action, minus the average score for generated videos. The discriminator

is trying to maximize this objective, while the generator is trying to generate

more realistic videos and minimize this objective.

The extension to Conditional GANs (CGAN) for face generation [49] con-

cludes that when the game reaches equilibrium, the generator will generate the

real video distribution and the discriminator will not be able to tell fake videos

from real videos. The generative model is learned using Wasserstein GAN [6],

which greatly stabilizes GAN optimization.
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6.3.4 Generative Ranking Implementation

Given a query, the generative ranking model first generates exemplar clips using

a text-conditioned GAN [92]. For example, for a query “walking,” the model

will generate a set of exemplar clips which it “thinks” represent the “walking”

action. In successful cases, when our generator generates videos close to the

distribution, su�cient to “fool” the discriminator, the generated videos will

capture all kinds of di↵erent pose, style and timing variations. The user can

examine the outputs of the generator to understand how the system interpreted

the concept, as illustrated in Figure 6.6.

Since the users have direct access to visualization of the synthetic examples,

the only black-box component left is the similarity function between a synthetic

example and the input video. The system uses Euclidean similarity, which we

believe is su�ciently intuitive for the users to understand. Similar to discrim-

inative ranking, videos with the highest average score over all sliding window

clips are retrieved as the output. This particular method is ideal for the user-

facing interface that allows the users to query by natural language, as this is

the only GAN-based approach that requires a text query to generate a video

clip without example frames as an additional input. For generative ranking,

the generated exemplar clips are global explanations of the retrieval decisions.

The generated exemplar clips are presented to the user along with the ranking

scores to explain the retrieval decisions. To clarify, exemplar clips are visual

representations of the dynamically constructed body joint coordinates based on

the generative model. While we have an option to use an existing 3D model

to map to these coordinates for immersion and visual fidelity, we chose to illus-

trate these data points as minimalist “stick figures” in a three-dimensional grid

to minimize potential distraction and visual obstruction.

6.3.5 Performance

Both models are benchmarked by their top-1 accuracy when ranking 248 8-

second video clips, equipped with unique action descriptions, in the CMUMocap

test set. With random ranking of 1/248 ⇡ 0.4%, the discriminative ranking

approach achieves 35% top-1 accuracy, while the generative ranking approach
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Figure 6.6: Illustration of the generative XAI system in action. Given a query, the system

generates many synthetic examples that correspond to the query through calling the video

generator mechanism (top). The system then uses each synthetic example as a query to further

look for similar videos in the dataset and aggregate the top matches (bottom). Intuitively,

this step is trying to find the highest similarity from any synthetic example to input video.

The scores are then normalized to the range of [0-1] for visualization.

achieves 33% top-1 accuracy. Therefore their performance is comparable. For

global explanation, discriminative ranking provides only the matching scores,

while generative ranking, in addition to scores, naturally generates exemplar-

clips for the query that can be shown to the user. Finally, generating 5, 10, and

20 exemplars resulted in top-1 retrieval performance to drop by 1.6%, 1%, and

0.5% respectively compared to 30 exemplars.

6.4 Explanation Interface

The interface acts as a mediator between the human and the AI, to help un-

derstand the AI’s rationale for decisions through a variety of explanation ap-
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Figure 6.7: Annotated view of the explanation interface. In the left column, the user starts by

inputting a query and selecting the ranking algorithm of interest. In the middle column, once

one of the videos is selected from the ranked list, the video becomes available for the user to

view, along with a segmented confidence bar (red indicating higher confidence) located below

the navigation bar. In the right column, only in the generative ranking case, the user is also

presented with an unsorted set of generated evidence used to rank the list of videos. Upon

clicking on the confidence bar in a certain segment, the score for that segment is presented

to the user, and the list of evidence is sorted showing the most important evidence first. A

pop-up video player is presented to the user to view each video.

proaches. The explanation interface combines visualization of generator in-

stances from the AI generator, as well as uncertainty in the outcomes from

the ranker. Looking to set out to bridge the gap and make the explanations

appropriate for people who are not AI experts, the system features familiar

constructs such as animated motion sequences, rather than abstract visualiza-

tions of hidden model states or other low level features. The dashboard adopts a

surveillance use case where the target user is an analyst searching for an activity

in a large video database.

The explainable interface assumes a dashboard design geared towards do-

main experts who may not have deep knowledge of artificial intelligence, but
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are well-versed in the data upon which the system operates. Purpose-built to

visualize AI rationale for individual video clips in the dataset, the interface is

also designed to handle similar application areas and accompanying datasets,

enabling users to answer textual queries with visual rationales and confidence

scores for the answers. Illustrated in Figure 6.7, the interface also allows a data

domain expert to observe the evidence and make an informed decision whether

to trust the XAI system — by supporting “drill-down” into deeper evidence for

the provided answers and the level of confidence the model is reporting.

The interface enables the user to input a search query, choose one of the

matching keywords from the training set, and select a ranking algorithm (Gen-

erative or Discriminative). Once the search button is clicked, all the videos in

the database are ranked in a new list with the most relevant video on top, and

each video is equipped with a confidence bar visualization. Once one of the

videos is selected, the video becomes available for the user to view, along with

the same confidence bar visualization located below the navigation bar, showing

areas of interest where the query term is most likely to occur. In the case of

generative ranking, in addition to the confidence bar, the user is also presented

with an unsorted set of generated evidence that the algorithm used to rank the

list of videos. Upon clicking on the confidence bar in a certain segment, the score

for that segment is presented to the user, and the list of evidence is sorted to

show the most important evidence first. Upon clicking on one of the evidence

clips, a pop-up video player is presented to the user to review the generated

evidence in detail.

The generative ranking interface enables the user to drill down into deeper

evidence for the provided answers and see the level of confidence the model

is reporting. This allows a data domain expert to make an informed decision

whether to trust the system. In the discriminative ranking case, the user would

have little evidence to support the provided decision. The ability to drill down

on evidence ends at the ranked list and confidence bar.

With this interface, a question quickly emerges: how will an explanation

interface lead a user to accept or reject the answer provided by the AI model?

