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ABSTRACT

Interactive Visualizations of Natural Language

Christopher Mervin Collins
Doctor of Philosophy, 2010

Graduate Department of Computer Science
University of Toronto

While linguistic skill is a hallmark of humanity, the increasing volume of
linguistic data each of us faces is causing individual and societal problems
— ‘information overload’ is a commonly discussed condition. Tasks such
as finding the most appropriate information online, understanding the
contents of a personal email repository, and translating documents from
another language are now commonplace. These tasks need not cause
stress and feelings of overload: the human intellectual capacity is not
the problem. Rather, the computational interfaces to linguistic data are
problematic — there exists a Linguistic Visualization Divide in the current
state-of-the-art. Through five design studies, this dissertation combines
sophisticated natural language processing algorithms with information
visualization techniques grounded in evidence of human visuospatial
capabilities.

The first design study, Uncertainty Lattices, augments real-time computer-
mediated communication, such as cross-language instant messaging chat
and automatic speech recognition. By providing explicit indications of
algorithmic confidence, the visualization enables informed decisions about
the quality of computational outputs.

Two design studies explore the space of content analysis. DocuBurst
is an interactive visualization of document content, which spatially orga-
nizes words using an expert-created ontology. Broadening from single
documents to document collections, Parallel Tag Clouds combine key-
word extraction and coordinated visualizations to provide comparative
overviews across subsets of a faceted text corpus.

Finally, two studies address visualization for natural language process-
ing research. The Bubble Sets visualization draws secondary set relations
around arbitrary collections of items, such as a linguistic parse tree. From
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this design study we propose a theory of spatial rights to consider when
assigning visual encodings to data. Expanding considerations of spatial
rights, we present a formalism to organize the variety of approaches
to coordinated and linked visualization, and introduce VisLink, a new
method to relate and explore multiple 2d visualizations in 3d space. Inter-
visualization connections allow for cross-visualization queries and support
high level comparison between visualizations.

From the design studies we distill challenges common to visualizing
language data, including maintaining legibility, supporting detailed read-
ing, addressing data scale challenges, and managing problems arising
from semantic ambiguity.
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Be kind whenever possible.
It is always possible.

— Tenzin Gyatso, 14
th Dalai Lama of Tibet
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Part I

ON VISUALIZING LANGUAGE





1
INTRODUCTION

One picture is worth ten thousand words.

— Royal Baking Powder Advertisement, 1927
1

Linguistic skill is a hallmark of humanity, setting us apart from our fel-
low hominids; we can express ourselves with nuance and power through
many forms, such as fiction, poetry, music, and political orations. From
infancy, we progress through stages of development, refining our commu-
nication skills, learning to speak, listen, read, and write. We also learn to
make and interpret physical gestures, using actions to augment our words.
Human linguistic capability is truly astonishing: the communication abil-
ities of a young child surpass the abilities of any other known form of
life (Pinker, 1997). By adulthood, we thrive in an environment of near
constant communication in work and personal life (Janusik and Wolvin,
2009). The media of communication are in constant flux. Recent years information overload

have brought increased free and open access to ever more information
through the Internet. While this is an exciting development, managing,
exploring, and analysing the flow of linguistic and related data is becom-
ing an individual and a societal problem. This familiar problem is often
called information overload, a term originating in the psychological studies
of Miller (1960, 1962, 1964) and later popularized in the writings of Toffler
(1971). The problem of information overload should not, however, be at-
tributed to human intellectual deficiencies — every individual is different,
and there is much variety in the volume and form of content one can
manage comfortably. Rather, the information is overwhelming because
of the naïve manner in which it is delivered. A scholar could spend a
lifetime reading in a specific subject area and retire without scratching
the surface: on top of the volume of scholarly works to carefully read,
she would spend much of her time keeping abreast of email, blogs, social
network updates, work-related memos, reviewing requests, news media,
and student reports. Today’s pace of creation and dissemination far sur-

1 This well-known quote is often incorrectly attributed as a “Chinese Proverb”. Fred Barnard
of Royal Baking Powder thought this false provenance would bring a feeling of authenticity
to the phrase (Mieder, 2004, p. 82).

3



4 introduction

passes our ability to consume information using traditional means such
as sequential reading (Klingberg, 2008, p. 5).

Computers can process bulk data quickly, building models encapsulat-
ing large volumes of information. Could we solve the overload problem
by offloading decision-making involving linguistic data to computers?
Assuming people would want such a solution (a doubtful prospect), it
is unlikely to be possible in the foreseeable future. A child’s language
and reasoning skills easily surpass current computational capabilities.
Without convincing artificial intelligence, computers lack the subtlety of
pattern recognition, the ability to see exceptions to the rule, and the ease
of understanding content in the context of world knowledge that comes
so naturally to us. If Searle (1980) is correct, we may never reach the point
of autonomous computing capable of performing these tasks as well as a
human. In other words, for the foreseeable future, people will remain an
integral part of the linguistic information analysis process.

There is, however, a possible computer-mediated solution. Beyond linguis-
tic skills, humans also possess strong visuospatial reasoning abilities which
can be leveraged in conjunction with language skills (Tversky, 2004). Thus
one potential way to design human-computer optimizations for language
data is to use computers to process bulk data and present it in forms that
are interpretable using our visuospatial abilities. Information visualization
(InfoVis) is a field of research dedicated to designing and studying interac-
tive visual representations of abstract data. The topic of this dissertation is
bringing the advantages of natural language processing (NLP) and InfoVis
interfaces to bear on the linguistic information overload problem. The
following chapters present five design studies which are all examples of
closely coupled NLP algorithms with InfoVis techniques well motivated
by our understanding of human visual information processing capabilities
and interaction preferences.

1.1 understanding the space of linguistic visualization

Natural language data provide some unique challenges for visualization:
text consists of abstract concepts that are represented in many different
ways, the data are often nominal (unordered), ambiguity in meaning is
built into the data, and much of the semantic interpretation depends on
context and common cultural understanding (Hearst, 2002). Consider the
difficulty in automatically visualizing the nuanced meanings of words,



1.1 understanding the space of linguistic visualization 5

social and psychological concepts, and causal relationships. Language
has a very high dimensionality, and many subsets of dimensions can be
combined together, compounding the problem. Furthermore, algorithmic
manipulations of language may introduce uncertainty and error when
transforming raw data into analytical abstractions useful for visualization. space of linguistic

visualization
This dissertation explores several ways to frame the space of linguistic

visualization, arguing for close coupling of linguistically sophisticated data
processing with well-designed InfoVis. In order to inform our work, we
examine visualizations of language created by a variety of scholarly, artis-
tic, and professional communities. However, primarily, this dissertation
explores a range of application areas to which NLP has been previously
applied and in which visualization may be beneficial, from document
content summarization to machine translation. Paralleling the progression
of problem areas, the design studies target a range of audiences: Internet
chat participants, library users, legal scholars, linguistic researchers, and
professional data analysts.

The examples simultaneously span a range of NLP approaches, in-
cluding word counting methods, statistical algorithms, and drawing on
knowledge resources authored by linguistic experts. They also cover a
range of data types as their basic unit of visualization: part-of-speech
tagged words, multi-word collocates, sentences and sentence fragments,
and structural overviews of lexical ontologies and document corpora. The
structures we propose for organizing the space of linguistic visualization
are further explored in Chapter 3 but have been mentioned here to frame
the selection of design studies introduced in the following subsection.

1.1.1 Five Design Studies

These design studies were selected to provide a broad coverage across the
above mentioned dimensions. Each of the design studies explores a differ-
ent area of linguistic application, targets a different audience, and draws
on NLP algorithms and data structures of a variety of types. In addition to
exploring the space of people, algorithms, data structures, and application
areas, these studies also expand on the design decisions and considera-
tions made in the creation of visual encodings, spatialization methods,
and interaction techniques. From the lessons of these design exercises,
we distill some considerations specific to working in the interdisciplinary
realm of linguistic visualization.
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The five prototypes we present are Uncertainty Lattices, DocuBurst,
Parallel Tag Clouds, Bubble Sets, and VisLink.

uncertainty lattices The Uncertainty Lattices is linked to a phrase-
based statistical machine translation (MT) system, and is targeted at
members of the general public who use language technologies such as MT
and automatic speech recognition (ASR). It is an example of opening up
the black box of NLP to reveal new and potentially helpful information
using visualization methods designed to bring the reader into the decision
loop.

docuburst DocuBurst is a document content visualization which uses
the words and multi-word collocates within the lexicographer-created on-
tology WordNet (Fellbaum, 1998) to create visualizations of document con-
tent in which relative spatial position carries semantic significance. This
visualization is targeted at people seeking overviews and comparisons of
long documents, for example patrons searching a library collection.

parallel tag clouds Parallel Tag Clouds operate on the word and
collocate level, and were developed for providing legal scholars access to
overviews which differentiate the language of one court from another, and
one time period to another. The outcomes are applicable to investigations
of the internal variety within any large, faceted text corpus.

bubble sets Bubble Sets is the result of a collaboration with MT re-
searchers working with syntax-based MT. It is designed partially based
on statistical models of a trained MT system, but has capacity to include
hand-created data and annotations by linguistic experts. The visualization
technique developed for this work is readily generalizable to a number of
linguistic and non-linguistic information domains.

vislink Finally, VisLink introduces a new way to link multiple hetero-
geneous 2d visualizations in a 3d space. Data units can range from lexical
items to entire document corpora, and any type of linguistic algorithm can
be connected. VisLink can reveal previously unseen relations between any
number of linguistic (and non-linguistic) visualizations. Its complexity
and power suggests that the most appropriate audience would be data
domain experts and researchers.
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1.2 language representations throughout history

Human communication is inherently visual — visual representations
often accompany text and speech. We use visual cues such as gestures
to clarify ambiguous speech. We rely every day on symbols and signs
to stand in for written language as we find our way around our cities.
We recognize the inadequacy of plain alphabetic text for emotionally
rich dialogue, and embellish our instant messaging conversations with
various emoticons (Hancock et al., 2007). It is not only today’s society
that communicates visually. To place our discussions of recent efforts to
develop interactive visualizations of language (several examples of which
compose this dissertation) into context, it is informative to reflect on a
brief history of language representations throughout history.

Discoveries at Lascaux, France reveal the visual representational prac-
tices of very early humans. Sequential paintings on cave walls, created
around 16,000 BCE, are thought to be for ritual-teaching purposes (see
Figure 1.1). Such pictographic writing systems visually recall the concepts
represented. At this stage in history, there was no distinction between
reading a text and describing a picture — saying the same thing meant
conveying the same meaning, not using the same words (Olson, 1996a).
Around 3,200 BCE Sumerian logographic writing began to emerge in
Mesopotamia with about 2,000 signs. By 2,600 BCE, the writing system
had begun to evolve into Old Assyrian cuneiform, a logosyllabic script
containing a mix of several hundred phonograms and determinatives,
many logographic in origin (Horn, 1999).

