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While the computer vision problem of searching for activities in videos is usually addressed by using discrim-

inative models, their decisions tend to be opaque and difficult for people to understand. We propose a case

study of a novel machine learning approach for generative searching and ranking of motion capture activities

with visual explanation. Instead of directly ranking videos in the database given a text query, our approach

uses a variant of Generative Adversarial Networks (GANs) to generate exemplars based on the query and

uses them to search for the activity of interest in a large database. Our model is able to achieve comparable

results to its discriminative counterpart, while being able to dynamically generate visual explanations. In

addition to our searching and ranking method, we present an explanation interface that enables the user to

successfully explore the model’s explanations and its confidence by revealing query-based, model-generated

motion capture clips that contributed to the model’s decision. Finally, we conducted a user study with 44

participants to show that by using our model and interface, participants benefit from a deeper understanding

of the model’s conceptualization of the search query. We discovered that the XAI system yielded a compara-

ble level of efficiency, accuracy, and user-machine synchronization as its black-box counterpart, if the user

exhibited a high level of trust for AI explanation.
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1 INTRODUCTION

Explainable Artificial Intelligence (XAI) has recently emerged due to increased interest for
Artificial Intelligence (AI) systems. XAI enables new machine learning techniques, specifically
deep learning, to yield explainable models. These explanations can be developer-focused (to help
in understanding, designing, and improving models) or user-centric (to help in knowing how and
when to trust the outputs of AI tools). From the user-centric point of view it is of crucial importance
to explain the decisions of an AI system with effective explanation techniques to enable end users
to understand, appropriately trust, and effectively manage the decisions made by AI. An effective
explainable AI system assists in the human decision-making supported by the system, in particular,
whether to accept the recommendations or classifications suggested by the model. In modern AI
systems, the most critical and most opaque components are based on machine learning. There is an
inherent tension between machine learning performance (predictive accuracy) and explainability;
often the highest performing methods, such as deep learning, are the least explainable, while the
most explainable, such as decision trees, are the least accurate.

From a decision making point of view, the goal of XAI systems is to maintain performance while
being explainable. The target of XAI is an end user who depends on decisions, recommendations,
or actions produced by an AI and therefore needs to understand the rationale for the system’s
decisions. For example, a test operator of a newly developed autonomous system will need to
understand why the system makes its decisions so that they can decide how to use it in the future. A
successful XAI system should provide end users with an explanation of individual decisions, enable
users to understand the system’s overall strengths and weaknesses, convey an understanding of
how the system will behave in the future, and in some cases even suggest how to correct the
system’s mistakes. Explanations can be global, explaining how the model works and the ways
in which it encodes knowledge, or local, explaining the provenance and confidence in individual
decisions or recommendations. Our work focuses on the local level, using visual explanations to
help users decide whether to trust an individual output of an AI system.

Explainable models might be created by learning to associate explanatory semantic information
with features of the model; by learning simpler models that are easier to explain; by learning richer
models that contain more explanatory content; or by inferring approximate models solely for the
purpose of explanation. Another critical component of XAI systems are explanation interfaces that
enable explainable models [24]. For example, Reference [35] provide an example of the develop-
ment and evaluation of a basic explanation interface. The work followed a complete development
strategy that included identifying principles of explainability, developing an interface from those
principles, and evaluating the effectiveness of the explanations provided by the interface. The sys-
tem explained a very simple naive Bayesian text classifier.

In this article, we introduce the paradigm of explanation by generation. We propose a novel
generative XAI system for human activity search and ranking in motion capture data.

Visual search and ranking is a prominent problem in the computer vision community. Applica-
tions of visual search and ranking range from commerce, to surveillance, to robotics. Recent work
on ranking focused on discriminative methods [4]: given a query, the goal is to retrieve videos
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containing the query, along with the query’s location visually highlighted in the video. We depart
from the discriminative ranking paradigm, and propose a generative ranking framework based
on the Dense Validation Generative Adversarial Networks (DVGANs) approach [37]. We de-
fined the problem as follows: given a text query, generate multiple video hypotheses representing
the query, then search for the query using the model-generated videos. In this case, by having the
model generate the visual information, presented in an analytics dashboard, we can give the user
an insight on what the model “thinks” the query looks like, hence, it becomes more explainable.
The underlying model is a Generative Adversarial Network (GAN) [22] for human motion
generation from text.

Innovations in interface design enable the presentation of detailed results, beyond simple yes-
or-no answers. Our interactive explanation interface acts as the mediator between the user and
the model, permitting the model’s rationale for decisions to be explained in a variety of ways. The
explanation interface combines visualization of exemplars generated by the generative model and a
confidence score associated with each search result. This further supports the user’s understanding
about why a specific instance was returned and how confident the system was in its decision. Our
approach explores the nuanced confidence and sensitivity in the decision, thereby helping a user
set an appropriate level of trust in decisions made by the system. The interface is designed such that
it enables visualization of explanations generated by the model and allow the user to drill down
on decisions. As users determine and establish trustworthiness with provenance information [26],
we see an opportunity for bringing a new type of provenance information model to the forefront.

Finally, we evaluate our XAI system in the context of surveillance, where the user is querying
a database of videos and searching for a specific activity in various scenarios. We used the CMU
motion capture database [1] to devise an extensive user study that evaluates the quality of expla-
nations, gauges the users’ satisfaction with the explanations, and assesses the users’ mental model
as well as trust and reliance in the system. Our XAI generative ranking system improves explain-
ability while maintaining a high level of performance, comparable to a black-box AI discriminative
ranking system. We found that the XAI system yielded a comparable level of efficiency, accuracy,
and user-machine synchronization as its black-box counterpart, if the user exhibited a high level
of trust for AI explanation. Our contributions are threefold:

(1) A GAN-based explainable AI system, based on a generative model with performance com-
parable to its discriminative counterpart, for human activity search and ranking.

(2) A visual interface for traversing exemplars created by the generative model and exploring
confidence and sensitivity in model decisions.

(3) The findings of a user study evaluating the GAN-based explainable AI system in comparison
to black-box AI, based on various criteria including accuracy, speed, and user satisfaction.

2 RELATED WORK

In this section, we review the relevant literature on recent XAI approaches, literature related to
our specific explainable model approach, and finally, literature related to the explanation interface.

2.1 Related Work on Explainable AI

Our approach is inspired by recent work produced in the XAI domain, as well as new opportuni-
ties that emerged therein. Traditionally, as various inference systems extended their capabilities,
there has been a need to trace and represent each system’s decision making process to justify
its conclusions, identify any contradictions, and further improve the corresponding operations
[12]. Extending on the need to understand both automatically and manually coded rules, there has
been a demand for more transparent, explainable AI systems. We divide the related work into two
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different groups: global explanations and local explanations. While an exhaustive review of XAI
is beyond the scope of this article, Molnar provides one [40].

Global explanations focus on analyzing overall learned representations, for example, under-
standing and visualizing representations in deep learning (e.g., convolutional neural networks)
[30, 42, 55], analyzing representations learned by deep reinforcement learning agents (e.g., deep
Q-networks) [54] or learning disentangled representations [28]. In the global explanation case,
after the model is learned, the explanation is then extracted from the representation learned by
the model itself.

Local explanations focus more on grounding the explanations on specific data, for example,
finding influential features [45] and grounding them on the input image. Other methods focused
on finding influential data points [33] and parameterizing training batches. Recent work focused
on generating textual explanations by training a second deep network to generate explanations
without explicitly identifying the semantic features of the original network [27]. Finally, attention-
based methods for explanation, such as show and tell networks, couple captioning with attention
on images [51], using attributes for attention [9] or using guided attention [36].

Beyond the above developer-centric explanations that focus on AI models and corresponding
data points, however, there is also a call for more intuitive and interpretable explanations for
human users. Some XAI projects pursue “human-in-the-loop,” user-centric systems that produce
trustworthy answers that without significantly compromising the system performance [45]; other
applications seek different ways to ensure fairness and accountability by providing users alterna-
tive outcomes using counterfactual statements (“had a number of conditions been different, the
outcome would change”) via intuitive voice assistants [48]; finally, ideal XAI projects also provide
contextually relevant recommendations and explanations to their end users who may have little
to no technical knowledge in AI systems, but are experts in their own domains [24].