This research question is discussed in the subsequent chapter of this disserta-
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tion, as the user study investigates the role of trust and reliance, and whether

generated evidence engenders appropriate trust in AI systems.

6.5 Summary

Designed to improve explainability of AI output without compromising perfor-

mance in comparison to the black-box counterpart, the generative XAI system

sets out to provide AI assistance with visual explanations and a familiar web-

based interface. This chapter can be summarized as the following:

• Transparency and explainability have emerged as important concepts as

humans increasingly rely on AI.

• Conventional AI models are considered black-box and their mechanisms

are not conducive to human interpretation.

• Generative XAI system generates a series of video queries based on the

user request, which serve as explanation elements in its behavior.



Chapter 7

Assessment of Trust and

Reliance in Human-AI

Collaboration

Part of the reason we trust other people as much as we do is because we by and large

think they will reach the same conclusions as we will, given the same evidence. If we

want to trust our machines, we need to expect the same from them. If we are on a

camping trip and both simultaneously discover that the eight-foot-tall hairy ape

known as Sasquatch (aka Bigfoot) is real and that he looks hungry, I expect you to

conclude with me, from what you know about primates and appetite, that such a

large ape is potentially dangerous, and that we should immediately begin planning a

potential escape.

Gary Marcus and Ernest Davis,

Rebooting AI: Building Artificial Intelligence We Can Trust

7.1 Introduction

With AI systems being deployed to more high-stakes domains such as healthcare,

criminal justice, and military operation, human users are expected interpret AI

inferences and make informed decisions [8]. As the potential damage of incorrect

82
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AI inferences becoming more significant, the “black box” nature of conventional

AI systems continues to be challenged to provide further clarity over its inner

workings and rationale for its answers.

Despite the allure of a more explainable, transparent system resulting in a

stronger bond between human users and AI assistants, the question of whether

such AI systems truly will help the users to understand the AI’s mental model

and benefit from improved performance of tasks at hand remains: after all,

regardless of the system’s ability to describe its mechanism, the user may prefer

the conventional, black box AI system that can provide the necessary response

without slowing down to explain itself.

Designed to evaluate the benefits of using the XAI system, this chapter

presents the evaluation of the generative XAI system in the context of surveil-

lance, where the user is querying a database of videos, searching for a specific

activity. We use the CMU motion capture database [153], and devise an exten-

sive user study that evaluates the quality of explanations, satisfaction with the

explanations, and assesses the users’ mental model, trust and reliance on the

system.

7.2 Related Work

Designed to closely evaluate each participant’s interaction with explanations,

our user study is informed by a wide range of work surrounding user trust and

reliance in AI explanations, as well as data-driven recommendation systems.

Example-based explanations are generally considered an acceptable way to

rationalize algorithmic behaviour [18, 80], while participant reactions to these

explanations vary greatly and are subject to individual di↵erences, including

self-confidence and prior experience with explanations [35, 142]. Users also

generally prefer to retain control over the application, leaving recommendation

and AI-driven behaviour only accessible by request [38]. Users are also most

likely to opt into utilizing AI assistance in order to quickly identify the answer,

with little interest to learn how or why AI arrived at its solution [37, 120].

When users do accept automatic assistance, however, they do so at arm’s
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length: distancing their own decisions from algorithmic behaviour and adjusting

trust levels according to the accuracy of systems [166]. Finally, past work has

observed general indi↵erence to how these explanations were presented, as there

is no strong preference for the level of detail or the type of visualization presented

in the explanations [37, 142].

7.3 User Study

The user study consists of various components to assess di↵erent factors from a

mental model to trust and reliance. Designed as a more linear, guided variation

of the explanation interface, the study presents numerous instances of three

main tasks:

1. Identifying one or more video clips that best illustrate the displayed query.

2. Spotting one or more segments in a single video clip that best illustrate

the displayed keyword.

3. Collaborating with AI to solve a more complex challenge of identifying a

longer video clip that best illustrates a query with multiple actions.

The study sets out to assess the benefit, if any, of XAI by comparing two

conditions: a condition where the participant uses the XAI system, and another

where the participant takes on the same tasks using a black-box AI system. The

two systems are powered by generative and discriminative models respectively,

and while the two systems behave consistently, the XAI system prominently

features the previously discussed model-generated video clips that illustrate the

system’s understanding of the keyword. The study also rigorously records the

user’s subjective experience with questionnaire components after each task.

7.3.1 Objectives

Our three-stage user study sets out to evaluate the model, the interface and the

benefits of using the XAI system. Featuring a variety of interactive modules,

this web-based interface was refined through an internal pilot and was deployed

as part of a randomized controlled study, the results of which we report below.
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Hypothesis. We hypothesize that the explanation interface will facilitate the

user’s understanding of the XAI system’s behavior, while improving the user’s

task performance by building a correct mental model of the AI and establishing

appropriate trust and reliance on the system.

Mental Model. A successful XAI system should allow users to gain a better

understanding of the system’s behavior, thus building a correct mental model

of its operations. In this study, we use a series of prediction tasks and question-

naires to better understand the benefits of using an XAI system over a black-box

one for mental model formation. Prior to gaining access to the XAI system’s

assistance, the user is presented with a sorted list of XAI-generated clips that il-

lustrate how the system interprets the query. They are then asked to fill a short

questionnaire to assess their expectations of the system. Given the presented

clips, the user is asked to predict the decision of the AI on a specific task. The

user’s work is then compared to that of the XAI system to gauge whether the

user was able to predict the system’s behaviour. In addition to prompting the

user with prediction tasks, the study also presents a number of assertions about

the XAI system and asks the user to agree or disagree with the assertions. This

way, their mental model is compared with an ideal model of the XAI system.

Task Performance. The user’s task performance alongside the AI system is

measured by comparing the resultant output with ground truth and observing

the user’s acceptance of the system. For each task, the participant has an

option to view and use the AI system’s output as the user’s own. The study

monitors the user’s decision to accept the system’s assistance, and examines

the similarity between ground truth, the system output, and the user’s answer.

Collected measurements include task completion time, user and AI accuracy,

and user reaction to the system-provided explanations as applicable per task.