Two centuries later, Egyptians were using a fully developed mix of
phonetic and ideographic writing and artwork in large information mu-
rals in their temples (see Figure 1.2) (Manske, 2000). Other early visual
languages, including other forms of Rebus writing showed a progression
toward representing spoken language directly, leading to the creation of
alphabets, which abstract the sounds of a spoken language into smaller
units, and are visually decoupled from semantics. The driving forces of
this progression are the subject of some disagreement: Havelock (1982,
p. 11) argues for a four-stage linear evolution, from pure logographic
depiction to phonetic alphabets at the pinnacle; Olson (1996a) disagrees
with this evolutionary progression of writing as an ever-more-precise
representation of spoken language, arguing that writing systems devel-
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Figure 1.1: Ancient paintings in the caves of Lascaux. Visual forms
may have served for utilitarian communication of rituals (S̆antić, 2006).
Reprinted with permission.

oped to precisely record meaning, and the correspondence to speech is a
by-product.

Eventually alphabetic writing and visual representation became separate
domains, with visual representations used alongside alphabetic writing;
for example, illustrations often accompany text. There are exceptions
in the chronological progression toward alphabetic systems: pre-contact
North American Ojibwe used picture-writing systems on birch bark scrolls
(Wiigwaasabak) dating back to about 1570 CE (Kidd, 1965, 1981). Chinese
calligraphy is still a visual ideographic language, with symbols repre-
senting entire concepts. Phonetic and logographic systems are powerful
visualizations, and both require time and effort to learn. However, once
they are mastered, they are incredibly flexible and expressive.

Mass production of writing was restricted by manual labor throughout
most of human history — first carving stone tablets, later painstakingly
copying manuscripts with a quill. With the advent of ever greater means
to disseminate written language, such as the printing press and prolifera-
tion of paper, visual representations of language have become ever more
prevalent, and indeed have changed the course of cultural evolution (Ol-
son, 1996b). The growth of the availability of printed text prompted the
philosopher Denis Diderot, in his monumental Encyclopédie, 1755, to write:
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Figure 1.2: Cursive writing on the Papyrus of Ani. Egyptians were
the first to produce illustrated manuscripts with words and pictures to
communicate information. Image in the public domain.

As long as the centuries continue to unfold, the number
of books will grow continually, and one can predict that a
time will come when it will be almost as difficult to learn
anything from books as from the direct study of the whole
universe. It will be almost as convenient to search for some bit
of truth concealed in nature as it will be to find it hidden away
in an immense multitude of bound volumes (as translated
in (Diderot et al., 1964, p. 299)).

This remark is as true today as it was 250 years ago. Computer technol-
ogy and the Internet have facilitated exponential growth in our capacity
to create, access, and archive text. Despite the continued dominance
of speaking and listening for daily communication, we are increasingly
abandoning voice-based communication in favour of wikis, email, blogs,
and SMS messages for everyday personal and professional communica-
tion (Janusik and Wolvin, 2009, p. 117). Face-to-face communication now
accounts for less than half of college students’ time spent communicat-
ing (Janusik and Wolvin, 2009, p. 115).
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Textual data is at the forefront of information management problems
today. Millions of pages of text data, in many languages, are produced
daily: emails, news reports, blog posts, product reviews, discussion
forums, academic articles, and business reports. As an example, in 2006,
Google released an N-gram corpus built by scanning over one trillion
words of Web text (Franz and Brants, 2006), and this was not even the
full extent of publicly available text at that time. Since 2006, the number
of active websites has more than doubled: the Web now hosts over 235

million hostnames, and more than 70 million active sites (Netcraft, 2009).
In addition to this, the technological innovations opening up the Web
as a programming platform for freely sharing data (Web 2.0) have made
social data, news media, governmental data, books, historical records,
call transcripts, product reviews, and other sorts of information easily
accessible with open APIs (e. g., Netcraft, 2009; New York Times, 2009;
Open Library, 2009; Sunlight Foundation, 2009; Twitter, 2009; Wattenberg
et al., 2008).

We are once again changing the way we read, moving toward electronic
libraries and e-books. As we are faced with large amounts of textual
information, plain text representations and poorly designed interfaces
may be exacerbating our experience of information overload. It is now an
appropriate time to systematically revisit visual depictions as a form of
enhancing linguistic communication — the topic of this dissertation.

1.3 the linguistic visualization divide

The ability of computers to quickly process electronically encoded lin-
guistic data has lead to a wealth of important NLP tools to handle the
increasing data flow. Automatic summarization, MT, ASR, question an-
swering systems, and information retrieval (IR) tools have become part
of everyday life. There has also been an explosive growth in the variety
of ways language is visually represented. New visualization techniques
appear on the Internet almost daily (Moere, 2009, provides a updated
listing). These tend to focus on word counting, and generally represent
language using visual manipulations of existing writing systems (scaled
text, colour variations, meaningful spatial arrangements of words). There
is a notable lack of collaboration between those with expert knowledge in
NLP and those designing new interactive visual representations. Through
closer integration of NLP and InfoVis we can create interactive visual
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representations of language that may provide useful new perspectives on
the mountains of electronic text inundating us every day.

When this dissertation research was started in 2004, the field of text
visualization could be summarized in a handful of influential contribu-
tions (e. g., Havre et al., 2002; Hearst, 1995; Hetzler et al., 1998a; Paley, 2002;
Wise et al., 1995). At that time, the research focus was on visualization
to support IR. In fact, visualizations targeted at providing overviews for
IR have largely been difficult to use and development in this area has
slowed (Hearst, 2009, ch. 10). With new attention on visual analytics and
sense-making (Thomas and Cook, 2005), attention turned to providing
overviews of large corpora for specific purposes: e. g., evaluating emo-
tional content (Gregory et al., 2006) and named entity occurrences (Stasko
et al., 2007; Weaver et al., 2007). Since that time, the InfoVis community has
begun to realize the potential of linguistically-driven visualization: there
are now annual sessions on text analytics at several major conferences,
including IEEE InfoVis, IEEE VAST, and EuroVis.

Visualization has been used as a tool to analyze language from many
perspectives: linguistic (Kempken et al., 2007), humanistic (Plaisant et al.,
2006), forensic (Stasko et al., 2007), historic (Weaver et al., 2007), and
sociologic (Harris and Kamvar, 2006; Viégas and Smith, 2004; Viégas et al.,
2004). Thomas and Cook (2005) cite large-scale text visualization as
one of the grand challenges of the newly defined field of Visual Analytics, text visualization: a grand

challengewhile Chen (2005) regards the scalability of text visualization as one of the
top ten open research problems. Indeed, the nascent and growing field
of digital humanities (DH) (Schreibman et al., 2004) is built upon applied
NLP, and occasionally turns to visualization as a means to enhance
scholars’ ability to understand large bodies of text (e. g., Don et al., 2007;
Mueller, 2008; Sinclair, 2006; Sinclair and Rockwell, 2009). Approaching
linguistic analysis with a combination of text processing, information
visualization, and human decision making, is an exciting and active field.

Most of the recent works visualize the end outputs of a text analysis
system. For example, a tag cloud of previously counted words, or a
treemap of detected concepts. Some of these restrictions may be due to
limitations of the Web as a computing and visualization platform. In
other cases, the linguistic analysis is intentionally simplistic, to appear
transparent to viewers (Feinberg, 2008). Often, the fact that the data is text-
based and coming from an NLP process seems to be of no consequence
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for the visualization design, mirroring Kirschenbaum’s critique of the
traditional software development cycle:

Yet the truth is that, from a developer’s perspective, the
interface is often not only conceptually distinct, but also com-
putationally distinct. Like the history of hand-press printing,
which teaches us that paper-making, typesetting, etching or
engraving, and bookbinding came to encompass very different
domains of labor and technical expertise (rarely housed under
the same roof), resource development in the digital world is
typically highly segmented and compartmentalized (Kirschen-
baum, 2004).

We call this the linguistic visualization divide: “The gulf separating so-
phisticated natural language processing algorithms and data structures
from state-of-the-art interactive visualization design.”. It is evident in
many published linguistic visualizations. Linguistic researchers spendlinguistic visualization

divide entire careers developing models of how languages are structured (syntax,
semantics), theorizing about how the human mind learns and recalls
linguistic knowledge, and creating computational models to perform
linguistic manipulations on data (e. g., translation, natural language un-
derstanding). Yet, interactive visualizations of language developed by
visualization researchers to support particular analysis tasks are often
lacking linguistic sophistication beyond word counting (e. g., Havre et al.,
2002; Rohrer et al., 1999; Viégas et al., 2009).

Conversely, visual representations of language developed by compu-
tational linguists are often simple information graphics used to present
research results (we explore examples in Chapter 3). By our own informal
review of the Proceedings of the Annual Meeting of the Association for Com-
putational Linguistics, 2006, 42% of the papers contained at least one novel
(custom-designed) information graphic, excluding line and bar charts,
parse trees, and process diagrams. That was a suprisingly high result, andvisualization in the wild

led us to begin to realize that visualization was happening in the wild, in
research communities not versed in the theory and practice of interactive
visualization. Possibly it happens out of a necessity to cope with large
volumes of data.

Rarely are interactive visualizations used to provide direct access to
both the ongoing processes and the outcomes of linguistic analysis. Exam-
ples bridging the divide, providing linguistic sophistication to leverage
computational power, and interactive interfaces informed by studies of
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human perception, are rare. The examples presented in this dissertation
begin to bridge this divide in that the designs are informed by both lin-
guistic and visualization expertise, and the visualization algorithms are
coupled directly with real, on-line natural language processes, such as
statistical translation, keyword detection, and parsing.

Of course, to truly bridge this divide, the linguistic algorithms and visu-
alization would be developed simultaneously, to mutual benefit, whereas
this work leverages existing research in NLP to create custom-designed
visualizations. The design studies in the following chapters serve as mo-
tivation for future simultaneous development of linguistic analysis and
visualization algorithms. These examples explore the potential advantages
of interactive visualization through re-appropriation of existing algorithms
and data structures for new uses.

1.4 thesis problem and approach

This dissertation will investigate whether linguistic data and algorithms,
as designed for computational linguistics (CL) and NLP purposes, can
be re-purposed to drive interactive visualizations of language. The goal
of creating such linguistically-integrated visualization is to reveal the
complexities of linguistic processes and data that have been previously
hidden within the computational processes. Example tasks include finding
the most appropriate text to read, quickly understanding the contents of a
large corpus, and being aware of potential errors in computer-manipulated
texts.