2.2 Related Work on Explanation by Generation

Since our explainable model is based on GANs, we briefly review the relevant literature. GANs [22]
are a class of implicit generative models that learn directly from examples. They have been em-
ployed successfully in many problems, mostly in the area of computer vision where GANs are
trained directly on pixels. There are multiple variations of GANs, many of which propose a varia-
tion of the objective function to address different needs. Starting from the original formulation [22],
the extension to Conditional GANs (CGAN) [20] was introduced to enable conditioning on a
class label, Wasserstein GANs (WGAN) [3] was introduced to improve the stability of GANs,
and finally WGANs with Gradient Penalty (WGAN-GP) [23] improved WGAN’s stability even
further by replacing weight clipping with a gradient penalty in the loss function.

We specifically focus on approaches for human motion generation, since it is most related to
our work. There are two types of synthesis: (1) Motion completion, starting from a short clip and
extrapolating to a longer clip; (2) Motion generation, starting with a label and generating full
clips. Recent work on human motion modeling for motion completion successfully used RNNs
[19, 21, 29, 39]. However, they did not do human motion generation from scratch. Recently, GAN-
based approaches have been applied successfully to synthesize human motion from text [2, 5, 37]
by formulating a sequence-to-sequence model using a GAN framework [39].

2.3 Related Work on Explanation Interfaces

Our research into explainable interfaces for artificial intelligence is inspired by recent advances in
interpretability, trust, and explainability in the information visualization and human-computer
interaction fields [10, 11, 38]. Information visualizations are often populated with the outputs
of machine learning techniques, however, simply visualizing the outputs of an ML system is
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insufficient as an explanation. Where visualizations such as a topic model plot [16], rendering
of features in CNNs [38], or a t-SNE model visualization [50] may be useful for those familiar with
the workings of the algorithm, they are inappropriate for data domain experts.

Provenance is a key consideration for supporting decision-making in data analytics, and pro-
viding traces of both data provenance and analytic provenance has been used to enhance the
trustworthiness of analytic outcomes using visual analytics [46, 52]. Analytic provenance tools
have recently been the focus of much visual analytics research, and are often a variation of an
automatically populated storyboard showing the history of interaction [17, 56].

2.4 Related Works on Explanation Assessment

Designed to closely evaluate each participant’s interaction with explanations, our user study is
informed by a wide range of work surrounding user trust and reliance in AI explanations, as well
as data-driven recommendation systems.

Example-based explanations are generally considered an acceptable way to rationalize algorith-
mic behaviour [7, 34], while participant reactions to these explanations vary greatly and are subject
to individual differences, including self-confidence and prior experience with explanations [13, 47].
Users also generally prefer to retain control over the application, leaving recommendation and AI-
driven behaviour only accessible by request [15]. Users are also most likely to opt into utilizing AI
assistance to quickly identify the answer, with little interest to learn how or why AI arrived at its
solution [14, 43].

When users do accept automatic assistance, however, they do so at arm’s length: distancing their
own decisions from algorithmic behaviour and adjusting trust levels according to the accuracy
of systems [53]. Finally, past work has observed general indifference to how these explanations
were presented, as there is no strong preference for the level of detail or the type of visualization
presented in the explanations [14, 47].

3 HUMAN ACTIVITY GENERATION FOR SEARCH AND RANKING

In this section, we specify the model used for human activity search and retrieval. We also specify
the black-box discriminative AI model used to contrast our generative XAI.

3.1 Problem Statement

To study the effect of global explanations, we use human activity search and ranking (querying a
video database for certain activities of interest) as a use case. Human activity understanding is a
rich area of research in robotics, computer vision and machine learning, due to the challenges it
offers. In this work, we focus on the surveillance use-case [4].

Due to the large size and number of video frames, instead of searching the pixels directly, the
video is processed by extracting visual abstractions such as objects, parts and their spatial con-
figurations. This is usually done using detectors [8, 44, 49]. For studying the effect of global ex-
planations, in this work, we normalize the abstraction process by using a database of captured
motions where human body joints are accurately localized in 3D using motion capture devices.
In this way, we can focus on the second stage where the spatial motion of human body parts are
connected to the query of interest. Specifically, we perform experiments on the CMU Motion

Capture database (CMU Mocap) [1].

3.2 CMU Motion Capture Database

CMU Mocap is a large-scale motion capture dataset of open-ended activities. It contains 2,548
motion capture videos from 113 actors performing 1,095 unique activities captured at 120 frames-
per-second with descriptions in text. There are activities with different styles and transitions such
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Fig. 1. Illustration of discriminative ranking vs. generative ranking. (left) Given a fixed-length video clip in
the video database and a query “sweep floor,” discriminative ranking uses a CNN-RNN model to score the
clip. (right) Generative ranking first generates exemplar clips of what the model thinks is “sweep floor” then
uses the clips to score the video database through a CNN-CNN similarity function. The score is indicated by
the confidence bar, where red indicates a higher level of confidence.

as “walk on uneven terrain,” “dance—expressive arms, pirouette,” “punch and kick,” and “run to
sneak.” Having such fine-grained activities brings us close to human activity understanding in the
wild, and CMU Mocap is the largest dataset of its kind. We use data in the BVH format provided
by Reference [25], where the human body skeletons are represented by 31 joints, closely follow-
ing Reference [37]. The joint angles are pre-processed into the exponential map representation and
activities spanning less than 8 s are filtered out. The filtered dataset contains 573 actions across
1,125 videos totaling 8 h. We use 757 videos for training the AI retrieval system and 368 videos for
evaluation.

Our AI retrieval systems spot query activity using frame-by-frame sliding windows of 8-second
clips. We compare two state-of-the-art deep models: (1) a discriminative ranking model that does
not provide global explanation and (2) a generative ranking model that provides exemplar-based
global explanations about the retrieval decisions. The discriminative ranking and generative rank-
ing systems are illustrated in Figure 1.

3.3 Discriminative Ranking Implementation

The discriminative ranking model is inspired by the state-of-the-art model for ranking image cap-
tions [18]. Given a query and a video clip, discriminative ranking computes a ranking score of how
well the clip matches the query. The input action text is encoded into a query vector using the skip-
thought vectors model [32], and fed to a GRU recurrent neural network (RNN) language model.
The input video clip is encoded into a video clip vector using a 1D residual convolutional neural

network (CNN). The matching score between the query and video clip is computed as the dot
product between the query vector and the video clip vector. The AI retrieval system selects videos
with highest average score over all its sliding window clips as the output. The ranking scores for
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Fig. 2. Model architecture diagrams of (1) Top: CNN-RNN for discriminative ranking. (2) Middle: CNN-RNN
generators and discriminator following Reference [37] for the GAN component in generative ranking. (3) Bot-
tom: Siamese CNN similarity function for the similarity component in generative ranking. The basic build-
ing blocks for the model architectures are shown on the right. All models are implemented in the PyTorch
framework.

sliding window clips are visualized to the user to explain the retrieval decisions. Figure 2 (top)
illustrates the architecture of the discriminative ranking model.

The discriminative ranking model is trained jointly for action classification and retrieval of
human activity videos. The action classification task is given a fixed-length video clip, retrieve
its original description from a pool of K = 250 descriptions. Similarly the action retrieval task is
given an action description, retrieve the video clip that corresponds to the action description from
a pool ofK = 250 fixed-length video clips. We optimize the negative log-likelihood action retrieval
and action classification losses to learn parameters of the CNN. We use the Adam optimizer with
learning rate 1 × 10−4 over 100 epochs.
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3.4 Generative Ranking Implementation

Given a query, the generative ranking model first generates exemplar clips using a text-conditioned
GAN [37]. For example, for a query “walking,” the model will generate a set of exemplar clips that it
“thinks” represent the “walking” action. Given a video clip, the generative ranking model computes
the ranking score by comparing the video clip with the exemplar clips using a learned similarity
metric. Similar to discriminative ranking, videos with the highest average score over all sliding
window clips are retrieved as the output. This particular method is ideal for our interface that
allows the users to query by natural language, as this is the only GAN-based approach that requires
a text query to generate a video clip without example frames as an additional input. Additionally,
our generator performs well against an existing approach that requires such frames [37].

For generative ranking, the generated exemplar clips are global explanations of the retrieval
decisions. The generated exemplar clips are presented to the user along with the ranking scores to
explain the retrieval decisions. While we acknowledge that the diversity of the generated examples
is also important for GAN-based approaches, we also recognize that some users may want a more
“deterministic” explanation. The quality of these generated clips has been assessed as part of the
user study by external data annotators.