Appropriate Trust and Reliance. Explanations should help users to de-

velop more appropriate trust and reliance toward an XAI system and enable

users to better achieve their goals. Maintaining close ties with the user’s mental

model of the AI system and resultant task performance, the study measures the
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user’s trust and reliance by asking the user to assess the level of confidence for

the XAI system’s output. The user can select an answer from a 5-level Likert

scale, ranging from “Strongly Disagree” to “Strongly Agree,” to indicate the

user’s confidence in the XAI system. The study also measures the user’s re-

liance on the system by examining whether the user solicits the XAI assistance

(through interaction log files) and continues to use it for subsequent tasks.

7.3.2 User Study Design

The study deconstructs the explanation interface into modular, guided user

experiences to evaluate the benefits of using the XAI system over the traditional

AI counterpart. Featuring numerous instances of three distinct tasks – Clip

Identify, Timeline Spot, and User-Machine Collaboration Task – the study o↵ers

either the AI or XAI system to assist each participant along the way. Motivation

and additional details surrounding the tasks are available in subsequent sections.

Overview. The study is a three-part experience featuring 2 di↵erent modes

of AI assistance and 3 task types (3+3+2 repetitions) for a total of 8 AI-assisted

tasks based on more than 40 di↵erent, randomly sampled configurations. The

study is designed to take a maximum of 50 minutes to complete, and each

prompted task is accompanied by Likert-scale questionnaires designed to record

the user’s subjective experience with the task. The study design and instruc-

tions were pilot tested with colleagues and students who were not part of the

participant pool.

Participants. A total of 44 undergraduate students from computer science

and information technology disciplines were recruited to participate in the between-

groups study. The participants had no prior experience with XAI systems but

had used commercial video search tools (e.g., YouTube). As there is no evidence

that gender or age would be relevant factors, this information was not collected.

Participants were compensated $20 for 1 hour of their time at the end of each

session.
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Figure 7.1: Illustration of the user study session flow. Throughout each session, the user

performs numerous trials of three distinct tasks, each accompanied by a posthoc questionnaire

specific to the task and the AI system’s performance. Depending on the allocated experimental

condition, the session may switch to the alternate AI system without warning.

Experimental Design. There were two conditions and three tasks. In or-

der to alleviate order e↵ects due to participant fatigue and practice with AI

assistance, the following conditions were established:

1. AI system only

2. XAI system only

3. AI system, then switch to XAI system after “Clip Identify”

4. XAI system, then switch to AI system after “Clip Identify”

Each study session, dedicated to a single condition, was initiated with a

brief introduction to the procedure and a tutorial about the study interface. 12

participants were invited to each session, with at least 10 participants success-

fully completing each condition, and no participants engaging in more than one

condition. Participants worked individually on computers within a computing

lab. The experimenter was available to answer participant questions throughout

the session. Each participant received detailed training prior to beginning the

study session, including completing the aforementioned sample tutorial tasks
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and watching video recordings that illustrate ideal interaction scenarios.

General Structure. The study presents a number of text queries, accompa-

nied by user tasks specific to each part, as well as applicable (X)AI assistance

and questionnaire components. At the end of each task, the study also displays

the summary that compares ground truth to user- and AI-provided answers. A

detailed outline of the study is shown in Figure 7.1.

Part 1: Clip Identify. In this first part of the study, the participant is

prompted to investigate a given set of ten video clips and pick up to three clips

most relevant to the displayed keyword using a click-to-toggle interface as shown

in Figure 7.2 (top). During this stage, the participant is presented a total of

four trials with randomly selected keywords and associated identification tasks.

The first trial serves as a tutorial and is not included in the results.

For each trial, the participant is first presented with the mental model ques-

tionnaire and asked to “step into the shoes” of the system and predict its an-

swer. In the XAI condition, the mental model questions are accompanied by the

sorted list of generated clips of what the system “thinks” the query looks like,

as shown in Figure 7.3. After the mental model questions, the participant is

presented with the task along with the results from assigned (X)AI assistance.

The system’s assistance is provided through sorting the list of clips, along with

a confidence bar below each clip, showing the system’s score over the length of

the clip. The participant may view any clip during each task, and optionally

import the system’s suggestion as the solution. In the case of XAI, the user is

also presented with AI-generated clips as evidence supporting the XAI system’s

interpretation of the text query. The evidence clips are rearranged automati-

cally once a video is selected, according to which generated clips contributed

the most to the system’s decision. At the end of the trial, the participant is

presented a summary showing the correct answer, their answer, their prediction

of the system’s answer based on their mental model, and the system’s answer,

as shown in Figure 7.2 (middle). Finally, the participant completes a question-

naire for this specific trial, assessing the performance of the system as shown in

Figure 7.2 (bottom).
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Figure 7.2: The Clip Identify task with the XAI system (left) and the AI system (right).

Given a set of ten video clips, the user is asked to pick the top three most relevant clips

to the displayed query. The XAI system, unlike the AI system, provides assistance with

explanations using model-generated click-to-expand clips (top left). The options to select

from appear below the the generated evidence (top left) or at the top (top right). Below that,

a summary showing the correct answer, the user’s answer, the user’s prediction of the system’s

answer (mental model of AI), and the system’s answer appears. (bottom) A questionnaire per

trial assessing the performance of the system.



90 CHAPTER 7. ASSESSMENT OF TRUST AND RELIANCE

Figure 7.3: The XAI evidence screen. This is the first step towards assessing the mental model

of the user. Before each task, the participant is presented with a query and a sorted list of

generated clips depicting what the XAI thinks the query visually looks like. The participant

is then prompted to answer a brief survey about their expectations of the XAI’s ability to

answer correctly and its understanding of the query.
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Figure 7.4: (top) The Timeline Spot task with the XAI system. Given a long video (with

time indicator), the user’s task is to manually highlight segments where the activity described

by the given keyword query exists, or “import” AI assistance. The XAI system, unlike the

AI system, provides assistance with explanations using model-generated clips. (middle) A

summary of timelines with the location of the correct answer, the user’s answer, the user’s

prediction of the system’s answer, and the system’s answer. (bottom) A questionnaire per

trial assessing the performance of the system.
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Figure 7.5: (top) The User-Machine Collaboration task with the XAI system. Given a series

of long video clips and a more complex scenario, the user’s task is to select a video that best

represents the text description and manually curated hint keywords. The interface features

a search box that allows the user to consult the (X)AI system to facilitate the investigation.