The forms of visual depiction proposed here are not logographic; they
are not directly mapped to physical reality or abstract ideas (although
some attempts at this sort of linguistic visualization have been made (e. g.,
Coyne and Sproat, 2001)). The method we employ is to take linguistic
algorithms and data of various forms and create structured, meaningful,
and interactive visual forms to enhance interpretation of the data, or to
reveal information previously not visible with standard techniques. It
is important to note that the goal is to augment, not replace, the act of
reading.

Our approach involves first exploring the space of ongoing challenges
in NLP and information management, and, guided by a literature re-
view, mapping several dimensions on which coupled NLP–InfoVis can be
placed. We target a variety of common application areas in which NLP is
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currently in use, examine the algorithms and data structures, and identify
deficiencies in current representations which may be enriched by applica-
tion of InfoVis. Our InfoVis research is grounded in theories and evidence
about human cognitive processing and perceptual capabilities (Clark and
Chalmers, 1998; Stone, 2003; Tversky, 2004; Ware, 2004; Wolfe, 2003), de-
sign practices developed and refined by a community of researchers (Amar
and Stasko, 2004; Bertin, 1983; Carpendale, 2003; Cleveland and McGill,
1984; Tufte, 2001; Zuk and Carpendale, 2006), and carefully-selected or
custom-designed interaction techniques to allow the manipulation and
exploration of the visualization (Card et al., 1999; Shneiderman, 1996; Yi
et al., 2007).

Where appropriate, we formalize a general problem area as it relates
to InfoVis, and describe how our new techniques expand the range of
possible representations. Each of the design studies demonstrates a way
to see and interact with linguistic information that was not previously
possible.

1.5 contributions

The contributions of this dissertation fall into three areas: new visualiza-
tions for language data, generalizable technical innovations, and high-level
visualization concepts.

Our prototypes each contribute new techniques to visualize language.
The Uncertainty Lattices visualization exposes the black box of statistical
MT and ASR, to help people to make decisions about the quality of
the outputs (Chapter 4). DocuBurst presents the first document content
visualization based on an expert-created structure of language (Chapter 5).
Parallel Tag Clouds (Chapter 6) present a method for displaying and
exploring differences within very large faceted text corpora. Bubble Sets
address a specific and repetitive analysis task important to a group of
MT researchers (Chapter 7). Finally, VisLink provides a general platform
within which multiple visualizations of language (or other data types) can
be connected, cross-queried, and compared (Chapter 8).

Generalizable visualization and interaction techniques arising from this
research include:

◦ two methods for encoding uncertainty in the background of graph
nodes (§4.5)
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◦ a method for expanding radial space-filling (RSF) trees using a
mouse wheel (§5.5.3)

◦ a method for representing connections in multiple tag clouds (§6.3)

◦ a method for pre-computing, storing, and dynamically composing
lists of significant words at interactive speeds (§6.5)

◦ a method combining obstacle avoidance and implicit surfaces to
draw concave set boundaries at interactive speeds (§7.3)

◦ a method for interactively assigning set membership without need
for proximity (§7.3.5)

◦ a method to re-use the spatial visual dimension by displaying multi-
ple 2d visualizations in a 3d space (§8.2)

◦ interaction widgets for using a mouse to manipulate 2d planes in
3d space (§8.2.2)

Theoretical contributions arising from this work include a definition
of and exploration of the concept of spatial rights (§9.2.3), a formalism to
describe the space of multiple relationship visualizations (§8.1), and the
concept of cross-visualization queries (§8.2.4).

1.6 structure of the dissertation

This dissertation is framed around a series of visualizations of language
built upon a variety of linguistic technologies and addressing a variety of
target audiences. Before presenting the design studies, two background
chapters review the design influences behind this research then investi-
gate and organize the space of related work in linguistic visualization.
Following this background, our five design studies are divided into three
parts by problem area and target audience. Particular attention is paid
to exploring the design process, describing alternatives considered and
decisions made to best support particular tasks on the data.

1.6.1 On Visualizing Language

Following this introduction and motivation chapter, Chapter 2 introduces
the power of InfoVis as a tool for analysis, and describes the effectiveness
of visualization as a cognitive aid (§2.2). Moving forward, we review the
design theories which, while applied with flexibility, have been influential
in the projects presented in this dissertation (§2.3).
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Chapter 3 begins with an examination of the variety of communities cre-
ating linguistic visualizations. Focusing more specifically on contributions
from NLP and InfoVis, the remainder of the chapter reviews examples of
related work structured around an exploration of the ways in which the
space of linguistic visualization can be organized.

The following three parts of the dissertation present design studies
which exemplify the types of NLP tasks and target audiences which we
have investigated with visualization. As the design studies are discussed,
additional, area-specific, related work will be reviewed. Where appropri-
ate, we will give examples of how visualization algorithms created for
linguistic purposes can generalize to address other data domains.

1.6.2 Visualization for Real-time Communication

Part II presents a visualization technique to reveal multiple hypotheses and
meaningful confidence scores for MT and ASR (Chapter 4). The approach
provides a human-in-the-loop decision making process by visually exposing
the data structures and confidence scores used by an MT system.

1.6.3 Visualization for Content Analysis

Part III reviews two examples of interactive visualization designed to
provide overviews and drill-down interaction for examining the contents
of large amounts of text. Chapter 5 outlines the DocuBurst project, an
example of bringing together visualization research (RSF trees and satura-
tion colour scales) and language structures designed by experts (WordNet
hierarchy) for mutual benefit, allowing for overview and comparison of
the contents of books.

Chapter 6 presents Parallel Tag Clouds, a text analysis technique for
large, faceted, document corpora based on text extraction techniques
from summarization and IR, and visualization techniques from parallel
coordinates plots (Inselberg, 1985).

1.6.4 Visualization for Linguistic Research

Part IV moves beyond visualizations prioritizing simplicity of form and
ease-of-interaction to introduce visualizations which, while being more
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complex, provide analytical capabilities appropriate for natural language
engineers and linguists.

Chapter 7 first describes our collaboration with NLP researchers at work
(§7.1). Next, Section 7.3 describes the prototype visualization and finally
Section 7.5 describes how Bubble Sets are generalizable to several problem
domains.

Chapter 8 will describe the VisLink concept, a platform for interactively
linking multiple 2d visualizations in 3d space through the reuse of the
spatial visual variable. After formalizing the space of multi-relation vi-
sualizations (§8.1), this chapter describes the design of and interaction
with visualization planes (§ 8.2). VisLink serves as a bridge, a system
for linking arbitrary pairs of visualizations, for example a force-directed
graph and a radial graph. Interaction provides the ability to form rich,
cross-visualization queries. Section 8.4 shows how the technique can be
generalized to non-linguistic data.

1.6.5 Closing

Chapter 9 recounts common challenges arising from our experiences de-
signing visualizations of language (§9.1), summarizes the contributions of
this dissertation (§9.2) and outlines promising directions for future inves-
tigation of close coupling of interactive visualization and NLP algorithms
which bridge the linguistic visualization divide (§9.3).





2
THE POWER OF INFORMATION VISUALIZATION

Computers are useless. They can only give you answers.

— Pablo Picasso, 1968

Information visualization is the research field investigating “Computer-
supported, interactive, visual representations of abstract data to amplify
cognition.” (Card et al., 1999, p. 7). In amplifying cognition, information
visualization (InfoVis) can support exploration, reveal hidden patterns,
raise new questions, improve analytical efficiency, and reduce cognitive
strain. Hegarty (2004) has explored how external visualization (“diagrams
in the world”) and internal visualization (“diagrams in the mind”) relate;
the process of interpreting InfoVis appears to use both types. InfoVis
and ‘visualization’ in this section (and the dissertation in general) refer
to external visualization. Ware (2004) defines five advantages of effective
information visualizations:

comprehension Visualization provides an ability to comprehend huge
amounts of data.

perception Visualization reveals properties of the data that were not
anticipated.

quality control Visualization makes problems in the data (or in the
data collection methods) immediately apparent.

focus + context Visualization facilitates understanding of small-scale
features in the context of the large-scale picture of the data.

interpretation Visualization supports hypothesis formation, leading to
further investigation.

The field is founded on evidence that the way data is represented can
affect our ability to use it for a specific task. For example, cognitive science
studies have revealed that using our high-bandwidth visual system to
learn and remember diagrams can be as much as twice as efficient as
learning the same information with plain text (Landauer, 1986). The use
of external aids to help solve cognitive problems is often called external
cognition. After describing some of the challenges motivating the search
for cognitive aids (§2.1), Section 2.2 will review some theories of external

19



20 the power of information visualization

cognition relevant to InfoVis. Driven by the potential for visualization to
increase cognitive capacity, Section 2.3 reviews the significant theories and
design frameworks influencing the design of the prototypes presented in
later chapters.

2.1 challenges of an information society

Being overwhelmed by information is not a trivial issue given the im-
portance of information (much of it linguistic in nature) in an information
society. Despite contemporary use of the term, an information society
means more than “we all use the Internet now”. Indeed, the term is
credited to Machlup (1963), writing in a world without the Internet. While
there is some controversy on the precise definition, there is general con-
sensus that it includes the notions of a society where information carries
primary economic importance, and a large proportion of the population
are employed as knowledge workers (Webster, 2006). Wark (1997, p. 22)
describes the habitual means of transfer of information in an information
society (talking on the telephone, sending mail) as “second nature”. He
introduces the concept of “third nature”, a technologically-augmented
extension of second nature which is able to “speed up, proliferate, divide,
mutate, and beam in on us from elsewhere” (Wark, 1997, p. 25), and in
the process, stress us with information overload. While in the interven-
ing years since Wark’s argument we have become more accustomed to
technologically-augmented communication, the ever increasing volume
has prevented it from truly becoming as comfortable as second nature.

The information volume problem goes beyond a need to filter and
retrieve the right information: the lists of retrieved results are often too
long to read in entirety. For example, in August 2009, an Internet search
for a relatively obscure (and recent) term, ‘DocuBurst’ (the name of the
project described in Chapter 5) yielded 2,690 results. Of course, this term
has been used for other purposes in the past, but the majority of the sites
are about our project: published papers, blogger praise and criticism,
press coverage, and academic citations. In a world where everyone with
access to computers and Internet technology (i. e., those of us on the access
side of the digital divide (Warscchauer, 2004)) can self-publish, too much is
written on just about every topic to simply read it all. We need help with
integration and abstraction. In Figure 2.1 we illustrate this for linguistic
data with an example of visualization usage moving from no external
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aid, to a manually created sketch, to an interactive visualization as the
complexity and volume of linguistic data grows.