3.4.1 Generative Adversarial Network (GAN) for Text-conditioned Activity Generation.

GANs [22] consist of two components that learn as adversaries: a generator and an dis-
criminator. Let video clip be x and query be y. In the context of video generation, given a query
“sweep floor,” a discriminator D (x ,y) is a video appraiser that tries to tell if a video is an authentic
“sweep floor” video in the training set, or a generated counterfeit made by the generator. A video
generator x̄ = G (y, z), however, starts from a random Gaussian noise vector z and transforms this
using a feedforward neural network to generate realistic enough “sweep floor” videos that fool
the discriminator. x̂ = αx + (1 − α )x̄ , where x̂ is derived from x̄ and x with α uniformly sampled
between 0 and 1. x̂ takes an interpolation between a random real sample and a random generated
sample.

Our activity generation GAN is trained uses the Wasserstein GAN [3] objective function (Equa-
tion (1)), which is the average score assigned to real videos of the target action, minus the average
score for generated videos, plus a gradient penalty term for stabilizing optimization. The discrimi-
nator maximizes while the generator minimizes the objective. Parameters of the discriminator and
generator are learned through alternating gradient descent, in which the discriminator learns to
improve its classification performance, followed by the generator learning to improve the quality
of the videos it creates. Reference [3] proves that when Equation (1) reaches equilibrium, the gen-
erator will generate the real video distribution P (x |y) and the discriminator will not be able to tell
generated videos from real videos:

JGP (D,G ) = Ex∼px ,y∼py
D (x, y)︸����������������︷︷����������������︸

Real

−Ex̄∼pG ,y∼py
D (x̄, y)︸�����������������︷︷�����������������︸

Generated

+ λEx̂∼px̂ ,y∼py

[
(‖∇x̂D (x̂, y)‖2 − 1)2

]
︸���������������������������������������︷︷���������������������������������������︸

Gradient Penalty

.
(1)

Following Reference [37], the GAN discriminator is a 1D residual CNN with dense validation
blocks, and the GAN generator is a 1D residual deconvolution CNN. The architectures are shown
in Figure 2 (middle). We train the model on the CMU Mocap training set, using the Adam optimizer
[31] with learning rate 1 × 10−4 for 1,000 epochs.

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.



Learn, Generate, Rank, Explain: A Case Study of Visual Explanation 23:9

3.4.2 Generative Ranking Using Generated Exemplars. The second stage of the generative rank-
ing system computes matching scores between the set of exemplar video clips {x̄ } generated for
query y and a target video clip x .

Our generative ranking approach computes as matching score the point-wise mutual infor-

mation (PMI) PMI(x ,y) =
P (x,y )

P (x )P (y ) between query y and video clip x it captures how often the

video and the query are seen together. In addition, our generative ranking approach computes
PMI(x ,y) using only {x̄ } and x and without using y, to guarantee that the set of exemplars {x̄ }
faithfully explain the decisions. Notice that if we can learn T (x , x̄ ) = log

P (x, x̄ )
P (x )P (x̄ ) , we will have:

log
P (x ,y)

P (x )P (y)
= log

∑
x̄

P (x |x̄ ,y)P (x̄ |y)

P (x )

= log
∑

x̄

P (x |x̄ )P (x̄ |y)

P (x )
(Assumingx |=y |x̄ )

= logEx̄∼P (x̄ |y )
P (x |x̄ )

P (x )

= logEx̄∼P (x̄ |y )e
T (x, x̄ ), (2)

which shows that the matching score PMI(x ,y) can be computed as the log-mean-exp (a soft ver-
sion of max function) of T (x , x̄ ) over target video clip x and exemplars {x̄ }.

The key function, T (x , x̄ ) can be approximated using a neural network learned by maximizing
mutual information (MI) lower-bound Equation (3) discovered by References [6, 41]:

I(X ; X̄ ) ≥ max
T
E(x, x̄ )∼P (x, x̄ )T (x , x̄ ) − Ex∼P (x )Ex̄∼P (x̄ )e

T (x, x̄ ) + 1. (3)

Equation (3) equality is reached when T (x , x̄ ) = log
P (x,y )

P (x )P (y ) .

For the model architecture of T (x , x̄ ), we use a residual 1D CNN with shared parameters to
encode a pair,x and x̄ (i.e., a Siamese-CNN) into vectors.T (x , x̄ ) is computed as the cosine similarity
scaled by a constant factor of 9.1 The CNN-similarity network architecture is shown in Figure 2
(bottom). We optimize Equation (3) on the CMU Mocap training set using the Adam optimizer
[31] with a learning rate 1 × 10−4 for 100 epochs and apply T (x , x̄ ) on the test set for predicting

log
P (x,y )

P (x )P (y ) .

In summary, for generative ranking, given query y, we first use the GAN generator x̄ = G (y, z)
under different noise vectors z to generate N = 30 exemplars {x̄ }. The decision to use 30 ex-
emplars is a balanced one between two considerations: diversity and retrieval performance for
machines and usability for human users. While it is important to have more exemplars for diver-
sity and subsequent machine performance, we also recognize that human users cannot digest an
overwhelming number of exemplars.

Thereafter, we compute log-mean-exp over the N = 30 T (x , x̄ ) matching scores between video
clip x and every exemplar x̄ to estimate PMI(x ,y) as the ranking score.

3.5 Machine Learning Performance

We benchmark both approaches, based on the same CNN model, by their top-1 accuracy when
ranking 248 8-s video clips with unique action descriptions in the CMU Mocap test set. Random
ranking is 1/248 ≈ 0.4%. The discriminative ranking approach achieves 35% top-1 accuracy, while

1The output range of T (x, x̄ ) affects confidence of MI estimation [6]. Empirically, this controls the output range of

T (x, x̄ ) ∈ [−9, 9] and makes optimization more stable.
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the generative ranking approach achieves 33% top-1 accuracy. Therefore their performance is com-
parable. For global explanation, discriminative ranking provides only the matching scores, while
generative ranking, in addition to scores, naturally generates exemplar-clips for the query that
can be shown to the user. Finally, generating 5, 10, and 20 exemplars resulted in top-1 retrieval
performance to drop by 1.6%, 1%, and 0.5%, respectively, compared to 30 exemplars.

We found that using the same CNN model to generate vectors of real and generated structural
motion data gives 3% better top-1 retrieval performance than using two separate CNNs. Our hy-
pothesis is that the generated clips are qualitatively very similar to real structural motion data,
and therefore using a single CNN model is sufficient. Less parameters empirically reduces the gap
between performance on training/testing data in machine learning, and hence, we predict that
generalization performance is improved, because a single CNN model has less parameters than
two separate CNN models.

On our evaluation dataset with 368 videos and 248 unique action keywords, we computed the
precision-recall curves for each keyword and the resultant mean average precision (mAP)—area
under the precision-recall curve averaged across all keywords—for both approaches. The discrimi-
native approach reaches 0.457 mAP and the generative approach using 30 exemplar clips achieves
0.425 mAP. The generative approach using 1, 2, 5, 10, 20 exemplar clips achieve 0.404, 0.413, 0.421,
0.422, 0.423 mAP, respectively. Observations are consistent with our top-1 accuracy metric, that
discriminative ranking performs slightly better than the generative counterpart. We conclude that
the performance gap is small, and using more exemplar clips improve performance.

4 EXPLANATION INTERFACE

The interface acts as a mediator between the human and the AI, to help understand the AI’s ratio-
nale for decisions through a variety of explanation approaches. The explanation interface combines
visualization of generator instances from the AI generator, as well as uncertainty in the outcomes
from the ranker. We set out to bridge the gap and make the explanation interface appropriate for
people who are not AI experts. To achieve this, the explanations consist primarily of relatable con-
structs such as animated motion sequences, rather than abstract visualizations of hidden model
states or other low level features. We adopt a surveillance use case where our target user is an
analyst searching for an activity in a large video database.

The explainable interface assumes a dashboard design geared towards domain experts who may
not have deep knowledge of artificial intelligence, but are well-versed in the data upon which the
system operates. Purpose-built to visualize AI rationale for individual video clips in the dataset, the
interface is also designed to handle similar application areas and accompanying datasets, enabling
users to answer textual queries with visual rationales and confidence scores for the answers. The
interface also allows a data domain expert to observe the evidence and make an informed decision
whether to trust the XAI system, by supporting “drill-down” into deeper evidence for the provided
answers and the level of confidence the model is reporting. A detailed illustration of the interface
is available in Figure 3.