(middle) The XAI system, unlike the AI system, provides assistance with explanations using

model-generated support clips. (bottom) A questionnaire per trial assessing the performance

of the system.
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Part 2: Timeline Spot. The second part of the study provides a single but

lengthier video clip, consisting of multiple individual clips as shown in Part 1,

to localize a specific activity. Presenting a single keyword in the same fashion

as the first part, the study prompts the participant to search for di↵erent parts

of the video that best illustrate the keyword. The user can play or scrub the

video to locate the parts that match the keyword, and mark them using the

timeline interface as shown in Figure 7.4 (top). AI assistance is once again

available for the user to consult, complete with AI-generated clips exclusive to

the XAI system. Once the user clicks on the confidence bar below the clip, the

supporting evidence consisting of generated clips is sorted automatically to show

the most contributing evidence to a specific time segment. The trial structure

mirrors the Clip Identify task, with a summary of results as shown in Figure 7.4

(middle), and a questionnaire as shown in Figure 7.4 (bottom).

Part 3: User-Machine Collaboration Task. Combining interface elements

and challenges of parts 1 and 2, the third and final part of the study provides a

large set of lengthier video clips and prompts a randomly selected scenario. Each

of the seven scenarios was manually constructed by concatenating previously

available motion-capture clips, and the list of distractor clips was compiled

by random retrieval from the dataset. The user is encouraged to deconstruct

the provided description and search for the video clip that best illustrates the

scenario, but we suspect the task will be overwhelming enough for the user

to request AI assistance as required. Illustrated in Figure 7.5, the interface

provides a total set of three main elements: the search box, the clip list, and the

video player. The user can independently browse and investigate the individual

video clips to complete the task, but is encouraged to use the AI system to

facilitate the investigation. Upon submitting one or more text queries, the AI

system will highlight the clips that are most likely to illustrate the user’s query.

The XAI system, in alignment with its behavior in parts 1 and 2, presents its

interpretation of the query through generated supporting evidence before the

user accepts AI assistance in sorting the video clips. Finally, the user must

continue the investigation until the correct video clip is selected, and then is
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presented a summary of results and a questionnaire.

7.3.3 External Data Annotation

In addition to collecting participant reactions to model-generated video clips

as part of the study, we recruited five external data annotators and launched

a posthoc analysis of AI explanation quality. Each annotator was presented a

series of keyword queries and corresponding AI explanations, and asked to rate

how well the model-generated video clips represent each query, on a 5 point

Likert scale. These ratings, collected from annotators with no prior experience

with the study, were used as a proxy for the quality of AI explanations as well

as an indicator of participant attentiveness throughout the study.

7.4 Outcomes

Participant activities recorded during each session have been collated and thor-

oughly analyzed to test the original hypothesis that XAI support will facilitate

the user’s understanding of the AI system and in turn improve the user’s task

performance. Any other notable insights that arose during this process have

been also been collected for discussion below.

Measures. With a total of 44 participants engaging in more than 350 dis-

tinct AI-assisted tasks, the collected data features completion time, user and AI

accuracy, and user reaction to system-provided explanations as applicable per

task. In the following discussion, we note statistical tests with * at p <.05 and

** at p <.005.

Task Clusters. Upon observing divergence in participant performance and

reaction between those who explicitly stated low levels of trust in AI explanation

and those who did not, the study results were further segmented into three

separate groups: AI tasks (51.7%), XAI tasks completed by users with low

levels of trust (XAI LOW, 16.5%), and finally, the remainder of XAI tasks

where the user did not express explicit distrust or instead expressed trust (XAI
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Figure 7.6: Task completion times (in seconds) between the two AI systems, and across the

three task clusters. Segmentation between XAI HIGH and XAI LOW was determined by

the user’s express level of trust in AI explanation. UMC completion times using the XAI

system remain unsegmented, as users did not provide express level of trust for corresponding

AI explanation.

HIGH, 31.8%). Segmentation between XAI LOW and XAI HIGH clusters was

determined by user response to the question “I would trust the AI decision more,

now that I have seen this visualization,” where the “Disagree” or “Strongly

Disagree” response serving as a qualifier for XAI LOW. Some task trials were

discarded due to user or system error, resulting in a slight imbalance between

AI and XAI task numbers. A number of participants di↵ered in each condition,

though the results were segmented by task, not participants.

7.4.1 Speed

Overview. Speed is defined as the elapsed time in completing a single task

trial, illustrated in Figure 7.6. Speed determines the e�ciency advantage of

using the AI or XAI system. Adjusting for variance in internal loading time for

both AI and XAI systems, a typical task was completed on average in 119 sec-

onds, although it is important to note that User-Machine Collaboration (UMC)

tasks are more complex and hence more time-consuming for users. Excluding

these collaborative tasks that require about 257 seconds to complete on aver-

age, the average completion time hovered around 66 seconds. Computation time

was o↵set to allow for direct comparison between AI and XAI systems after the
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study, although we recognize that the users may have deemed computation time

excessive and influential to user satisfaction with the system.

Results Without task segmentation, the XAI system (111 seconds) presented

negligible advantage over the AI counterpart (128 seconds), but more signifi-

cant divergence emerged upon segmenting the XAI results by trust and task

types. An ANOVA revealed no significant e↵ect of task cluster on speed for

Clip Identify (AI: M=79s, SD=78s, XAI HIGH: M=69s, SD=58s, XAI LOW:

M=88s, SD=70s). Similarly, no significant e↵ect of condition was found for

the UMC tasks (AI: M=293s, SD=206s, XAI: M=225s, SD=164s). However,

the Timeline Spot tasks varied significantly (**, F(3,126)=5.21, p = .007) with

XAI LOW tasks being completed most quickly (M=37s, SD=39s), followed by

XAI HIGH Tasks (M=46s, SD=36s) and AI tasks (M=65s, SD=46s). Post-

hoc pairwise t-tests with Bonferroni correction for repeated measures revealed

significant di↵erences in completion time between AI and XAI HIGH (*, p =

.03) and between AI and XAI LOW (**, p = .002). There was no significant

di↵erence between XAI HIGH and XAI LOW.