2.2 cognitive aids

This section briefly reviews the cognitive science theories of enhanced
cognition: cognitive advantages through synergies between human abili-
ties and the external supports we use. This background is intended as a
motivation for why this dissertation turns to visualization as a possible
means for reducing overload and enhancing insight about linguistic data.

Humans are tool makers and tool users by nature. From stone-age
arrowheads to the latest mobile communications device, we have a long
and intricate relationship with external objects to improve our lives. We
are adept at ‘seeing’ an object differently depending on our needs: a stick
may be fuel for a fire, a cane for walking, a weapon, a building material, or
simply a broken tree branch lying on the forest floor. Our relationship to,
and understanding of, external objects changes with the context. Beyond
physical aids, we create and use tools and techniques as “external aids
that enhance cognitive abilities” (Norman, 1993, p. 43). We are all familiar
with using aids to jog our memories (to do lists, mnemonics), to learn
the meanings of unknown words (dictionaries), and to help us perform
mathematical calculations (pen and paper). These are not just helpful
tools, but are actually ways to extend our cognitive abilities beyond that
of an un-aided mind (Clark and Chalmers, 1998).

Evidence of increased cognitive capacity and speed through tool use
range from the advantages provided by nautical slide-rules (Hutchins,
1995), to the speed gain of using pencil and paper for long multiplica-
tion (Card and Mackinlay, 1997). While there is not complete agreement
on the name of this phenomenon — distributed cognition (Hutchins, 1995;
Zhang and Norman, 1995), external cognition (Card and Mackinlay, 1997;
Scaife and Rogers, 1996), or extended mind (Clark and Chalmers, 1998) —
in all cases, the tools we use to enhance our abilities are called cognitive
aids.
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2.2.1 Representational Change

Changes in the way information is represented can bring about surpris-
ingly pronounced changes in the types of tasks one can do with it. Here
we define representation as “a formal system or mapping by which the
information can be specified” (Marr, 1982). Simon and Hayes (1976) in-
troduced the power of representational change in their experiments with
problem isomorphs — different expressions (representations) of the same
problem. When subjects were presented isomorphs of the Tower of Hanoi representations support

taskspuzzle, expressed in a variety of ways, significant effects on speed and
accuracy of solutions were found. Minor changes in the framing of the
problem as a ‘change’ problem or a ‘transfer’ problem seemed to influence
how the participant internally represented the problem (i. e., their mental
model).

A second classic example of the power of representation change is that
a number, such as 77, can be easily multiplied and counted in base-10

Hindu-Arabic numerals.1 We have a systematic way to use pen and
paper to carry out long multiplication using that representation. If we
represent the number in Roman numerals LXXVII, multiplication becomes
a challenge, but if we want to add, we simply append to the end and
follow a set of aggregation rules (Marr, 1982). Zhang and Norman (1995)
expand on the power of representational change through an investigation
of numeration systems, and propose a model of distributed numerical
cognition to explain the task-specific advantages of certain representations.

Representational change also occurs in language. Chapter 1 introduced
a brief history of written representations of language. Particular rep-
resentations may be better suited for different tasks. We can imagine
ideographic cave paintings to be useful for depicting important survival
skills such as avoiding dangerous animals, and for recording ritual prac-
tices or historic events. Phonetic writing systems may struggle to capture
the nuance of a scene, but are quite capable of expressing abstract or
even metaphorical ideas such as “visualization is opening a window onto
a world of data”. Furthermore, we could represent the same words as
speech — a waveform played back will allow a listener to easily interpret
what was said. A spectrogram of the speech may be useful for a speech
therapist. In the realm of publishing, representation changes in the form

1 We choose to use the name Hindu-Arabic to acknowledge the influence of both civilizations
on the development of the system most commonly known as Arabic numerals in Western
countries.
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of typography and text illumination also have a long history of “extending
the meaning of a written text” (Drucker, 1984).

2.2.2 Information Graphics

Visual representations are one powerful form of cognitive aid. Represen-
tational changes to support task-specific analysis form the foundation
of information graphics. An information graphic is “An illustration of
data in a representation useful for analysis.” (Tufte, 2001). Information
graphics of data in areas such as economics and statistics date back to at
least the 16

th century. Information graphics to interpret text are not as
common as the statistical charts, time plots, and maps described by Tufte
(2001). The interpretative Biblical charts of Larkin (1918) are an early
example of combining illustration, text labels, and references to sections
of source text, in a spatialized narrative structure to present the author’s
interpretation of a book (see Figure 2.2).

Many different representational methods are used to visually encode
information in information graphics such as those of Larkin (1918). Tver-
sky (2004) presents a survey of the evidence of the extents of human
visuospatial capabilities: spatial position, rotation, distortion, scale, and ex-
plicit connections between elements are some of the visual manipulations
that can be incorporated into our reasoning about a situation. Larkin
and Simon (1987) show that our ability to read distance, direction, and
other spatial properties from information graphics help us to understand
diagrammatic representations faster and solve problems with greater ac-
curacy than when presented with sentential representations of the same
information.

2.2.3 Information Visualization

The differences between interactive information visualizations and static
information graphics include the ability for display changes and anima-
tion, thus allowing perceptual monitoring, and the manipulability of the
medium, which allows for exploration of the information space. Infor-
mation visualization, through interactive exploration, engages people
with data more than a static graphic does. This engagement can support
knowledge crystallization tasks — active analysis processes in which one
gathers information, organizes it to make sense of it, and packages it
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into a usable or communicable form (Card et al., 1999). Interactions with
information visualizations are also a form of epistemic action — actions
that do not directly lead to a goal but result in a change in the person’s
world view to support a new way of thinking about a problem (Kirsh and
Maglio, 1994). Neth and Payne (2002) refer to such actions as “thinking
by doing". Epistemic actions are likely to play a role in sensemaking
and knowledge crystallization tasks, cognitively separating interactive
visualization from static information graphics. Yi et al. (2007) provide
a taxonomy to organize many varieties of interactions used in InfoVis,
framed around analyst intent. We also discuss interaction below as part of
the information visualization pipeline (see §2.3.2).

While accepting the concept of external cognition, Scaife and Rogers
(1996) review a number of studies and caution against blanket assumptions
such as “color is better than black and white” or “interactive graphics are
better than non-interactive graphics”. They draw attention to the lack of
solid research results on how interactive visualizations work as external
cognitive aids (the diagrams studied by Larkin and Simon (1987) were
static), and caution against generalizing that any particular information
graphic or visualization may be useful as an external cognitive aid. Scaife
and Rogers hypothesize that the success of a visual cognitive aid depends
on three properties:

computational offloading The extent to which the external aid re-
duces effort.

re-representation The way different external aids, with the same ab-
stract structure, may make certain problems easier or more difficult
to solve.

graphical constraining The way the graphical representation restricts
or enforces the kinds of interpretations that can be made.

Since the cautions of Scaife and Rogers (1996) were published, it has
been shown that interactive computer displays can augment human cog-
nitive abilities to provide analytical power beyond what a computer or
person is capable of alone (e. g., Scott et al., 2002; Wright et al., 2000). Draw-
ing on Bertin (1983), Larkin and Simon (1987), Tufte (1990), and others,
Card et al. (1999) provide an enumeration of the ways in which InfoVis
may amplify cognition:

◦ by increasing the memory and processing resources available to the
users,

◦ by reducing the search for information,
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◦ by using visual representations to enhance the detection of patterns,

◦ by enabling perceptual inference operations,

◦ by using perceptual attention mechanisms for monitoring,

◦ and by encoding information in a manipulable medium.

Licklider (1960) had a vision of “man-computer symbiosis”: people
and computers collaborating synergistically to accomplish tasks faster man-computer symbiosis

and with less effort. Many of the most successful examples of symbiosis,
such as reduced search time and improved decision-making, come from
graphics and visualizations which embody good design practices, such as
using high data densities (Tufte, 2001). The next section will introduce the
design influences which most strongly inform the case studies introduced
in later chapters.

2.3 design influences

Some of the best practices in InfoVis are adopted not only from experimen-
tal evidence, but from a wealth of well-justified theories and thoughtful
design advice. The remainder of this section will explore the work of
influential theorists of visual sensemaking processes (e. g., Card et al., 1999;
Shneiderman, 1996), theorists of graphical perception (e. g., Bertin, 1983),
experimentalists in cognitive psychology (e. g., Cleveland and McGill, 1984;
Healey et al., 1996; Ware, 2004), and experienced information graphic de-
signers (e. g., Stone, 2003; Tufte, 2006). We also discuss our own concept
of spatial rights as a motivativing design influence. Finally, this section
introduces heuristic approaches to evaluation, which we use prescriptively to
inform the design process.

2.3.1 Visualization ‘Mantra’

Shneiderman (1996) offers a succinct model of a possible InfoVis process,
called the “visual information-seeking mantra”: “Overview first, zoom
and filter, then details-on-demand”. This four-step description of a typical
visualization usage pattern can be read as a design guideline summarizing
many of the commonalities of effective information visualization. Most
importantly, it captures the need for visualizations to be effective on both
a macro and micro level.
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Zoom functionality allows the analyst to target a region of interest.
Zooming on details can be geometric (for example, make regions of the
display larger in order to read small words or differentiate between nearby
nodes), or semantic (for example, provide more specific theme words or
break clusters to show individual authors). Filtering can take several forms:
(1) remove the context from the display, leaving only items of specific
interest, (2) provide more detail on a focal region, abstract and display
surrounding data (focus + context), or (3) show detail in a new window,
highlight region of enlargement on the overview display (overview +
detail).

Themescape (Wise et al.,
1995) © IEEE. Reprinted
with permission.

We can examine this process using an imaginary scenario based on vi-
sualizing a collection of all the papers ever published at IEEE InfoVis. We
walk through the process as visualized by Themescape (providing theme
words mapped with a geographical metaphor) (Wise et al., 1995) and Node-
trix (providing node-link and matrix diagrams linking co-authors) (Henry
et al., 2007), two visualizations which embody the ‘mantra’.

Nodetrix (Henry et al.,
2007) © IEEE. Reprinted
with permission.

The visualization first provides an overview of the entire data set, dis-
playing high-level features of the data to allow the analyst to then specify a
region of interest. For example, one may see major theme words organized
in relation to one another in Themescape. Alternatively, the overview
could represent the co-authorship networks at the level of research groups
in NodeTrix.

Finally, details-on-demand provides more detailed features of the data.
For example, by opening a list of definitions of a word when it is selected
with the mouse, or revealing the publications list for an author of interest.

Beyond the ‘mantra’, Shneiderman includes three more important tasks
that visualizations may support: relate — view relationships among items;
history — keep a history of actions to support undo; and extract — allow
extraction of sub-collections and of the query parameters.