The interface enables the user to input a search query and select a ranking algorithm (Genera-

tive or Discriminative). Once the search button is clicked, all the videos in the database are ranked
in a new list with the most relevant video on top. Once one of the videos is selected, the video
becomes available for the user to view, along with a confidence bar visualization located below the
navigation bar, showing areas of interest where the query term is most likely to occur. In the case
of generative ranking, in addition to the confidence bar, the user is also presented with an unsorted
set of generated evidence that the algorithm used to rank the list of videos. Upon clicking on the con-
fidence bar in a certain segment, the score for that segment is presented to the user, and the list of
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Fig. 3. Annotated view of the explanation interface. The flow of the interface starts from left to right. In the
left column, the user starts by inputting a query and selecting the ranking algorithm of interest. Once the
search button is clicked, all the videos in the database are ranked in a new list with the most relevant video
at the top. In the middle column, once one of the videos is selected from the ranked list, the video becomes
available for the user to view, along with a segmented confidence bar (red indicating higher confidence)
located below the navigation bar. In the right column, which is available only in the generative ranking case,
the user is also presented with an unsorted set of generated evidence that the algorithm used rank the list
of videos. Upon clicking on the confidence bar in a certain segment, the score for that segment is presented
to the user, and the list of evidence gets sorted showing the most important evidence first. Upon clicking on
one of the evidence clips, a pop-up video player is presented to the user to view it.

evidence is sorted to show the most important evidence first. Upon clicking on one of the evidence
clips, a pop-up video player is presented to the user to review the generated evidence in detail.

The generative ranking interface enables the user to drill down into deeper evidence for the
provided answers and see the level of confidence the model is reporting. This allows a data domain
expert to make an informed decision whether to trust the system. In the discriminative ranking
case, the user would have little evidence to support the provided decision. The ability to drill down
on evidence ends at the ranked list and confidence bar. One of the key research questions of our
user study, presented in the next section, is the investigation of the role of trust and whether
generated evidence engenders appropriate trust in AI systems: how will an explanation interface
lead a user to accept or reject the answer provided by the AI model?

5 USER STUDY

The user study consists of various components to assess different factors from a mental model to
trust and reliance. Designed as a more linear, guided variation of the explanation interface, the
study presents numerous instances of three main tasks:
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Fig. 4. Illustration of the user study session flow. Throughout each session, the user performs numerous
trials of three distinct tasks, each accompanied by a post hoc questionnaire specific to the task and the AI
system’s performance. Depending on the allocated experimental condition, the session may switch to the
alternate AI system without warning.

(1) Identifying one or more video clips that best illustrate the displayed query.
(2) Spotting one or more segments in a single video clip that best illustrate the keyword.
(3) Collaborating with AI to solve a more complex challenge of identifying a longer video clip

that best illustrates a complex query with multiple actions.

Through comparing two conditions—the XAI system or a black-box AI system, powered by
generative and discriminative models, respectively—we aim to assess the benefit, if any, of XAI.
The study also rigorously records the user’s subjective experience with questionnaire components
after each task. The web-based study interface is available for public access at http://gr.ckprototype.
com/.

5.1 Objectives

Our three-stage user study sets out to evaluate the model, the interface and the benefits of using
the XAI system. Featuring a variety of interactive modules, this web-based interface was refined
through an internal pilot and was deployed as part of a randomized controlled study, the results
of which we report in this article.

Hypothesis. We hypothesize that the explanation interface will facilitate the user’s understand-
ing of the XAI system’s behavior, while improving the user’s task performance by building a cor-
rect mental model of the AI and establishing appropriate trust and reliance on the system.

Mental Model. A successful XAI system should allow users to gain a better understanding of
the system’s behavior, thus building a correct mental model of its operations. In this study, we
use a series of prediction tasks and questionnaires to better understand the benefits of using an
XAI system over a black-box one for mental model formation. Prior to gaining access to the XAI
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Fig. 5. The XAI evidence screen. This is the first step towards assessing the mental model of the user. Before
each task, the participant is presented with a query and a sorted list of generated clips depicting what the
XAI thinks the query visually looks like. The participant is then prompted to answer a brief survey about
their expectations of the XAI’s ability to answer correctly and its understanding of the query.

system’s assistance, the user is presented with a sorted list of XAI-generated clips that illustrate
how the system interprets the query. They are then asked to fill a short questionnaire to assess
their expectations of the system as shown in Figure 5. Given the presented clips, the user is asked
to predict the decision of the AI on a specific task. The user’s work is then compared to that of
the XAI system to gauge whether the user was able to predict the system’s behaviour. In addition
to prompting the user with prediction tasks, the study also presents a number of assertions about
the XAI system and asks the user to agree or disagree with the assertions. This way, their mental
model is compared with an ideal model of the XAI system.

Task Performance. The user’s task performance alongside the AI system is measured by com-
paring the resultant output with ground truth and observing the user’s acceptance of the system.
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Given a task, the user has an option to view and use the AI system’s output as the user’s own. The
study monitors the user’s decision to accept the system’s assistance, and examines the similarity
between ground truth, the system output, and the user’s answer. Other miscellaneous parameters,
including the user’s task completion time and interaction with different interface modules, are
recorded for further analysis.

Appropriate Trust and Reliance. Explanations should help users to develop more appropriate
trust and reliance toward an XAI system and enable users to better achieve their goals. Maintaining
close ties with the user’s mental model of the AI system and resultant task performance, the study
measures the user’s trust and reliance by asking the user to assess the level of confidence for
the XAI system’s output. The user can select an answer from a 5-level Likert scale, ranging from
“Strongly Disagree” to “Strongly Agree,” to indicate the user’s confidence in the XAI system. The
study also measures the user’s reliance on the system by examining whether the user solicits the
XAI assistance (through interaction log files) and continues to use it for subsequent tasks.

5.2 User Study Design

The study deconstructs the explanation interface into modular, guided user experiences to eval-
uate the benefits of using the XAI system over the traditional AI counterpart. Featuring numer-
ous instances of three distinct tasks—Clip Identify, Timeline Spot, and User-Machine Collaboration

Task—the study offers either the AI or XAI system to assist each participant along the way.

Overview. The study is a three-part experience featuring 2 different modes of AI assistance and
3 task types (3+3+2 repetitions) for a total of 8 AI-assisted tasks based on more than 40 different,
randomly sampled configurations. The study is designed to take a maximum of 50 min to complete,
and each prompted task is accompanied by Likert-scale questionnaires designed to record the
user’s subjective experience with the task. The study design and instructions were pilot tested
with colleagues and students who were not part of the participant pool.

Participants. A total of 44 undergraduate students from computer science and information tech-
nology disciplines were recruited to participate in the between-groups study. The participants had
no prior experience with XAI systems but had used commercial video search tools (e.g., YouTube).
As there is no evidence that gender or age would be relevant factors, this information was not
collected. Participants were compensated $20 for 1 h of their time at the end of each session.

Experimental Design. There were two conditions and three tasks. To alleviate order effects due
to participant fatigue and practice with AI assistance, the following conditions were established:

(1) AI system only
(2) XAI system only
(3) AI system, then switch to XAI system halfway
(4) XAI system, then switch to AI system halfway

Each study session, dedicated to a single condition, was initiated with a brief introduction to
the procedure and a tutorial about the study interface. Twelve participants were invited to each
session, with at least ten participants successfully completing each condition, and no participants
engaging in more than one condition. Participants worked individually on computers within a
computing lab. The experimenter was available to answer participant questions throughout the
session. Each participant received detailed training prior to beginning the study session, including
completing the aforementioned sample tutorial tasks and watching video recordings that illustrate
ideal interaction scenarios.
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Fig. 6. (left) The Clip Identify task with the XAI system. Given a set of ten video clips, the user is asked
to pick the top three most relevant clips to the displayed query. The XAI system (shown), unlike the AI
system, provides assistance with explanations using model-generated clips. (top right) A summary showing
the correct answer, the user’s answer, the user’s prediction of the system’s answer (mental model of AI), and
the system’s answer. (bottom right) A questionnaire per trial assessing the performance of the system.

General Structure. The study presents a number of text queries, accompanied by user tasks spe-
cific to each part, as well as applicable (X)AI assistance and questionnaire components. At the
end of each task, the study also displays the summary that compares ground truth to user- and
AI-provided answers. A detailed outline of the study is shown in Figure 4.

Part 1: Clip Identify. In this first part of the study, the participant is prompted to investigate
a given set of ten video clips and pick up to three clips most relevant to the displayed keyword
using a drag-and-drop sort interface as shown in Figure 6 (left). During this stage, the participant
is presented a total of four trials with randomly selected keywords and associated identification
tasks. The first trial serves as a tutorial and is not included in the results.