Discussion The provision of XAI support did not aid in the speed of task

completion for the Identify task, as participants generally viewed multiple clips

in detail, irrespective of XAI support. In the Timeline Spot task, overall com-

pletion times were generally shorter than either UMC or Identify counterparts,

indicating a simpler task overall: in case of the XAI system, participants could

use the AI explanation to know quickly whether to accept the AI answer or at

least seek the playback to the highest rated positions to check them. The UMC

task was designed as complex challenge which would maximize the support pro-

vided to participants, the results were not significantly di↵erent between the two

systems, likely due to the very high variance between participants on the time

to complete this task. This points to the individualized nature of the provision

of evidence, and that it may be important to provide support on demand, while

putting potentially distracting explanations out of the way when they are not

requested or required.
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7.4.2 Accuracy

Overview Accuracy, depicted in Figure 7.7, is the portion of instances where

the user, with the help of the AI system, was able to identify the correct answer

in a single task trial. Accuracy determines whether the system is able to produce

more correct answers than others, resulting in a less error-prone experience.

Results The accuracy was highest for the XAI HIGH cluster (74.0%), fol-

lowed by AI (68.2%) and XAI LOW (44.4%). Pairwise chi-square tests with

Bonferroni correction revealed significant di↵erences between AI and XAI LOW

(**, �2(1,189) = 9.14, p = .002) and between XAI HIGH and XAI LOW (**,

�2(1,158) = 13.50, p = .0002). The di↵erence between AI and XAI HIGH was

not significant.

Discussion The accuracy results were lowest when users indicated low trust

for AI explanations. This may indicate that when trust is low, the user may

assume the generated evidence is unreliable, and proceeded to submit their

own (often incorrect) answer. This conjecture is reinforced by the fact that

when trust is low, a↵ecting accuracy, synchronization is usually also low. These

results, for clarity, entirely depend on each users interaction with the system,

independent of the underlying algorithm: one can choose to accept or ignore AI

assistance, regardless of the system type in use.

Figure 7.7: Results of accuracy (left), user-machine synchronization (middle), and user skep-

ticism (right) across the three task clusters. Segmentation between XAI HIGH and XAI LOW

was determined by the users’ expressed level of trust in each AI explanation in “Clip Identify”

and “Timeline Spot.”
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Figure 7.8: Truncated summary of participant “journeys” through the study across di↵erent

experimental conditions. Each section displays two of the most successful journeys (where

both the user and the AI system were able to identify the correct answer), as well as two of

the least successful per corresponding condition. Top results indicate that both the user and

the AI system were able to get correct answers throughout the journey, achieving a high level

of synchronization.
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7.4.3 User-Machine Synchronization

Overview Determined as the instance where both the user and the AI systems

select the same answer regardless of its accuracy, this measure represented in

Figure 7.7 defines the level of synchronization between the user and the AI

system. As a whole, about 55% of all user and AI answers were synchronized.

A sample of these journeys is illustrated in Figure 7.8. The icons indicate

the user’s accuracy and synchronization with the AI system’s interpretation,

and the numbers below indicate the user’s understanding, confidence, and trust

pertaining to the XAI system on a 1-5 scale. Queries used in each trial are also

displayed, with colors indicating the ratings by external data annotators (green-

yellow-red, in order by external rating). The full set is available in Chapter 9.

Results In strong alignment with the previous accuracy results, XAI LOW

tasks resulted in a significantly lower synchronization rate of 37.40% in compar-

ison to AI (60.0%) and XAI HIGH (58.65%) tasks. Post-hoc chi-square tests

with Bonferroni correction revealed significant di↵erences between AI and XAI

LOW (**, �2(1,189) = 8.17, p = .004) and between XAI HIGH and XAI LOW

(*, �2(1,158) = 6.65, p = .0099). The di↵erence between AI and XAI HIGH

was not significant.

Discussion AI and XAI HIGH results indicate higher user-machine synchro-

nization than XAI LOW. This may indicate that the provision of trustworthy

evidence (XAI HIGH) does not help any more than no evidence (AI), but the

provision of untrustworthy evidence, such as poorly generated clips (XAI LOW)

can actually drive participants away from AI suggestions. This is in fact the

desired result, as we hope that users will appropriately choose to find their own

answers when they do not trust the AI system to do the job.

7.4.4 User Skepticism

Overview When the user decides that the AI system’s assistance is unhelpful

and even incorrect, the user may explicitly exhibit a level of skepticism, illus-

trated in Figure 7.7, by choosing a correct answer despite the AI system’s invalid
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suggestion. About 14% of all tasks reflected this rare but consistent behaviour.

Results There was no significant deviation to trend across the three clusters,

with AI, XAI HIGH, and XAI LOW tasks exhibiting evidence of skepticism

14.8%, 12.5%, and 13.0% at a time respectively.

Discussion User skepticism serves as a proxy measure of user attention to

task, indicating that the participants sometimes went against AI suggestions

and did not blindly accept them. This phenomenon was consistent across all

task clusters, and there was no correlation between this behaviour and expert

ratings per clip.

Figure 7.9: Summary of questionnaire responses about the (X)AI system, listing individual

questions featured in the original study session. Responses pertaining to the XAI system are

split into two parts, based on the overall level of trust and reliance indicated by each study

participant, represented by individual responses to questions pertaining to model-generated

clips. If the user expressed general lack of confidence in AI explanation, the user was classified

as “low trust.” The XAI system performed better than the AI system without explanation,

if the user had a higher level of trust in the system.
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7.4.5 Questionnaire Responses

Observation While the AI-only system originally seemed to yield higher over-

all satisfaction amongst the participants, there was a sharp divide in satisfaction

between the participants with a high level of trust and reliance for the XAI sys-

tem compared to those without. Upon segmenting the responses from the XAI

system as illustrated in Figure 7.9, it was evident that the XAI system resulted

in a more positive experience overall compared to the AI system, should the

users have a high level of trust and reliance for the system.