Shneiderman’s set of tasks is just one of many explanatory models of
how an analytical process can proceed with interactive visualization. In
fact, Shneiderman advises the ‘mantra’ is intended as “descriptive and
explanatory” rather than prescriptive (Card et al., 1999). Craft and Cairns
(2005) conducted a review of literature citing the ‘mantra’ as a design
influence, or using it in an evaluative way. They found little empirical
evidence supporting its utility as a generative mechanism for designing
visualizations. They call for a new holistic design methodology which is
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prescriptive, measurable, and step-wise. However, they do not present
one, and to our knowledge one does not yet exist.

As van Welie et al. (2000) caution, guidelines such as the ‘mantra’ are
often problematic: they can be difficult to interpret consistently and may
conflict with other guidelines. Isenberg et al. (2008) present results of a
study which suggest the ordered process of the ‘mantra’ is not necessarily
the best practice. After observing people working with paper-based
information graphics, they found people naturally switched amongst the
processes of information analysis. For example, one may wish to use
a document content or lexical relationship visualization in the reverse
order from the ‘mantra’, starting at a word of interest and interactively
broadening the view to understand the context and relationships. Due to
these cautionary results, in this work the ‘mantra’ is taken as an initial
inspiration for an interaction process, not as the only valid (or always
appropriate) way to explore a visualization.

2.3.2 The Information Visualization Pipeline

Chi and Riedl (1998) proposed a model of visualization use composed of
a series of steps, arranged as a pipeline, which describe the data transfor-
mations performed by the system and the visual transformations resulting
from analyst interaction with a visualization (see Figure 2.3a). Card et al.
(1999) present the model without a separation between system and analyst
control. We adopt this modification — depending on the task, the analyst
could be involved with data transformations (i. e., the analyst controls the
system). This model was further extended by Carpendale (1999) to include
the presentation space. Additionally, we add the interaction possibility
of access/edit/annotate data, to allow for loading and editing of source
data.

At each stage the analyst may provide feedback which can affect the
data processing, visual encoding, presentation, or view. We illustrate the
extended model of Carpendale (1999) in Figure 2.3b and discuss each part
below.

In the pipeline there are five ways in which data is encoded (the boxes
in Figure 2.3):

data The raw form of the data, such as a speech waveform, a plain text
file, or database.
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analystview
visual 

representation
analytical 

abstraction

View TransformationVisual MappingsData Transformations

data

data space - system control view space - user control

(a) The information visualization pipeline of Chi and Riedl (1998), including a division
between system and user control.

interactive 
visualization

view
visual 

representation
analytical 

abstraction

Analyst Interaction

View TransformationVisual MappingsData Transformations

data visual 
presentation

Presentation 
TransformationAccess

Annotate/Edit

(b) The information visualization pipeline of Carpendale (1999), including a presentation
step, extended to allow an analyst to access/change the data.

Figure 2.3: The information visualization pipeline.

analytical abstraction A processed form of the data, such as term
vectors for text, or a list of co-citations collected from court cases.

visual representation A basic visual form of the data, such as a tag
cloud or graph.

visual presentation An adjusted form of the representation, with-
out changing the information content, for example, items may be
highlighted or enlarged.

view The final visible form, the window on the presentation space that
is rendered to the screen.

Our version of the pipeline has five points at which the analyst may
interact (the upward pointing arrows in Figure 2.3):

access/annotate/edit Accessing (viewing) the unmodified source
data, or changing (editing/annotating) the source data.

data transformations Adjustments to how the data is transformed
into an analytical abstraction, for example by applying a different
keyword extraction method, or extracting additional metadata from
a translation model.

visual mappings Changes to the form of the visual representation, for
example using a node-link graph instead of a space-filling graph.

presentation transformation Changes to the presented visual rep-
resentation that do not change the information content or relations
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between data items, for example, selecting new focus items to high-
light, or rearranging nodes in a graph (without modifying links).

view transformation Changes to way the presentation space is dis-
played, for example, rotation, pan, and geometric zoom.

Note that we make a distinction for viewing the source data, because
while visual abstractions of textual data may be useful analytical tools,
they are not replacements for reading. The absence of facilities to read
source text was a primary complaint raised in a recent study of linguistic
visualization (Wattenberg and Viégas, 2008). Viewing the source text can
be seen as a type of details-on-demand (see §2.3.1). In our pipeline model,
we define viewing unmodified source data as “access” data, but it could
also be seen as a type of (minimal) flow through the pipeline, from stored
bits to alphabetic characters to rendered text which may have presentation
operations (highlighting) or view operations (scrolling) applied.

This model is often used to describe the way in which raw data becomes
a final on-screen view. It can also be used as a design guideline showing
the common transformations an interactive visualization may provide,
as well as access points for analyst interaction. We introduce this model
as we are interested in how the depth-of-interaction fits into the ecology of
linguistic visualization (see §3.5).

2.3.3 Visual Variables

A selection of graphical dimensions were originally proposed by Bertin
(1983, English Translation of “Sémiologie Graphique”, 1967.) as retinal
or visual variables, because they have to do with features of the visual
space to which the human retina is particularly sensitive. These variables
are ways to visually encode information upon the elementary marks of
graphics: points, lines, areas, surfaces, and volumes.

Bertin’s original visual variables are outlined in Figure 2.4. Carpendale
(2003) provides an updated analysis of visual variables, adding motion,
colour saturation, texture, and transparency, which are especially relevant
to interactive visualization. Each visual variable can be characterized by
five features:

selective Can a change in this variable make it easier to select the
changed mark among other unchanged marks?
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Hue
Orientation

Shape
Size

Value

Position

Grain

Figure 2.4: Some visual dimensions useful for encoding data, adapted
from (Bertin, 1983).

associative Can marks that have like values of this variable be grouped
in the presence of other marks with different values?

quantitative Can a quantitative value be read from this variable?

order Do changes in this variable support ordering of data?

length How many values of this variable can be associated or distin-
guished without losing its functionality?

Probable values of these features for each variable have been suggested
by Bertin (1983) and Carpendale (2003), and are summarized in Table 2.1.
These characteristics help a designer select the appropriate variable to
encode the dimensions of the data to be visualized. For example, if the
number of words per document is an important feature of a corpus to be
visualized, it would be inappropriate to encode the number of words using
shape or colour, as these are not quantitative variables. Characteristics of
visual variables can also be used to evaluate visualizations and diagnose
usability problems.

Visual variables have been further investigated by Cleveland and McGill
(1984, 1985) in a series of experiments comparing human accuracy at
carrying out different elementary perceptual tasks (i. e., reading a value of
particular visual variable) for various data types. The results of these stud-
ies generally agree with the categorizations of Table 2.1, but also provide
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Variable Select Associative Quantitative Order Length

Position Yes Yes Yes Yes Variable

Size Yes Yes Approx. Yes Assoc: 5; Dist: 20

Shape With Effort With Effort No No Very Large

Value Yes Yes No Yes Assoc: 7; Dist: 10

Hue Yes Yes No No Assoc: 7; Dist: 10

Orientation Yes Yes No No 4

Grain Yes Yes No No 5

Texture Yes Yes No No Very Large

Motion Yes Yes No Yes Unknown

Table 2.1: Properties of visual variables (Bertin, 1983), extended by
Carpendale (2003). Length abbreviations: Assoc. – associate, Dist. –
distinguish.

a rank order of variables for different data types: position, followed by 1d

size (segment length) is most effective at conveying quantitative values,
while colour and shape can be accurately read for categorical information.
A particularly interesting finding was that the amount and direction of
estimation error depends on the true value; for example, people can ac-
curately estimate the value of small angles while mid-range angles are
problematic.

Guidelines for the selection of appropriate colours for use in InfoVis
have been suggested by Brewer and Harrower (2002) and Stone (2003).
They provide useful advice on topics such as selecting colours for high-
lighting, creating colour maps for various sorts of scaling, and avoiding
alienating viewers with colour-blindness.

Rapid Processing

There are some characteristics of visual scenes that are identified rapidly
(under 200 ms) and accurately in human vision (Healey et al., 1996). When
these visual properties were first catalogued, they were called preattentive
properties and placed in opposition to other properties that were thought
to be detectable only with active attention. Figure 2.5, top row, illustrates
a search task for which hue is a ‘preattentive’ feature. Recognizing the
types of visual variables that are rapidly processed is important to InfoVis
design because these properties can be used to make important features
noticeable at a glance.

There is disagreement about the mechanism of this phenomenon. The
notion that some features are recognized without the need for focused
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Figure 2.5: Hue is a ‘preattentive’ visual feature. Viewers quickly can
tell if the target red circle is absent (top-left) or present (top-right) in the
presence of distractors. However, text is not ‘preattentive’, requiring
sequential search to discover a target word (‘draw’, present in the
bottom-right).

Form Colour Motion Spatial

orientation hue flicker position
length value (intensity) direction steroscopic depth
width lighting direction convex/concave
collinearity grouping
size
curvature
blur
added marks
shape
number

Table 2.2: 2d visual features that can be perceived in under 200ms.
Compiled from Healey et al. (1996) and Ware (2004, pp. 151–152). For
further details on each feature, the reader is referred to the list of
original sources found in those references.
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attention has fallen out of favour, and some of the previously claimed
preattentive properties have been found not to be so (e. g., Wolfe, 2003;
Wolfe et al., 2003). Indeed, there are ongoing debates about the exact
nature of many cognitive processes, including language learning (Pinker,
1997). This dissertation is not concerned with the internal processes, but
rather how empirical evidence can inform design.

Despite the debate about the underlying cognitive processes, it remains
a fact that the speed at which we can recognize changes in certain visual
properties remains nearly constant as the scale of data increases (the time
to find a red spot among 100 or 1000 blue spots is essentially equal). As a
rule of thumb, Ware (2004, p. 151) suggests if a feature is recognized at
a rate faster than 10ms per distractor, it can be considered ‘preattentive’.
Search time for other visual features scale linearly at 40ms per distractor
or more (Treisman and Gormican, 1988). Table 2.2 presents a summary
of the visual features that can be rapidly processed. In our designs, we
endeavour to use visual properties such as hue, value, and blur variation
to provide visual pop-out to items of importance or focus. However, despite
the preattentive nature of shape, finding targets in text representations
does not exhibit the speed profile of the so-called preattentive visual
features (Figure 2.5, bottom), likely because text combines complex shapes
and sizes, curvatures, and widths. The effects of interference when two or
more of these properties are used in conjunction is a matter of ongoing
research, with findings suggesting that in most cases the ‘preattentive’
speeds are lost (Healey, 2007).

Reflecting on Table 2.1, Ware (2004, p. 182) suggests that the length of
a visual variable is decreased when ‘preattentive’ processing is desired.
Distinguishable hues reduce to 8, orientation to 4, size to 4, and all other
variables are also in the single-digit range.