For each trial, the participant is first presented with the mental model questionnaire and asked
to predict the system’s answer. In the XAI condition, the mental model questions are accompanied
by the sorted list of generated clips of what the system “thinks” the query looks like, as shown in
Figure 5. After the mental model questions, the participant is presented with the task along with
the results from assigned (X)AI assistance. The system’s assistance is provided through sorting the
list of clips, along with a confidence bar below each clip, showing the system’s score over the length
of the clip. The participant may view any clip during each task, and optionally import the system’s
suggestion as the solution. In the case of XAI, the user is also presented with AI-generated clips
as evidence supporting the XAI system’s interpretation of the text query. The evidence clips are
rearranged automatically once a video is selected, according to which generated clips contributed
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Fig. 7. (left) The Timeline Spot task with the XAI system. Given a long video, the user’s task is to highlight
segments where the activity described by the given keyword query exists. The XAI system, unlike the AI sys-
tem, provides assistance with explanations using model-generated clips. (top right) A summary of timelines
with the location of the correct answer, the user’s answer, the user’s prediction of the system’s answer, and
the system’s answer. (bottom right) A questionnaire per trial assessing the performance of the system.

the most to the system’s decision. At the end of the trial, the participant is presented a summary
showing the correct answer, their answer, their prediction of the system’s answer based on their
mental model, and the system’s answer, as shown in Figure 6 (top right). Finally, the participant
completes a questionnaire for this specific trial, assessing the performance of the system as shown
in Figure 6 (bottom right).

Part 2: Timeline Spot. The second part of the study provides a single but lengthier video clip,
consisting of multiple individual clips as shown in Part 1, to localize a specific activity. Presenting
a single keyword in the same fashion as the first part, the study prompts the participant to search
for different parts of the video that best illustrate the keyword. The user can play or scrub the
video to locate the parts that match the keyword, and mark them using the timeline interface as
shown in Figure 7 (left). AI assistance is once again available for the user to consult, complete with
AI-generated clips exclusive to the XAI system. Once the user clicks on the confidence bar below
the clip, the supporting evidence consisting of generated clips is sorted automatically to show the
most contributing evidence to a specific time segment. The trial structure mirrors the Clip Identify
task, with a summary of results as shown in Figure 7 (top right), and a questionnaire as shown in
Figure 7 (bottom right).

Part 3: User-Machine Collaboration Task. Combining interface elements and challenges of parts
1 and 2, the third and final part of the study provides a large set of lengthier video clips and
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Fig. 8. (left) The User-Machine Collaboration task with the (X)AI system. Given a series of long video clips and
a more complex scenario, the user’s task is to select a video that best represents the text description. The inter-
face features a search box that allows the user to consult the (X)AI system to facilitate the investigation. (top
right) The XAI system, unlike the AI system, provides assistance with explanations using model-generated
support clips. (bottom right) A questionnaire per trial assessing the performance of the system.

prompts a randomly selected scenario. Each of the seven scenarios was manually constructed by
concatenating previously available motion-capture clips. The user is encouraged to deconstruct the
provided description and search for the video clip that best illustrates the scenario, but we suspect
the task will be overwhelming enough for the user to request AI assistance as required. Illustrated
in Figure 8, the interface provides a total set of three main elements: the search box, the clip list,
and the video player. The user can independently browse and investigate the individual video clips
to complete the task, but is encouraged to use the AI system to facilitate the investigation. Upon
submitting one or more text queries, the AI system will highlight the clips that are most likely to
illustrate the user’s query. The XAI system, in alignment with its behavior in parts 1 and 2, presents
its interpretation of the query through generated supporting evidence before the user accepts AI
assistance in sorting the video clips. Finally, the user must continue the investigation until the
correct video clip is selected, and then is presented a summary of results and a questionnaire.

5.3 External Data Annotation

In addition to collecting participant reactions to model-generated video clips as part of the study,
we recruited five external data annotators and launched a post hoc analysis of AI explanation
quality. Each annotator was presented a series of keyword queries and corresponding AI expla-
nations, and asked to rate how well the model-generated video clips represent each query, on a
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Fig. 9. Task completion times between the two AI systems, and across the three task clusters. Segmentation
between XAI HIGH and XAI LOW was determined by the user’s express level of trust in AI explanation. UMC
completion times using the XAI system remain unsegmented, as users did not provide express level of trust
for corresponding AI explanation.

5 point Likert scale. These ratings, collected from annotators with no prior experience with the
study, were used as a proxy for the quality of AI explanations as well as an indicator of participant
attentiveness throughout the study.

6 OUTCOMES

Participant activities recorded during each session have been collated and thoroughly analyzed
to test the original hypothesis that the XAI system will facilitate the user’s understanding of the
AI system and in turn improve the user’s task performance. Any other notable insights that arose
during this process have been also been collected for discussion below.

Measures. With a total of 44 participants engaging in more than 350 distinct AI-assisted tasks,
the collected data features completion time, user and AI accuracy, and user reaction to the AI
system or AI-provided explanations as applicable per task. In the following discussion, we note
statistical tests with * at p < 0.05 and ** at p < 0.005.

Task Clusters. Upon observing divergence in participant performance and reaction between
those who explicitly stated low levels of trust in AI explanation and those who did not, the study
results were further segmented into three separate groups: AI tasks (51.7%), XAI tasks completed
by users with low levels of trust (XAI LOW, 16.5%), and finally, the remainder of XAI tasks where
the user did not express explicit distrust or instead expressed trust (XAI HIGH, 31.8%). Segmenta-
tion between XAI LOW and XAI HIGH clusters was determined by user response to the question “I
would trust the AI decision more, now that I have seen this visualization,” where the “Disagree” or
“Strongly Disagree” response serving as a qualifier for XAI LOW. Some task trials were discarded
due to user or system error, resulting in a slight imbalance between AI and XAI task numbers.

6.1 Speed

Overview. Speed is defined as the elapsed time in completing a single task trial, illustrated in
Figure 9. Speed determines the efficiency advantage of using the AI or XAI system. Adjusting
for variance in internal loading and computation time for both AI and XAI systems, a typical
task was completed on average in 119 s, although it is important to note that User-Machine
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Fig. 10. Results of accuracy (left), user-machine synchronization (middle), and user skepticism (right) across
the three task clusters. Segmentation between XAI HIGH and XAI LOW was determined by the users’ ex-
pressed level of trust in each AI explanation.

Collaboration (UMC) tasks are more complex and hence more time-consuming for users. Ex-
cluding these collaborative tasks that require about 257 s to complete on average, the average
completion time hovered around 66 s. Computation time was offset to allow for direct compari-
son between AI and XAI systems after the study, although we recognize that the users may have
deemed computation time excessive and influential to user satisfaction with the system.

Results. Without task segmentation, the XAI system (111 s) presented negligible advantage over
the AI counterpart (128 s), but more significant divergence emerged upon segmenting the XAI
results by trust and task types. An ANOVA revealed no significant effect of task cluster on speed
for Clip Identify (AI: M = 79 s, SD = 78 s, XAI HIGH: M = 69 s, SD = 58 s, XAI LOW: M = 88 s, SD
= 70 s). Similarly, no significant effect of condition was found for the UMC tasks (AI: M = 293 s,
SD = 206 s, XAI: M = 225 s, SD = 164 s). However, the Timeline Spot tasks varied significantly (**,
F(3,126) = 5.21, p = 0.007) with XAI LOW tasks being completed most quickly (M = 37 s, SD = 39
s), followed by XAI HIGH Tasks (M = 46 s, SD = 36 s) and AI tasks (M = 65 s, SD = 46 s). Post hoc
pairwise t-tests with Bonferroni correction for repeated measures revealed significant differences
in completion time between AI and XAI HIGH (*, p = 0.03) and between AI and XAI LOW (**, p =
0.002). There was no significant difference between XAI HIGH and XAI LOW.

Discussion. The provision of XAI support did not aid in the speed of task completion for the
Identify task, as participants generally viewed multiple clips in detail, irrespective of XAI support.
In the Timeline Spot task, overall completion times were shorter than either UMC or Identify coun-
terparts, indicating a simpler task overall: participants could use the XAI support to know quickly
whether to accept the AI answer or at least seek the playback to the highest rated positions to check
them. The UMC task was designed as a complex challenge that would maximize the support pro-
vided to participants, the results were not significantly different between the two systems, likely
due to the very high variance between participants on the time to complete this task. This points
to the individualized nature of the provision of evidence, and that it may be important to provide
support on demand, while putting potentially distracting explanations out of the way when they
are not requested or required.