7.4.6 Additional Findings

Overview Below are some of the secondary findings that do not directly cor-

respond our hypothesis, but are notable and warrant further investigation in

future work.

Distribution of User Reactions to AI Explanation The user study col-

lected using the three distinct questions, to individual AI explanations: “I be-

lieve that the AI understands this keyword correctly” (UNDERSTAND), “I have

a high level of confidence in the AI system” (CONFIDENCE), and “I would

trust the AI decision more, now that I have seen this visualization” (TRUST).

Upon visualizing these reactions, there was apparent bimodal behaviour, as il-

lustrated in Figure 7.10, across all three categories, indicating that users often

exhibit less ambiguous reactions to presented AI explanations. We recognize

that these reactions are biased to each participants subjective experience.

Figure 7.10: Histograms illustrating user reactions to AI explanation, represented by responses

to three distinct questions about AI assistance. The pattern shows a bimodal distribution

showing that participants formed clear opinions for most task trials, especially on the under-

stand and confidence questions.
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Figure 7.11: Small multiples illustrating example reactions to AI explanations when using the

XAI system, represented by three distinct questions: UNDERSTAND (green), CONFIDENCE

(maroon), and TRUST (orange). Each plot represents a single participant across the tasks

completed in the XAI experimental condition.

Correlation Between User Reactions to AI Explanation Beyond the

anecdotal tendency where individual users who exhibit trust in the AI system

may also indicate confidence in the AI system, as illustrated in Figure 7.11,

there was significant correlation between the user’s three responses to a specific

AI explanation. Post-hoc multiple correlation tests revealed significant positive

correlation across the board: UNDERSTAND and CONFIDENCE (**, r(121)

= 0.7979, p <.00001), UNDERSTAND and TRUST (**, r(121) = 0.7777, p

Figure 7.12: Alignment between external ratings and individual user reactions to AI explana-

tions. X axis is anchored by keywords ordered by external rating scores.
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<.00001), and CONFIDENCE and TRUST (**, r(121) = 0.7777, p <.00001).

This, along with the shifting user reactions in Figure 7.11, suggest that users

do actively respond to presented AI explanation and change their opinions ac-

cordingly, and that not all three questions may be necessary in future studies

to measure the level of trust and reliance on the system.

Alignment with External Ratings There was no apparent correlation be-

tween user reactions to individual clips and externally annotated ratings, as

indicated in Figure 7.12. This may indicate that clip quality assessment criteria

di↵ered between our experts and participants, or that overall clip quality did

not strongly influence the user’s trust or confidence in the AI agent. It was

notable, however, that positive user reactions were clustered around clips that

feature exaggerated motions and cartoon-like premises, such as “bear (human

subject),” “salsa dance,” and “express joy,” while more generic and muted clips

such as “pull up” and “walk and turn repeated” received negative reactions.

Participant Comments There was divergence between clusters of partici-

pants who found the AI system to be reliable and influential to their decision-

making processes, and those who deemed the system to be counter-intuitive

and underwhelming. One participant wrote “(AI explanation) is a good basis of

determining the reliability of AI in terms of (whether) the AI is able to detect

the proper animations,” and another expressed satisfaction, stating “(I am) im-

pressed of what the AI system outputs.” On the other hand, some expressed

caution and distrust, with one writing “the AI system often interpreted small

portions of movements as if they met the definition of the keyword although

it was a mere segment of the movement,” and another writing “I didn’t trust

it completely as it directed similar movements and categorized it as the real

one.” Two participants plainly wrote “I did not see the explanation,” alluding

to the possibility that the definition or qualifications of what constitutes an AI

explanation may vary between individuals or may require additional training or

clearer messaging to help people interpret generated clips as explanations.
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7.5 Discussion

Outcomes The user study outcomes present significant evidence that the XAI

system and its generative examples can facilitate task performance consistent

with the AI system, o↵er improved performance in select task types, and provide

a more satisfying overall user experience. However, this is only applicable if

the users decide to trust the provided AI explanations. To clarify, this study

is not designed to influence the user’s reaction to a certain system, but to

provide additional tools for further clarity and transparency and observe how

one perceives AI-provided explanation.

We claim that the presence of AI explanations, characterized by exemplar

clips and the corresponding interactive visualization, does not improve the users

performance in search tasks, but helps one to know when to trust or reject AI

assistance, thus indirectly influencing performance. Additionally, the presence

of such visualization helps to identify the user as belonging in one of the two

groups: those who exhibit a higher level of trust and satisfaction for the system,

and those exhibit skepticism and yield a lower level of e�ciency and accuracy.

We observed a significant divide in behavior and performance between users

who chose to trust the AI explanations and those who did not, and this divide

impacted all performance-related measures including speed, accuracy, and user-

machine synchronization. While there was no significant indication that the

user was able to correctly accept or reject the XAI system’s assistance, the

results were largely comparable with the AI counterpart. These results suggest

that users form trust and a�nity for the XAI or AI system more or less based

on instinct, and the system may produce video clips that ultimately result in

correct answers, but not necessarily seem logical or comprehensible to human

users. This disparity contributes to lack of perceived performance improvement.

These findings are consistent with other study results that examine partic-

ipant interaction with interpretable AI models: trust levels are found to be

inferred by subjective perceptions of the machine performance [166]; model ex-

planations are found to o↵er no significant improvement to user performance

[124]; finally, one’s personal characteristics significantly influence perception of

AI systems, regardless of their objective performance [108]. Such alignment



7.6. SUMMARY 105

also presents an opportunity to study how high-stake, ambiguous situations

may alter human-AI dynamics where experts may strongly disagree on existing

assessments and need to rely on a tie-breaking nudge by an AI system with a

level of explainability [141].

Future Improvement. The XAI system could be further improved in numer-

ous areas to gain a more significant advantage over the AI-only counterpart. The

generative model could be improved to produce more exemplars that achieve

the same or higher level of accuracy as the AI-only system. Also, the XAI sys-

tem could produce more high-quality model-generated clips that best represent

individual queries and result in higher user satisfaction and user-machine syn-

chronization. Explanations must be short and require little e↵ort to interpret,

or the advantage they o↵er will be outweighed by the required time and e↵ort.