2.3.4 Gestalt Perception

The formation of internal models through perception can be described
with Gestalt theory. Founded by Max Wertheimer in 1912, this branch
of psychology is based on a belief that humans often perceive more
than what our physical senses receive as input (Gestalt means pattern in
German). We fill in the gaps of perception using our internal models.
The heightened perception is described by laws which describe human
tendencies to make connections between disconnected objects. Though
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Gestalt Laws Explanation

Similarity Similar objects (in size, shape, colour, etc.) tend to be grouped together.
Proximity Objects near one another are seen as a unit.
Continuity and
Connectedness

Smooth and continuous lines will be perceived before discontinuous
ones. Objects are perceived as a group if connected by smooth or
straight continuous lines.

Closure Contours with gaps will be perceptually closed. Regions are perceived
as having an “inside” and an “outside”. In windowed visualizations,
closed contours are used to group objects and segment display space.

Symmetry Symmetrical pairs are perceived more strongly than parallel pairs.
Scenes are perceived as being made up of symmetrical parts if possi-
ble.

Relative Size Smaller regions in a pattern are perceived as objects, larger regions as
the background.

Common Fate Objects moving in the same direction appear as a unit.
Familiarity Elements are more likely to form a group if the group forms a familiar

shape or appears meaningful.

Table 2.3: Gestalt laws important for InfoVis design (Card et al., 1999; Ware, 2004).

much of the theory of Gestalt psychology is controversial (King and
Wertheimer, 2005), the basic laws of perception offer some guidance
for information visualization. The Gestalt laws are presented by Ware
(2004) as design principles and are summarized in Table 2.3. Additional
perceptual studies reported by Ware highlight potential additional Gestalt
laws: perceived groupings based on transparency, perceived direction
of movement based on vector illustration, and perceived contours from
arrangement of shapes. Information visualization designers should be
aware of these and the basic Gestalt laws in order to use them to their
advantage and avoid the inadvertent visual perceptions that can occur, as
in optical illusions.

2.3.5 Clear and Concise Design

The works of Tufte (1990, 2001, 2006) fall into the “design advice” category.
His recommendations, such as avoiding uninformative elements (chart
junk), avoiding misleading visual encodings (lie factors), and maximiz-
ing the data-ink to non-data-ink ratio, are derived from his own years
of experience analyzing and creating information graphics. Generally
helpful, we strive to follow them in this work. One particularly relevant
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contribution is his recommendation of improving usability and learnability
by visualizing with small multiples: repeated, small visualizations which
as a group encode a lot of information, but individually are easy to read.
Once an observer knows how to read one of the multiples, they can read
all of them. We use this technique in Chapters 4, 6, and 7.

2.3.6 Spatial Rights

The research we have reviewed indicates that the spatial positioning of
data items is the most visually powerful of the available visual variables.
Spatial position (2d) is selective, associative, quantitative, ‘preattentive’,
and ordered. It also has a variable (but long) length and is involved in
our perception of grouping through Gestalt perception (grouping is also
‘preattentive’).

Part of the process of choosing or designing a representation is called
the spatialization, or layout, of the data. When data is spatialized based
on a particular data dimension or relation, we say that data dimension or
relation has been granted spatial rights, to indicate the visual primacy that
data dimension or relation will hold (Collins and Carpendale, 2007).

spatial rights The assignment of position as a visual encoding for a
data dimension or relation.

As a simple linguistic example, consider the spatialization of words in
a tag cloud. A tag cloud is a spatialized grid of words, sized, and perhaps
coloured, to represent aspects of those words, such as frequency of use
in a document, or recency of use in a discussion. The layout is usually
packed in rows, so the spatialization choice equates to choosing how to
order the words.

Many-Eyes Tag
Cloud (Viégas et al., 2007)

If the most important task to support was visual search for the presence
of a word of interest, an alphabetical layout would be best. In this case, the
alphabetic dimension of the data would have spatial rights, while other
aspects that may be of interest, such as frequency, would be encoded with
other visual variables. Assigning alternating colour to adjacent words to
distinguish them from one another, and encoding frequency as size would
result in a tag cloud similar to the Many Eyes tag cloud (see margin figure).
While size is also a powerful visual encoding, judging relative size, espe-
cially of non-adjacent words, would be difficult to do accurately (Larkin
and Simon, 1987). In this way frequency and frequency rank become



38 the power of information visualization

visually secondary to alphabetical order through the assignment of spatial
rights.

We can imagine an alternative situation in which the rank of frequencies
was the most important factor, but recency information was also desired.
In this case, we would choose to position the words in order by rank
(assign spatial rights to rank). This would permit an easy reading of rank
order. We could encode the precise frequency value to word size, since
size is approximately quantitative, and we could assign recency to the
colour value, as value is ordered. In this case, serial search of the whole
visualization would be needed to determine the presence or absence of a
word of interest.

We will recall the discussion of spatial rights later in the dissertation,
presenting in Chapter 7 a method for rendering a set relation over an
existing layout without disrupting the primary relation’s spatial rights.
In Chapter 8 we formalize ways to assign spatial rights in multi-relation
visualizations and introduce a technique to allow for the re-use of the
spatial dimension in the same view (multiple spatial rights).

2.3.7 Heuristic Approaches

Much of the foundational knowledge described in previous sections has
been reiterated in a set of heuristics for information visualization evalua-
tion compiled by Zuk et al. (2006). Heuristic evaluation is a well known
technique in human-computer interaction research, but is not widely used
in InfoVis. Heuristic evaluation consists of a series of tests for specific
problems, carried out by a set of evaluators. For example, one may use
“Ensure luminance difference between red and green.” as a heuristic to
avoid creating designs which cannot be used by people with red-green
colour-blindness. As described by Zuk et al., heuristics such as these offer
cheap, fast, and easy evaluation, appropriate for application during itera-
tions of design. They can also be read prescriptively, as design guidelines.
They heuristic sets proposed by Zuk et al. (2006) draw on the work of
Amar and Stasko (2004), Shneiderman (1996), and Zuk and Carpendale
(2006). We select the final subset, “perceptual and cognitive heuristics,”
which were determined to be the most helpful and easy to apply. These
are listed in Table 2.4 and will be treated as general guidelines when
discussing design decisions in subsequent design study chapters.
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Heuristic

Ensure visual variable has sufficient length

Don’t expect a reading order from colour

Colour perception varies with size of coloured items

Local contrast affects colour and grey perception

Preattentive benefits increase with field of view

Quantitative assessment requires position or size variation

Preserve data to graphic dimensionality

Put the most data in the least space

Remove the extraneous detail

Consider Gestalt Laws

Provide multiple levels of detail

Integrate text wherever relevant

Table 2.4: Heuristics for evaluation of perceptual and cognitive factors
in InfoVis design (Zuk et al., 2006).

2.4 a methodological note on evaluation

There are a number of challenges facing the evaluation of InfoVis in
general. For an overview of the challenges of evaluating InfoVis, Plaisant
(2004) provides a comprehensive account. Numerous techniques have
been suggested, including lab-based user studies (Kosara et al., 2003),
long-term deployment case studies (Shneiderman and Plaisant, 2006),
insight-based experiments (Saraiya et al., 2005), automated evaluation
of perceptual organization (Wattenberg and Fisher, 2004), visual quality
metrics (Bertini and Santucci, 2006), measuring extrinsic effects such
as worker productivity (McNee and Arnette, 2008), and using heuristic
evaluation (Zuk and Carpendale, 2006).

There is no agreement on when it is appropriate to use quantitative tech-
niques such as user studies. However, Kosara et al. (2003) advise that user
studies should be reserved for evaluating specific techniques, especially
in a comparative sense. Quantitative studies are also appropriate and
informative to understand human perception. Questions such as, “which
colour scale produces more accurate readings?”, and “at what blur factor
is a separation between sharp and fuzzy distinguishable?” are possible
to answer with a well-designed perceptual study. This falls outside the
field of InfoVis and is more appropriately studied by cognitive scientists.
The previously discussed work of experimentalists such as Cleveland
and McGill (1984) fall into this category. We plan to conduct a study of
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this sort on Bubble Sets (see Chapter 7) in collaboration with perceptual
psychologists as future work.

Greenberg and Buxton (2008) caution against using usability studies to
evaluate early stage, exploratory research. Getting bogged down on the
types of details measurable with user studies when inventing prototypes
that address new problem areas can eliminate ideas too early. Also, when
there are few or no compartors to compare against (which is often the
case in InfoVis), it is challenging to create a study that convincingly says
anything about a holistic system. Such studies are often guided to prove
the new technique is “useful for at least one thing” (Greenberg and Buxton,
2008), and are therefore inherently biased and not very useful.

Formal evaluation is only one type of validation of an information
visualization. Visualizations can be considered valuable contributions
based on many other metrics: Does it render faster than previous systems?
Is it algorithmically more efficient (reduced complexity)? Does it reveal
information that was previously not visible at all? Does it introduce a
new, generalizable technique to the community? Does it address a space
in a formal framework of research where previously there was nothing?
Within each of our design studies, we address these questions where an
answer can be given with confidence.

As the design studies presented in this dissertation all fall into the
category of early prototype, and have few comparators (and fewer, perhaps
none, with published evaluations), we made the choice to forego formal
evaluation (studies) in favour of a broader exploration of the space of
linguistic visualization. Additionally, while they would be an interesting
follow-up to this research, in order to explore a breadth of problem areas
within the space of linguistic visualization, we did not conduct long-term
case study evaluations. Within each design studies, we instead investigate
and discuss a range of design options in the light of the aforementioned
theories and guidelines, and demonstrate through example the types of
information one may see with a visualization that was not previously
available (at least in a practical sense). It may be informative in future to
apply heuristic evalution to the design studies, using a comprehensive set
of heuristics for InfoVis as suggested by Zuk (2008).



2.5 summary 41

2.5 summary

Information visualizations, when well-designed, have the potential to act
as external cognitive aids. The types of tasks a particular visualization
will support depends on the representation used, and the interaction
provided. There are a number ways in which design can be guided to
increase the chances that a particular visualization will be useful and
usable, including well-established design guidelines based on theories of
sense-making and visual information-seeking, and experimental evidence
about the capacities of human visual perception.

Information visualization techniques have been applied to a broad
range of linguistic data, with varying sophistication in the underlying
natural language processing (NLP) (the data and analytical abstraction) and
the method of visualization (the respresentation, presentation, and view). In
the following chapter we will define an informal framework for mapping
the space of linguistic visualization, and in the process examine examples
of work of varying linguistic sophistication.





3
THE SPACE OF INTERACTIVE LINGUISTIC
VISUALIZATION

Distant reading . . . is not an obstacle, but a specific form of knowledge: fewer
elements, hence a sharper sense of their overall interconnection. Shapes,

relations, structures. Forms. Models.