6.2 Accuracy

Overview. Accuracy, depicted in Figure 10, is the portion of instances where the user, assisted by
the AI system, was able to identify the correct answer in a single task trial. Accuracy determines
whether the system is able to produce more correct answers than others, resulting in a less error-
prone experience.

Results. The accuracy was highest for the XAI HIGH cluster (74.0%), followed by AI (68.2%)
and XAI LOW (44.4%). Pairwise chi-square tests with Bonferroni correction revealed significant
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Fig. 11. Truncated summary of individual participant “journeys” through the study across different experi-
mental conditions. Each section displays two of the most successful journeys (where both the user and the
AI system were able to identify the correct answer), as well as two of the least successful per corresponding
condition. The icons indicate the user’s accuracy and synchronization with the AI system’s interpretation,
and the numbers below indicate the user’s understanding, confidence, and trust pertaining to the XAI sys-
tem. Queries used in each trial are also displayed, with their colors indicating the ratings by external data
annotators.

differences between AI and XAI LOW (**, χ 2(1,189) = 9.14, p = 0.002) and between XAI HIGH and
XAI LOW (**, χ 2(1,158) = 13.50, p = 0.0002). The difference between AI and XAI HIGH was not
significant.

Discussion. The accuracy results were lowest when users indicated low trust for AI explanations.
This may indicate that when trust is low, the user may assume the generated evidence is unreliable,
and proceeded to submit their own (often incorrect) answer. This conjecture is reinforced by the
fact that when trust is low, affecting accuracy, synchronization is usually also low. These results, for
clarity, entirely depend on each user’s interaction with the system, independent of the underlying
algorithm: one can choose to accept or ignore AI assistance, regardless of the system type in use.

6.3 User-Machine Synchronization

Overview. Determined as the instance where both the user and the AI systems select the same
answer regardless of its accuracy, this measure represented in Figure 10 defines the level of syn-
chronization between the user and the AI system. As a whole, about 55% of all user and AI answers
were synchronized. A sample of these journeys is illustrated in Figure 11.

Results. In strong alignment with the previous accuracy results, XAI LOW tasks resulted in
a significantly lower synchronization rate of 37.40% in comparison to AI (60.0%) and XAI HIGH
(58.65%) tasks. Post hoc chi-square tests with Bonferroni correction revealed significant differences
between AI and XAI LOW (**, χ 2(1,189) = 8.17, p = 0.004) and between XAI HIGH and XAI LOW
(*, χ 2(1,158) = 6.65, p = 0.0099). The difference between AI and XAI HIGH was not significant.

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.



Learn, Generate, Rank, Explain: A Case Study of Visual Explanation 23:21

Discussion. AI and XAI HIGH results indicate higher user-machine synchronization than XAI
LOW. This may indicate that the provision of trustworthy evidence (XAI HIGH) does not help
any more than no evidence (AI), but the provision of untrustworthy evidence, such as poorly
generated clips (XAI LOW) can actually drive participants away from AI suggestions. This is in
fact the desired result, as we hope that users will appropriately choose to find their own answers
when they do not trust the AI system to do the job.

6.4 User Skepticism

Overview. Whenever the user decides that the AI system’s assistance is unhelpful and even in-
correct, the user may explicitly exhibit a level of skepticism, illustrated in Figure 10, by choosing
a correct answer despite the AI system’s invalid suggestion. About 14% of all tasks reflected this
rare but consistent behaviour.

Results. There was no significant deviation to trend across the three clusters, with AI, XAI HIGH,
and XAI LOW tasks exhibiting evidence of skepticism 14.8%, 12.5%, and 13.0% at a time, respec-
tively.

Discussion. User skepticism serves as a proxy measure of user attention to the task, indicating
that the participants sometimes went against AI suggestions and did not blindly accept them. This
phenomenon was consistent across all task clusters, and there was no correlation between this
behaviour and expert ratings per clip.

6.5 Questionnaire Responses

Observation. While the AI-only system originally seemed to yield higher overall satisfaction
amongst the participants, there was a sharp divide in satisfaction between the participants with a
high level of trust and reliance for the XAI system compared to those without. Upon segmenting
the responses from the XAI system as illustrated in Figure 12, it was evident that the XAI system
resulted in a more positive experience overall compared to the AI system, should the users have a
high level of trust and reliance for the system.

6.6 Additional Findings

Overview. Below are some of the secondary findings that do not directly correspond our hypoth-
esis, but are notable and warrant further investigation in future work.

Distribution of User Reactions to AI Explanation. The user study collected using the three distinct
questions, to individual AI explanations: “I believe that the AI understands this keyword correctly”
(UNDERSTAND), “I have a high level of confidence in the AI system” (CONFIDENCE), and “I would
trust the AI decision more, now that I have seen this visualization” (TRUST). Upon visualizing these
reactions, there was apparent bimodal behaviour, as illustrated in Figure 13, across all three cate-
gories, indicating that users often exhibit less ambiguous reactions to presented AI explanations.
We recognize that these reactions are biased to each participant’s subjective experience.

Correlation Between User Reactions to AI Explanation. Beyond the anecdotal tendency where in-
dividual users who exhibit trust in the AI system may also indicate confidence in the AI system,
as illustrated in Figure 14, there was significant correlation between the user’s three responses
to a specific AI explanation. Post hoc multiple correlation tests revealed significant positive cor-
relation across the board: UNDERSTAND and CONFIDENCE (**, r (121) = 0.7979, p < 0.00001),
UNDERSTAND and TRUST (**, r (121) = 0.7777, p < 0.00001), and CONFIDENCE and TRUST (**,
r (121) = 0.7777, p < 0.00001). This, along with the shifting user reactions in Figure 14, suggest that
users do actively respond to presented AI explanation and change their opinions accordingly, and
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Fig. 12. Summary of questionnaire responses about the (X)AI system, listing individual questions featured
in the original study session. Responses pertaining to the XAI system are split into two parts, based on the
overall level of trust and reliance indicated by each study participant, represented by individual responses
to questions pertaining to model-generated clips. If the user expressed general lack of confidence in AI ex-
planation, then the user was classified as “low trust.” The XAI system performed better than the AI system
without explanation, if the user had a higher level of trust in the system.

Fig. 13. Histograms illustrating user reactions to AI explanation, represented by responses to three distinct
questions about AI assistance. The pattern shows a bimodal distribution showing that participants formed
clear opinions for most task trials, especially on the understand and confidence questions.

that not all three questions may be necessary in future studies to measure the level of trust and
reliance on the system.

Alignment with External Ratings. There was no apparent correlation between user reactions
to individual clips and externally annotated ratings, as indicated in Figure 15. This may indicate
that clip quality assessment criteria differed between our experts and participants, or that overall
clip quality did not strongly influence the user’s trust or confidence in the AI agent. It was notable,
however, that positive user reactions were clustered around clips that feature exaggerated motions
and cartoon-like premises, such as “bear (human subject),” “salsa dance,” and “express joy,” while

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.



Learn, Generate, Rank, Explain: A Case Study of Visual Explanation 23:23

Fig. 14. Small multiples illustrating example reactions to AI explanations when using the XAI system, rep-
resented by three distinct questions: UNDERSTAND (blue), CONFIDENCE (red), and TRUST (yellow). Each
plot represents a single participant across the tasks completed in the XAI experimental condition.

Fig. 15. Alignment between external ratings and individual user reactions to AI explanations. X axis is an-
chored by keywords ordered by external rating scores.

more generic and muted clips such as “pull up” and “walk and turn repeated” received negative
reactions.

Participant Comments. There was divergence between clusters of participants who found the AI
system to be reliable and influential to their decision-making processes, and those who deemed
the system to be counter-intuitive and underwhelming. One participant wrote “(AI explanation)
is a good basis of determining the reliability of AI in terms of (whether) the AI is able to detect
the proper animations,” and another expressed satisfaction, stating “(I am) impressed of what the
AI system outputs.” However, some expressed caution and distrust, with one writing “the AI sys-
tem often interpreted small portions of movements as if they met the definition of the keyword
although it was a mere segment of the movement,” and another writing “I didn’t trust it completely
as it directed similar movements and categorized it as the real one.” Two participants plainly wrote
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“I did not see the explanation,” alluding to the possibility that the definition or qualifications of what
constitutes an AI explanation may vary between individuals or may require additional training or
clearer messaging to help people interpret generated clips as explanations.