We also hypothesize that the evaluation dataset may contain human error

and biases that may contribute to the system behaving in a way unexpected and

even jarring to the users. For users to make more accurate, informed decisions,

the system will need to transparently communicate what the potential biases

are, and why its decision, although less intuitive, can result in the correct answer.

There are other implications pertaining to the experiment design as well.

Users may exhibit a higher level of trust and reliance for the XAI system, should

the individual tasks present a higher stake and a more captivating incentive.

Task formulation is an important consideration as well: all the presented tasks

in the study are simple permutations of the same dataset and the interface

components, yet user performance and satisfaction noticeably di↵er across the

tasks. Experimenting with di↵erent configurations may be useful in identifying

user biases and designing tasks with more balanced challenges.

7.6 Summary

Built on a novel explainable approach for searching and ranking videos using

textual queries, this chapter sets out to evaluate the XAI system’s benefits over

the black box counterpart in realms of overall explainability, trustworthiness,

and accuracy. The following findings emerged from the featured user study:
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• The XAI system yielded a comparable level of e�ciency, accuracy, and

user-machine synchronization as the AI system, but only if the user ex-

hibited a high level of trust.

• The XAI system yielded a significantly lower level of e�ciency, accuracy,

and synchronization if the user exhibited a lower level of trust.

• The XAI system yielded higher overall user satisfaction, but only if the

user exhibited a higher level of trust.



Chapter 8

Conclusion

We can’t say who has come, perhaps we will never know, but many signs indicate

that the future enters us in this way in order to be transformed in us, long before it

happens ... just as people for a long time had a wrong idea about the sun’s motion,

they are even now wrong about the motion of what is to come. The future stands

still, dear Mr. Kappus, but we move in infinite space.

Rainer Maria Rilke, Letters to a Young Poet [135]

8.1 Summary and Future Opportunities

Inspired by the increasing need for interface tools to work with complex language

and image data together in a scalable fashion, Modular is a highly customizable,

extensible software platform for visualizing available model outputs, building

and annotating new datasets, and setting up user studies. This toolbox brings

together the usually disparate actions of data annotation and curation, as well

as machine learning visualization and testing. This toolbox enables vision and

language researchers to seamlessly conduct their work without complex config-

uration of a web-interface, and furthermore invites other developers to build

new modules per project needs. Other subsequent projects that rely on Modu-

lar further underscore its capabilities as a flexible and extensible foundation for

human-in-the-loop AI research work.

107
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8.1.1 Annotation for Commonsense Grounding

Armed with the goal of establishing a generalizable knowledge base for future

AI work, Aesop presents a strong case in augmenting previous datasets with ex-

ternal detector outputs and user-provided annotations with a novel end-to-end

grounding procedure. By facilitating rich media assets and deploying a flexible

knowledge graph conducive to human augmentation and contextual expansion,

Aesop demonstrates the benefits of encoding complex scene information to in-

form future creative projects or fuel complex AI models. In addition, Aesop

further underscores the value of user-oriented annotation experience as the do-

main expert, initially unfamiliar with annotation tasks, was able to ground

the previously disconnected datasets and annotate the entire film with minimal

technical support. The domain expert’s annotation process accelerated over the

subsequent scenes as the annotator became more familiar with the workflow.

The knowledge graph powering Aesop has the potential to include represen-

tations of other feature-length films to form a larger and richer body of film

knowledge. While the annotation work presented in the previous chapter is

limited to a single feature film whose initial datasets and detector outputs are

available for grounding, this project can be greatly expanded upon to invite

more human annotators absorb future datasets. In addition to accumulating a

complex network of domain-specific insights ranging from narrative patterns to

cinematography techniques, Aesop will be able to establish a much richer digi-

tized environment and complex knowledge/belief model that bear resemblance

to their source films, many of which are in turn based on the real world.

8.1.2 Human-AI Collaboration in Content Creation Tasks

The Modular framework was adapted to facilitate human-AI collaboration in

the context of content creation via two distinct use cases. Displaying its ability

to flexibly customize its design and functionality per project-specific needs, the

framework demonstrates a range of human-AI collaborative tasks such as 3D

animation generation and music composition with AI assistance. Using Aesop’s

conversational AI mode and its knowledge graph accumulated through the com-

monsense grounding process, one can produce new and original film scenes using
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natural language parsing, human gesture integration, and chat interface. With

MUSICA’s web-based interface, musicians can seamlessly compose and impro-

vise music with their AI partners by combining domain-specific representation

framework, natural language processing, and real-time music generation.

Beyond the presented use cases, the platform can be flexibly applied to other

projects that feature collaborative tasks between human users and AI models,

especially should convenience in deployment and user access be important to

the end product: Modular’s cloud-hosted, standard-compliant interface is ad-

vantageous in rapid deployment and ensuring that users can access the web ap-

plication without installing native software. In addition to closely-coordinated

research collaborations, Modular can benefit from additional software engineer-

ing work to serve the general public as a self-serve platform: this idea has been

already explored with the previously presented layout generator, and will al-

low all interested users to conveniently build and deploy an interface without

development assistance.

8.1.3 Approach to Improved AI Explanation

With transparency and interpretability emerging as increasingly important con-

siderations in user-facing AI solutions, the generative XAI system presented

in the previous chapter sets out to provide AI assistance that can explain its

decision-making process without compromising system performance. Conven-

tional AI models are often considered “black-box” for the lack of clarity in their

inner workings, and the visualizations that accompany them often are focused

on illustrating learned representations and influential input features, instead of

helping non-experts to understand the system. Inspired by the nature of GAN

models where the generator component dynamically creates visual assets to use

as queries for the discriminator component, the generative XAI system uses the

aforementioned video queries as partial explanations of the AI model.

The concept of using the products of adversarial generation as explanation

elements can benefit from further exploration in di↵erent media types and appli-

cation areas. Beyond skeletal 3D animations presented in the previous chapter,

other AI systems may experiment with presenting various interim iterations of
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text, image, or audio generation to the users in a manner conducive to user

interpretation. In addition to improving explainability of the AI system, these

assets may be directly useful in the user’s workflow. For instance, the user may

be able to identify alternate queries upon observing the explanations and gain-

ing a better understanding of the AI system in one’s search task. On the other

hand, the user may be able to derive additional sources of inspiration from these

by-products of GAN models when working on a creative project.