— Franco Moretti (2005, p. 1)

What classifies as ‘linguistic visualization’? Luhn (1960) introduced the
keyword-in-context (KWIC) technique for aligning instances of a word
of interest in a table, alongside left and right context words (Figure 3.1).
This relatively simple method of extracting data and representing it in an
organized fashion was immensely helpful to subsequent researchers (e. g.,
Schreibman et al., 2004; Wattenberg and Viégas, 2008). Although the
creation of a KWIC display is clearly an instantiation of the information
visualization pipeline (§2.3.2), it is rarely described as a visualization.

From Luhn’s early work in representing linguistic data to amplify cog-
nition, we have come a long way. There are now annual sessions on
text visualization at visualization conferences, and conferences such as the
Annual Meeting of the Association for Computational Linguistics (ACL) have
begun to warm to visualization as a technique worth exploring. Although
interactive visualization contributions have generally appeared as posters,
not papers, at ACL (e. g., DeNeefe et al., 2005; Smith and Jahr, 2000), things
may be changing. The recent large attendance and enthusiastic feed-
back a tutorial on information visualization (InfoVis) and computational
linguistics (CL) may be a positive sign of things to come (Collins et al.,

Figure 3.1: An excerpt of Luhn’s (1960) original keyword-in-context
index for technical literature. The different uses of the world ‘field’ can
be seen. Reprinted with permission.

43
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2008). Additionally, many people outside research, such as artists, design-
ers, and bloggers have become actively engaged in visualizing language.
With this diverse history, and recent explosive growth, it has become
clear we need a descriptive framework to understand the varied goals of
and approaches falling under the umbrella linguistic visualization: “The
presentation of linguistic data through visual representations designed to
amplify cognition or communicate linguistic information.”.

The types of linguistic data forms include text, augmented text (text
associated with images), speech, gestural languages, and singing (speech
with music). While visualizations of speech (e. g., Levin and Lieberman,
2004) and gesture (Falletto et al., 2009) have been reported, this disserta-
tion focuses only on visualizations of text, augmented text, and speech
provided as text from an automatic speech recognition (ASR) system.

In order to understand the rich space of past work in linguistic visualiza-
tion, we contribute a descriptive framework which categorically partitions
the literature based on human- and application-centred categories. This
informal structure is emergent from the collection of related work and
represents the types of questions we, as researchers, ask when designing
or reading about examples of linguistic visualization. The dimensions we
propose are listed briefly in Table 3.1. While we suggest four useful ways
of dividing the space, each dimension alone can be used to classify most
examples of linguistic visualization. Therefore, we will use the first of each
of the human- and application-centred categories (Community of Practice,
Problem Area) to present examples in depth, and briefly overview the
other dimensions.

H
um

an

community of practice

Who created the visualization?
target audience

Who is the visualization intended for?

A
pp

lic
at

io
n problem area

What problems is the visualization intended to solve?
level of interactivity

How can a person interact with data/representation/view?
type of linguistic resources

What linguistic resources and algorithms drive the visualization?

Table 3.1: The dimensions of the space of linguistic visualization.



3.1 terminology of linguistic computing 45

As we alluded to in Chapter 1, the examples of linguistic visualization
range from highly interactive interfaces with low linguistic sophistication,
to linguistically profound, but static, information graphics. For some
insight into this divide, we first examine selected examples from the
varied communities which have been creating linguistic visualizations.
The remaining sections of this chapter will examine the other dimensions.
At the beginning of each section, we introduce an overview figure of
the collection of reference works discussed in this dissertation, grouped
into sets according to the dimension being discussed. The related work
introduced in this chapter represents 2 or 3 canonical examples for each
value along each dimension. Recent examples were preferred when
available; the collection of related work is representative of the space of
linguistic visualization, but is not intended to be exhaustive. The Bubble
Sets visualization technique used to illustrate the relationships amongst
related work is introduced in detail in Chapter 7.

3.1 terminology of linguistic computing

While there is significant overlap between the fields of computational
linguistics (CL) and natural language processing (NLP), within this disser-
tation we will adopt the view that they are different. The Association for
Computational Linguistics defines CL as: “The scientific study of language
from a computational perspective. Computational linguists are interested
in providing computational models of various kinds of linguistic phe-
nomena” (Sproat, 2005). They go on to describe that work in CL may be
motivated by either a drive to model or explain an observed linguistic or
psycholinguistic phenomenon or by a technological need for a working
component of a computer-driven natural language system.

However, the authors of foundational textbooks in the field, such as Ju-
rafsky and Martin (2008) and Manning and Schütze (1999) draw a dis-
tinction between these two approaches. The first, modelling of linguistic
or psycholinguistic phenomena (e. g., how people learn language, or how
we understand and process idioms) is CL, while the development of al-
gorithms for applied purposes, such as summarization, translation, and
speech recognition, falls under NLP. Sometimes speech processing is
considered a third area, but we will include it in NLP for our purposes.
NLP is less concerned with grounding in cognitive linguistic principles
and theory, and more concerned with achieving accuracy, precision, and
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generally satisfying and convincing results. ‘Natural’ language here refers
to fully expressive human languages such as English or Cantonese as
opposed to formal languages such as the programming languages Java or
C++.

The design studies outlined in this dissertation are generally examples
of connecting InfoVis with NLP, although some of the resources used, such
as WordNet (see Chapter 5) have been developed by the CL community.
The specific contributions, especially VisLink (Chapter 8), may be broadly
applicable to NLP, CL, and InfoVis. Many of our works, being based on
underlying data structures of NLP systems, externalize the ways in which
linguistic experts conceptualize language structure for the purposes of
NLP. We do not claim these are representations of the ways language is
structured in our minds — but that would be an interesting area for future
research.

3.2 community of practice

Within our broad definition of linguistic visualization, there are several
communities approaching the problem from different directions. Our
approach is grounded in NLP and InfoVis, but recognizing contributions
from the wider community is informative. Figure 3.2 provides an overview
of the related work in linguistic visualization, grouped according to
community of practice.

3.2.1 Computational Linguistics

The computational linguistics community is interested in computational
techniques to increase our understanding of language and linguistic pro-
cesses. It publishes many static information graphics to communicate
research results and to explain theories (e. g., Figure 3.3a), but rarely
does it publish interactive information visualizations. Exceptions in-
clude a method to map overlaps between semantic concepts across lan-
guages (Ploux and Ji, 2003) (see Figure 3.3b) and visualizations created
to provide access to the results of linguistics research, such as the Visual
Walpiri Dictionary (Manning et al., 2001).
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(a) Static information graphic representing the path between a zero-pronoun and its an-
tecedent (Iida et al., 2006).

(b) Interactive interface for exploring overlapping semantic maps (spatializations of words
representing a concept) between English and French (Ploux and Ji, 2003).

Figure 3.3: Linguistic visualizations from the computational linguistics
community. Reprinted with permission.
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3.2.2 Natural Language Processing

Closely related to CL, researchers and engineers in the natural language
processing community are interested in creating ever better and faster
algorithms to process and transform linguistic data (e. g., summarization,
translation, spelling correction). This community also uses information
graphics to disseminate results of research (e. g., Figure 3.4a). A notable
interactive contribution is the iNeATS interactive multi-document sum-
marization interface (Leuski et al., 2003), an example which bridges the
linguistic visualization divide in its close coupling of summarization
technology with interactive visualization of document content (see Fig-
ure 3.4b).

CAIRO (Smith and Jahr, 2000) and DerivTool (DeNeefe et al., 2005) are
two interactive visualizations for machine translation (MT) researchers
to explore and refine their data models. CAIRO reveals bilingual word
alignments and probabilities. DerivTool puts a human in the driver’s
seat, presenting the researcher with the set of choices considered by the
algorithm at each step of processing (see Figure 3.5). We will return to the
topic of statistical MT visualization to assist research in Chapter 7. Beyond
these two examples, there is little evidence of interactive visualizations
being used in the process of research as a technique to help NLP researchers
improve their algorithms and data models.

3.2.3 Human-Computer Interaction

Human-computer interaction (HCI) researchers have long been interested
in developing interfaces and interaction techniques to assist reading, edit-
ing, and navigating documents using a computer (e. g., Alexander et al.,
2009; Appert and Fekete, 2006; Guiard et al., 2006; Hill et al., 1992; Robert-
son and Mackinlay, 1993). This community is generally not concerned
with the content of the linguistic data, but rather the task, the context and
technology of deployment of the interface, and usability issues related to
interacting with the data. For example, Hill et al. (1992) described Edit
Wear and Read Wear, a method for graphically depicting the reading and
editing history of a document through an augmented scroll bar (see Fig-
ure 3.6a). Robertson and Mackinlay (1993) presented a magnification
lens for document reading which provided a details-in-context view to
allow reading of text while getting a feeling for the overall layout of the
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(a) Static information graphic describing the creation of a sentence quotation graph (Carenini et al., 2008).

(b) The interactive iNeATS multi-document summary interface, an example of interactive visualization coupled with
NLP, bridging the linguistic visualization divide (Leuski et al., 2003).

Figure 3.4: Linguistic visualizations from the natural language processing community.
Reprinted with permission.



3.2 community of practice 51

Figure 3.5: DerivTool: a method of interactively visualizing and di-
recting the process of translating a sentence (DeNeefe et al., 2005).
Reprinted with permission.

document (see Figure 3.6b). This community has also contributed founda-
tional research which informs linguistic visualization, such as Grossman
et al.’s (2007) investigation of the effects of orientation on text legibility in
volumetric displays.

3.2.4 Digital Humanities

Digital humanities (DH), also known as humanities computing, is the field
of research dedicated to using computing in the process of humanities
research. Areas of inquiry range from literature and history to music
and philosophy. Moretti (2005) argues that literary scholars should “stop
reading books, and start counting, graphing, and mapping them instead”.
As indicated by the epigraph of this chapter, Moretti calls this approach
distant reading. Computational efforts to facilitate distant reading, such as
text analyses to count words and to map entity relations within a novel are
examples of digital humanities research. Linguistic visualization research
in this field is often undertaken in interdisciplinary teams, including do-
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(a) Read Wear introduced an
augmented scroll bar to reflect
the readership history of a doc-
ument. (Hill et al., 1992).

(b) The Document Lens provides a distortion view (presentation transfor-
mation) to allow legible rendering of a document while providing global
context (Robertson and Mackinlay, 1993).

Figure 3.6: Linguistic visualizations from the human-computer interaction community.
© ACM, Inc. Reprinted with permission.

main experts (humanities scholars) and CL, NLP, and InfoVis researchers.
A common goal is to create re-usable, general, online tools to support
fellow humanities scholars in their research (Schreibman et al., 2004).