6.7 Summary

The following insights were observed based on the above findings:

(1) The XAI system yielded a comparable level of efficiency, accuracy, and user-machine syn-
chronization as the AI system, but only if the user exhibited a high level of trust.

(2) The XAI system yielded a significantly lower level of efficiency, accuracy, and user-machine
synchronization if the user exhibited a lower level of trust.

(3) The XAI system yielded higher overall user satisfaction, but only if the user exhibited a
higher level of trust.

7 DISCUSSION

Outcomes. The user study outcomes present significant evidence that the XAI system and its
generative examples can facilitate task performance consistent with the AI system, offer improved
performance in select task types, and provide a more satisfying overall user experience. However,
this is only applicable if the users decide to trust the provided AI explanations.

We claim that the presence of AI explanations, characterized by exemplar clips and the corre-
sponding interactive visualization, does not improve the user’s performance in search tasks, but
helps one to know when to trust or reject AI assistance, thus indirectly influencing performance.
Additionally, the presence of such visualization helps to identify the user as belonging in one of
the two groups: those who exhibit a higher level of trust and satisfaction for the system, and those
exhibit skepticism and yield a lower level of efficiency and accuracy.

We observed a significant divide in behavior and performance between users who chose to
trust the AI explanations and those who did not, and this divide impacted all performance-related
measures including speed, accuracy, and user-machine synchronization. While there was no sig-
nificant indication that the user was able to correctly accept or reject the XAI system’s assistance,
the results were largely comparable with the AI counterpart. These results suggest that users form
trust and affinity for the XAI or AI system more or less based on instinct, and the system may
produce video clips that ultimately result in correct answers, but not necessarily seem logical or
comprehensible to human users. This disparity contributes to lack of perceived performance im-
provement.

Future Improvements. The XAI system could be further improved in numerous areas to gain a
more significant advantage over the AI-only counterpart. The generative model could be improved
to produce more exemplars that achieve the same or higher level of accuracy as the AI-only system.
Also, the XAI system could produce more high-quality model-generated clips that best represent
individual queries and result in higher user satisfaction and user-machine synchronization. Fur-
thermore, XAI explanations must be short and require little effort to interpret, or the advantage
they offer will be outweighed by the extra time and effort they require.

We also hypothesize that the evaluation dataset may contain biases that may contribute to the
system behaving in a way unexpected and even jarring to the users. For users to make more accu-
rate, informed decisions, the system will need to transparently communicate what the potential
biases are, and why its decision, although less intuitive, can result in the correct answer.

There are other implications pertaining to the experiment design as well. Users may exhibit a
higher level of trust and reliance for the XAI system, should the individual tasks present a higher
stake and a more captivating incentive. Task formulation is an important consideration as well:
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all the presented tasks in the study are simple permutations of the same dataset and the interface
components, yet user performance and satisfaction noticeably differ across the tasks. Experiment-
ing with different configurations may be useful in identifying user biases and designing tasks with
more balanced challenges.

8 CONCLUSION AND FUTURE WORK

We presented a novel explainable approach for searching and ranking videos using textual queries
and visual exemplars. We argue that the decisions of our generative ranking approach are more
explainable than its discriminative counterpart, as it is able to display supporting evidence to reveal
its understanding of the concept space.

We also discussed our findings from the user study, facilitated by the explanation interface for
exploring modal-generated decisions and viewing visual exemplars as applicable. In our study,
we discovered that the XAI system yielded a comparable level of efficiency, accuracy, and user-
machine synchronization as the AI system, but only if the user exhibited a high level of trust for
AI explanation. However, the XAI system yielded a significantly lower level of efficiency, accuracy,
and user-machine synchronization if the user instead maintained a lower level of trust for AI
explanation. It is also notable that the XAI system, in addition, presented a noticeable advantage
in overall user satisfaction should the user exhibit a high level of trust.

While the study outcomes do not offer concrete support for the XAI system in realms of overall
explainability, trustworthiness, and accuracy, there is significant evidence that the XAI system
does provide a more satisfying experience for the users who expressed a higher level of trust for
the AI system’s explanation. With these results, we believe that this work is one of the early steps
in examining, measuring, and dissolving levels of tension and distrust between human user and
the AI system, and pave way to future research opportunities pertaining to human-in-the-loop AI
systems. As a follow-up to this case study, we plan to further assess the level of trust the user has
in the decisions from a generative system versus a discriminative one.

In future work, we plan to extend the explainable interface to support machine learning prac-
titioners. We believe that this interface will enable strong debugging tools for the developer to
understand more about the models, ranging from their learned representations to decision bound-
aries, and improve the machine learning model accordingly.

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.



23:2 C. Kim et al.

SUPPLEMENTARY MATERIALS

Fig. S1. Panels (a) and (b) provide a summary of questionnaire responses pertaining to AI explanations pre-
sented to the participant throughout the study session. Each participant was asked to evaluate whether the
XAI system understands the query, and to rate their confidence and trust in the system. These responses
are accompanied by explanation quality ratings collected from an external group of annotators and then
sorted and clustered by the overall level of participant satisfaction per keyword. Poorly received keywords
are marked by particularly lower ratings from study participants and external annotators.
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Fig. S1. Continued
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Fig. S2. Diagrams (a) through (d) illustrate the level of synchronization between user and AI responses as
well as each user.s trust and reliance in AI explanation across different experimental conditions. Icons in-
dicate whether the user and/or the AI.s answers match the ground truth for each trial, and whether the
two answers overlap, indicating user-machine synchronization. Questionnaire responses pertaining to the
user.s experience with the XAI system (available in Figure S1) are also indicated below the icons, along with
the query used in each trial. Color of the query indicates the quality of generated videos based on external
ratings.
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Fig. S2. Continued
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Fig. S2. Continued
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Fig. S2. Continued

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.



23:8 C. Kim et al.

REFERENCES

[1] CMU. 2018. CMU Graphics Lab Motion Capture Database. Retrieved from http://mocap.cs.cmu.edu/.

[2] Hyemin Ahn, Timothy Ha, Yunho Choi, Hwiyeon Yoo, and Songhwai Oh. 2018. Text2Action: Generative adversarial

synthesis from language to action. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA’18). 1–5. https://doi.org/10.1109/ICRA.2018.8460608

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. Retrieved from https://arXiv:1701.

07875.

[4] George Awad, Asad Butt, Jonathan Fiscus, David Joy, Andrew Delgado, Martial Michel, Alan F. Smeaton, Yvette Gra-

ham, Wessel Kraaij, Georges Quenot, Maria Eskevich, Roeland Ordelman, Gareth J. F. Jones, and Benoit Huet. 2017.

TRECVID 2017: Evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In

Proceedings of the Annual TREC Video Retrieval Evaluation (TRECVID’17). NIST.

[5] Emad Barsoum, John Kender, and Zicheng Liu. 2017. HP-GAN: Probabilistic 3D human motion prediction via GAN.

Retrieved from https://abs/1711.09561.

[6] Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and Aaron Courville. 2018. MINE: Mutual informa-

tion neural estimation. Retrieved from https://arXiv:1801.04062.

[7] Carrie J. Cai, Jonas Jongejan, and Jess Holbrook. 2019. The effects of example-based explanations in a machine learning

interface. In Proceedings of the 24th International Conference on Intelligent User Interfaces. ACM, 258–262.

[8] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime multi-person 2D pose estimation using part

affinity fields. In Proceedings of the Conference on Computer Vision and Pattern Recognition. 7291–7299. https://doi.org/

10.1109/CVPR.2017.143

[9] Hui Chen, Guiguang Ding, Zijia Lin, Sicheng Zhao, and Jungong Han. 2018. Show, observe and tell: Attribute-driven

attention model for image captioning. In Proceedings of the International Joint Conference on Artificial Intelligence.

[10] Jaegul Choo and Shixia Liu. 2018. Visual analytics for explainable deep learning. IEEE Comput. Graph. Appl. 38, 4

(2018), 84–92.

[11] J. Chuang, D. Ramage, C. Manning, and J. Heer. 2012. Interpretation and trust: Designing model-driven visualizations

for text analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

[12] Johan de Kleer and Raymond Reiter. 1987. Foundations for assumption-based truth maintenance systems: Preliminary

report. In Proceedings of the American Association for Artificial Intelligence National Conf erence. 183–188.

[13] Jonathan Dodge, Q. Vera Liao, Yunfeng Zhang, Rachel K. E. Bellamy, and Casey Dugan. 2019. Explaining models: An

empirical study of how explanations impact fairness judgment. Retrieved from https://arXiv:1901.07694.