8.1.4 Trust and Reliance in Human-AI Collaboration

Built on the previously presented approach to AI explanation via visual queries,

the XAI system was compared against the black box counterpart to evaluate

its benefits using di↵erent criteria and its ability to establish the user’s trust

and reliance on the system. As the study results suggest, trust was not a mere

product of the XAI system’s overall performance, but a factor in the successful

cooperation between the human user and the system: the XAI system resulted

in a comparable level of e�ciency, accuracy, and user-machine synchronization

as the AI system, but only if the user exhibited a high level of trust, and the

same system yielded higher overall user satisfaction as an added e↵ect as well.

As discussed in the previous chapter, the XAI system can benefit from ad-

ditional evaluation with improved visual queries and system performance to

conclude whether the XAI system can gain a significant advantage over the AI

counterpart. Instead of simply presenting a generic set of keywords and tasks,

the experiment could benefit from additional context — including more immer-

sive objectives and captivating incentives — to observe how the user’s trust and

reliance on the system may change according to the nature of the interaction.

8.1.5 Future Opportunities

Additional Modules. With emerging Web standards and innovative periph-

eral devices, such as consumer VR headsets, entering consumer markets, Modu-

lar continues to receive additional project-specific modules that take advantage

of such technologies. For example, a graph module, which can alternatively

used to indicate bird’s eye view of multiple objects placed on a two-dimensional
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plane, can be augmented with a new 3D space module that interprets and

visualizes the individual objects in a three-dimensional space: coupled with

head-mounted display devices such as Oculus Rift, the result is an immersive,

first-person experience achieved without the use of dedicated software and a

lengthy development cycle that may follow. In addition, the rising demand for

real-time communication capabilities can be readily satisfied with text chat and

“co-presence” modules that can turn an otherwise solitary annotation or vi-

sualization experience into a collaborative, team-based one. Finally, anecdotal

evidence derived from experience with Modular rea�rms that utilizing modules,

whose core features can be reused and extended, o↵er opportunities for produc-

tivity gains as supported by significant evidence in the software industry [110].

Equipped with a suite of core modules that perform basic yet specific functions,

Modular allows its developers to identify the modules that can be reused and

bridge feature gaps with further customization or extension. This approach, al-

beit anecdotally, resulted in an accelerated development and deployment rate as

researchers became more familiar with Modular’s original o↵erings and started

to accumulate project-specific modules, one project at a time.

Crowdsourcing Platform. Having identified a market gap between survey-

focused online services (e.g., SurveyMonkey) and research-oriented crowdsourc-

ing platforms (e.g., Amazon Mechanical Turk), Modular may serve as an attrac-

tive alternative between these product categories for those who wish to conduct

more complex crowdsourced studies without the steep learning curve involved in

developing custom software from scratch. In addition to essential features found

in typical survey tools, Modular can promote more complex annotation and vi-

sualization tasks with the layout generator and relevant modules — inspiring

more users to construct and participate in crowdsourced research projects.

Collaboration in Creative Tasks. With Modular successfully deployed in

research projects that feature scene annotation and collaborative music making,

there remain future opportunities for exploring human-AI collaboration in other

creative endeavours. As creative processes increasingly make their way onto the

Web, partly due to shifting user demands and ubiquity of web technologies,

Modular can potentially serve as a mechanism for researchers to easily perform



112 CHAPTER 8. CONCLUSION

ethnographic research in di↵erent creative disciplines and study implicit user

response to AI assistance without lab-based arrangements.

8.2 Concluding Remarks

Modular, true to its name, serves as a useful framework for taking a module-

driven approach to satisfying a variety of project needs, and it does so by demon-

strating its capabilities as an annotation interface, a collaborative workbench

for human-AI tasks, and a rapidly deployed user study application. Modular

is not simply limited to such use cases, though: as one can construct new and

innovative interfaces with its layout generator and user-defined modules, taking

cues from conventional website builders to aid in improving the workflow of

other research e↵ort.

Though seemingly as old as time, humans and machines continue to main-

tain a close yet tense relationship as AI quickly ramps up its capabilities with

machine learning, computer vision, and natural language processing. AI and its

creators face increased ethical scrutiny surrounding personal information and

data privacy; human users continue to o↵er their insights and information in

exchange for convenience, all while comparing AI to a mystical black box. There

remains an opportunity to build a world where humans and machines collab-

orate beyond simply coexisting, and Modular stands a promising platform for

facilitating future XAI research, with adaptability and customizability as its key

strengths.
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Chapter 9

Supplementary Materials

Questionnaire responses to AI explanations

Figures 9.1 through 9.2 provide a summary of questionnaire responses pertaining

to AI explanations presented to the participant throughout the study session.

Each participant was asked to evaluate whether the XAI system understands

the query, and to rate their confidence and trust in the system. These responses

are accompanied by explanation quality ratings collected from an external group

of annotators, and then sorted and clustered by the overall level of participant

satisfaction per keyword. Poorly received keywords are marked by particularly

lower ratings from study participants and external annotators.

Synchronization and trust and reliance in AI explanation

Figures 9.3 through 9.6 illustrate the level of synchronization between user and

AI responses as well as each user’s trust and reliance in AI explanation across

di↵erent experimental conditions. Icons indicate whether the user and/or the

AI’s answers match the ground truth for each trial, and whether the two answers

overlap, indicating user-machine synchronization. Questionnaire responses per-

taining to the user’s experience with the XAI system are also indicated below

the icons, along with the query used in each trial. Color of the query indicates

the quality of generated videos based on external ratings.
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Figure 9.1: First half of the questionnaire response summary.
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Figure 9.2: Second half of the questionnaire response summary.
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Figure 9.3: Participant journeys using an AI-only system.
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Figure 9.4: Participant journeys using an XAI-only system.
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Figure 9.5: Participant journeys using an AI-only system initially then moving to an XAI

system.
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Figure 9.6: Participant journeys using an XAI system initially then moving to an AI-only

system.
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