[14] Upol Ehsan, Pradyumna Tambwekar, Larry Chan, Brent Harrison, and Mark Riedl. 2019. Automated rationale gener-

ation: A technique for explainable AI and its effects on human perceptions. Retrieved from https://arXiv:1901.03729.

[15] Malin Eiband, Sarah Theres Völkel, Daniel Buschek, Sophia Cook, and Heinrich Hussmann. 2019. When people and

algorithms meet: User-reported problems in intelligent everyday applications. In Proceedings of the 24th International

Conference on Intelligent User Interfaces. ACM, 96–106.

[16] M. El-Assady, V. Gold, C. Acevedo, C. Collins, and D. Keim. 2016. ConToVi: Multi-party conversation exploration using

topic-space views. In Proceedings of the Computer Graphics Forum, Vol. 35. 431–440.

[17] D. Gotz et al. 2010. HARVEST: An intelligent visual analytic tool for the masses. In Proceedings of the International

Workshop on Intelligent Visual Interfaces for Text Analysis.

[18] Fartash Faghri, David J. Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2017. VSE++: Improved visual-semantic embeddings.

Retrieved from https://arXiv:1707.05612.

[19] Katerina Fragkiadaki, Sergey Levine, and Jitendra Malik. 2015. Recurrent network models for kinematic tracking. In

Proceedings of the Conference on Computer Vision and Pattern Recognition.

[20] John Gauthier. 2014. Conditional Generative Adversarial Nets for Face Generation. Technical Report. Stanford. CS231N:

Convolutional Neural Networks for Visual Recognition, Winter semester.

[21] Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges. 2017. Learning human motion models for long-term predic-

tions. In Proceedings of the Conference on Computer Vision and Pattern Recognition.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. 2672–2680.

[23] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 2017. Improved training

of Wasserstein GANS. In Advances in Neural Information Processing Systems. 5767–5777.

[24] David Gunning. 2016. Explainable Artificial Intelligence. Technical Report DARPA-BAA-16-53. DARPA. Retrieved from

https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf.

[25] Bruce Hahn. Accessed 2018. CMU Graphics Lab Motion Capture Database Motionbuilder-friendly BVH conversion.

Retrieved from https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/cmu-bvh-conversion.

[26] Jim Hendler and Tim Berners-Lee. 2010. From the semantic web to social machines: A research challenge for AI on

the world wide web. Artific. Intell. 174, 2 (2010), 156–161.

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.

http://mocap.cs.cmu.edu/
https://doi.org/10.1109/ICRA.2018.8460608
https://arXiv:1701.07875
https://abs/1711.09561
https://arXiv:1801.04062
https://doi.org/10.1109/CVPR.2017.143
https://arXiv:1901.07694
https://arXiv:1901.03729
https://arXiv:1707.05612
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/cmu-bvh-conversion


Learn, Generate, Rank, Explain: A Case Study of Visual Explanation 23:9

[27] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor Darrell. 2016. Gener-

ating visual explanations. In Proceedings of the European Conference on Computer Vision. Springer, 3–19.

[28] Irina Higgins, Arka Pal Loic Matthey, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. 2017. Beta-VAE: Learning basic visual concepts with a constrained variational framework. In

Proceedings of the International Conference on Learning Representations.

[29] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. 2016. Structural-RNN: Deep learning on spatio-

temporal graphs. In Proceedings of the Conference on Computer Vision and Pattern Recognition.

[30] A. Karpathy, J. Johnson, and L. Fei-Fei. 2016. Visualizing and understanding recurrent networks. In International

Conference on Learning Representations.

[31] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In International Conference on

Learning Representations.

[32] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.

2015. Skip-thought vectors. In Advances in Neural Information Processing Systems. 3294–3302.

[33] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via influence functions. In Proceedings of

the International Conference on Machine Learning.

[34] Pigi Kouki, James Schaffer, Jay Pujara, John O’Donovan, and Lise Getoor. 2019. Personalized explanations for hybrid

recommender systems. In Proceedings of the 24th International Conference on Intelligent User Interfaces. ACM, 379–390.

[35] T. Kulesza, M. Burnett, W. K. Wong, and S. Stumpf. 2015. Principles of explanatory debugging to personalize interactive

machine learning. In Proceedings of the International Conference on Intelligent User Interfaces.

[36] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. 2018. Tell me where to look: Guided attention

inference network. In Proceedings of the Conference on Computer Vision and Pattern Recognition.

[37] Xiao Lin and Mohamed R. Amer. 2018. Human motion modeling using DVGANs. Retrieved from https://arXiv:1804.

10652.

[38] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. 2016. Towards better analysis of deep convolutional neural networks. In

Trans. Visual. Comput. Graph. 23 (2016) 91–100.

[39] Julieta Martinez, Michael J. Black, and Javier Romero. 2017. On human motion prediction using recurrent neural

networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition.

[40] Christoph Molnar. 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Retrieved

from https://christophm.github.io/interpretable-ml-book/.

[41] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. 2010. Estimating divergence functionals and the

likelihood ratio by convex risk minimization. IEEE Trans. Info. Theory 56, 11 (2010), 5847–5861.

[42] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and Alexander Mordvint-

sev. 2018. The building blocks of interpretability. In Distill Publication. Retrieved from https://distill.pub/2018/building-

blocks/.

[43] Sean Penney, Jonathan Dodge, Claudia Hilderbrand, Andrew Anderson, Logan Simpson, and Margaret Burnett. 2018.

Toward foraging for understanding of StarCraft agents: An empirical study. In Proceedings of the 23rd International

Conference on Intelligent User Interfaces. ACM, 225–237.

[44] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, faster, stronger. In Proceedings of the Conference on Computer

Vision and Pattern Recognition.

[45] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust you?”: Explaining the predictions

of any classifier. In Proceedings of the International Conference on Knowledge Discovery and Data Mining.

[46] Dominik Sacha, Hansi Senaratne, Bum Chul Kwon, Geoffrey Ellis, and Daniel A. Keim. 2015. The role of uncertainty,

awareness, and trust in visual analytics. IEEE Trans. Visual. Comput. Graph. 22, 1 (2015), 240–249.

[47] James Schaffer, C. A. Playa Vista, John O’Donovan, James Michaelis, M. D. Adelphi, Adrienne Raglin, and Tobias

Höllerer. 2019. I can do better than your AI: Expertise and explanations. In Proceedings of the 24th International Con-

ference on Intelligent User Interfaces. ACM, 240–251.

[48] Kacper Sokol and Peter A. Flach. 2018. Glass-Box: Explaining AI decisions with counterfactual statements through

conversation with a voice-enabled virtual assistant. In Proceedings of the International Joint Conference on Artificial

Intelligence. 5868–5870.

[49] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace: Closing the gap to human-level

performance in face verification. In Proceedings of the Conference on Computer Vision and Pattern Recognition.

[50] L. van der Maaten and G. Hinton. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (2008), 2579–2605.

[51] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2014. Show and tell: A neural image caption

generator. In Proceedings of the Conference on Computer Vision and Pattern Recognition.

[52] Ruoyu Wang, Daniel Sun, Guoqiang Li, Muhammad Atif, and Surya Nepal. 2016. Logprov: Logging events as prove-

nance of big data analytics pipelines with trustworthiness. In Proceedings of the IEEE International Conference on Big

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.

https://arXiv:1804.10652
https://christophm.github.io/interpretable-ml-book/
https://distill.pub/2018/building-blocks/


23:10 C. Kim et al.

Data. 1402–1411.

[53] Kun Yu, Shlomo Berkovsky, Ronnie Taib, Jianlong Zhou, and Fang Chen. 2019. Do I trust my machine teammate?:

An investigation from perception to decision. In Proceedings of the 24th International Conference on Intelligent User

Interfaces. ACM, 460–468.

[54] Tom Zahavy, Nir Ben Zrihem, and Shie Mannor. 2016. Graying the black box: Understanding DQNs. In Proceedings of

the International Conference on Machine Learning.

[55] M. D. Zeiler and R. Fergus. 2014. Visualizing and understanding convolutional networks. In Proceedings of the European

Conference on Computer Vision.

[56] J. Zhao, C. Collins, F. Chevalier, and R. Balakrishnan. 2013. Interactive exploration of implicit and explicit relations in

faceted datasets. Trans. Visual. Comput. Graph. 19 (2013), 2080–2089.

Received November 2019; revised May 2021; accepted May 2021

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 23. Publication date: August 2021.