The Text Analysis Portal for Research (TaPoR) is such an interdisciplinary
digital humanities research consortium in Canada (http://portal.tapor.
ca). Visualization contributions from this group include the Voyeur
Tools (Sinclair and Rockwell, 2009) (see Figure 3.7a). Voyeur Tools visualize
word frequencies, collocates, and trends in a corpus. Voyeur Tools use the
representation concepts of sparklines (Tufte, 2006), small multiples (Tufte,
1990), and KWIC displays (Luhn, 1960). However, the text analysis is
based solely on word counting.

The Metadata Offer New Knowledge project (MONK) in the United States
(http://www.monkproject.org) also takes an interdisciplinary team ap-
proach to digital humanities research. They contribute the Feature Lens (Don
et al., 2007), which consists of an NLP component to count 3-grams (three-
word sequences) and detect sets of co-occuring 3-grams. The NLP compo-
nent is closely connected to an interactive visualization which illuminates

http://portal.tapor.ca
http://portal.tapor.ca
http://www.monkproject.org
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(a) Voyeur Tools (alpha-release) provides several simple, minimally interactive visualizations to reveal
word frequencies and trends of use in a document collection (Sinclair and Rockwell, 2009). Reprinted
with permission.

(b) The Feature Lens combines a text analysis algorithm for detecting multi-word patterns with a
visualization for examining detected patterns in detail (Don et al., 2007). © ACM, Inc. Reprinted with
permission.

Figure 3.7: Linguistic visualizations from the digital humanities community.
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repeated sequences and occurrence trends across a document corpus
(see Figure 3.7b). Finally, the WordHoard, discussed further in Chapter 6

has a simple, minimally interactive word-list interface, but uses more-
advanced NLP techniques such as log-likelihood measures to select words
of significance to a particular document (Mueller, 2008). Unlike many
linguistic visualizations contributed by other communities, all of our ex-
amples from digital humanities provide direct, interactive access to the
underlying source text for detailed reading.

3.2.5 Design

The professional design community produces information visualizations
primarily for publication directly on the Web, often for journalistic pur-
poses or commissioned to convey a desired message. While not particu-
larly concerned with generalizable visualization contributions, or formal
evaluation, this community strives to create interfaces that are simulta-
neously beautiful, easy to interpret, and informative (Ericson, 2007). As
Norman (2002) claims, “attractive things work better”. An example of
linguistic visualization from the design community is the New York Times’
interactive visualization of the text of several years of the State of the Union
Address. This visualization compresses the transcripts of the addresses into
columns by year. When a word is selected, all occurrences are highlighted,
using red against grey — a ‘preattentive’ pop-out. Context is provided
through an associated list of popular terms and their relative frequency
and a panel to read selected excerpts of the original text (see Figure 3.8a).

The graphical comparative essay visualization commissioned for the
book Total Interaction (Buurman, 2005) is an example of comparative con-
tent analysis from the design community (see Figure 3.8b). The visualiza-
tion, designed by Rembold and Späth (2006) represents a focus essay as
an icon in the center of an annulus, surrounded by the other essays, each
represented by coloured arcs of the annulus, with arc length the amount
of vocabulary overlap with the focus essay. So, each essay in the printed
book is accompanied by an information graphic relating it to the others.
The visualization encodes comparative word frequency, text length, para-
graph length and structure, and vocabulary overlap between each essay
and the central focus text. While the essay visualizations encode a lot of
information and are aesthetically compelling, they are not particularly
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(a) New York Times’ interactive visualization of 7 years of State of the Union Addresses (Werschkul and The New
York Times, 2007).

Figure 3.8: Linguistic visualizations from the design community. Reprinted with permis-
sion.
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(b) Comparative essay visualizations which encode similarities in the lexical content, length, and structure of essays
in a book (Rembold and Späth, 2006).

Figure 3.8: Linguistic visualizations from the design community (cont’d). Reprinted with
permission.
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interpretable due to overlapping visual encodings such as hue and value
(see §2.3.3).

3.2.6 Visualization Enthusiasts

There has been a proliferation of easy-to-learn visualization prototyp-
ing tools, designed specifically for Web deployment, including Process-
ing (Fry and Reas, 2008), Adobe Flash, and open APIs such as the Google Vi-
sualization API (http://code.google.com/apis/visualization/) and the
Raphaël Javascript library (http://raphaeljs.com). In addition, tools for
collecting data from the Web are becoming more accessible. Open APIs are
enabling anyone with the network access and basic programming skills to
collect and visualize data from many linguistic sources. The variety of data
types available is continuously growing, and includes social network data
and microblog feeds (Twitter, http://twitter.com/twitterapi), news-
paper archives (New York Times, http://developer.nytimes.com/), thou-
sands of out-of-copyright books (Project Gutenberg Library, http://www.
gutenberg.org), and government data (e. g., Visible Government, http:

//visiblegovernment.ca in Canada and the Sunlight Foundation, http:
//services.sunlightlabs.com/api in the United States).

It is becoming increasingly easy for information visualization enthusi-
asts to pick up these tools and create interactive linguistic visualizations to
share online. Viégas and Wattenberg (2008) refer to these visualizations by
‘nonacademic designers’ as vernacular visualization: “a visualization which
does not come from the visualization community and may violate some of
the golden rules of traditional visualization design”. Here we are referring
to people who create visualizations for fun or personal purposes. Blogger
Jeff Clark writes of his motivation for creating linguistic visualizations:
“I enjoy discovering the patterns in the apparent chaos of real life data
and exploring new techniques for communicating what I discover in a
visually compelling manner.” (Clark, 2008b, about page). Many of the
works created by this community are also examples of casual infovis, as
they are created for personal enjoyment and based on real-life or personal
data (Pousman et al., 2007).

Twitter Venn is an interactive visualization showing Venn diagrams of
Twitter messages containing up to three specified search terms (Clark,
2009b). By selecting an area of the diagram, a rank-ordered tag cloud
of other words in messages from that area is shown. Here the NLP is

http://code.google.com/apis/visualization/
http://raphaeljs.com
http://twitter.com/twitterapi
http://developer.nytimes.com/
http://www.gutenberg.org
http://www.gutenberg.org
http://visiblegovernment.ca
http://visiblegovernment.ca
http://services.sunlightlabs.com/api
http://services.sunlightlabs.com/api
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(a) Twitter Venn of {hot,chocolate,milk} with common collocates of hot tea displayed in the lower left (Clark, 2009b).

(b) A social network graph inferred from word frequency similarities amongst various Twitter streams (Clark, 2009a).

Figure 3.9: Linguistic visualizations from the visualization enthusiasts community.
Reprinted with permission.
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simplistic: word and co-occurrence counting. However, despite simplistic
NLP, the intuitive interaction, topical data, and dissemination by the
Web make Twitter Venn a notable contribution (see Figure 3.9a). Another
work, Twitter Stream Similarity, uses word frequency similarity measures
to determine similarity scores between various members of Twitter (Clark,
2009a). The linguistic similarity measure was formulated by Clark, and
is essentially the cosine similarity between word frequency vectors, a
technique well-known in NLP. The similarly scores are used to cluster
and connect nodes into an inferred social network graph, an example
of using linguistic data as a scaffold for determining social relations
(see Figure 3.9b).

While visualization tools and data streams with high-level and acces-
sible APIs are widely available, the same is not true of services for NLP.
Nor do the data provision services themselves offer tools to manipulate
the data with NLP algorithms. There are NLP toolkits available for down-
load and use on one’s personal computer (e. g., Natural Language Toolkit
http://www.nltk.org); however, these do not fit into the service-oriented
Web 2.0 ecology within which the visualization enthusiast community
tends to work. Exceptions include the Alchemy API (www.alchemyapi.com),
a paid Web service which provides various NLP algorithms (e. g., named
entity and keyword extraction, language identification) and Open Calais
(www.opencalais.com), a free semantic annotation and named-entity ex-
traction service. The dearth of free, general-purpose NLP Web APIs may
contribute to the simplistic NLP used in much of the work produced by
this community.

3.2.7 Art

Defining what constitutes artistic visualization is difficult. We will adopt
the rather matter-of-fact definition of Viégas and Wattenberg (2007): “Artis-
tic visualizations are visualizations of data done by artists with the intent
of making art.” Linguistic visualizations created by the art community
have been produced both as online, interactive interfaces, and as computer-
generated information graphics. Apartment (Wattenberg et al., 2004), The
Dumpster (Levin et al., 2005), and We Feel Fine (Harris and Kamvar, 2006)
are interactive visualizations of the personal emotions expressed online.
Apartment gathers data by direct contributions from the viewers while the
others use extensive crawling of blogs to match statements about breakups,

http://www.nltk.org
www.alchemyapi.com
www.opencalais.com
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(a) We Feel Fine is an online interactive artwork which visualizes feelings statements scraped from blogs (Harris and
Kamvar, 2006).

Figure 3.10: Linguistic visualizations from the artistic community. Reprinted with permis-
sion.
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(b) Literary Organism uses a set of rules to divide and categorize the text of a book, then produces an
organic-looking tree graph which reveals the structures and themes in the text (Posavec, 2008).

Figure 3.10: Linguistic visualizations from the artistic community (cont’d).
Reprinted with permission.
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and feelings, respectively. We Feel Fine extracts blog mentions of ‘feeling’
and associates the text of the statement with extracted demographics
about the author and related metadata gathered from other Web sources.
The visualization is presented in six movements of varying abstraction.
One of the movements is based on faceted navigation (Hearst, 2006), and
with it one can explore, for example, the recent feelings of women aged
20–25 who live in a place where it is currently raining (see Figure 3.10a).

Literary Organism is an example of an artistic visualization of the con-
tents of a book, generated by a text analysis algorithm which breaks the
text into chapters, paragraphs, sentences, and words (Posavec, 2008). Sen-
tences are then colour-coded by regular-expression-based theme matching
(themes were determined by the artist). The organic-looking tree visual-
ization is an informative form of art from which the length, structure, and
thematic patterns in a text can be read (see Figure 3.10b).

3.2.8 Information Visualization

Information visualization researchers are generally concerned with creat-
ing interactive visualizations that accomplish at least one of the following:

1. revealing information that was not previously visible or enabling
new insights about data,

2. improving the clarity and readability of known representations,

3. improving layout and rendering efficiencies of known techniques,

4. improving usability of or analyst satisfaction with known techniques,

5. presenting new and generalizable techniques for representing, pre-
senting, or interacting with data.

Contributions of each of these types have come from linguistic visu-
alizations published in this community. For example, the Word Tree is
essentially an interactive form of the KWIC display, improving usability
and satisfaction with the concordance technique (contribution type 4)
(see Figure 3.11a). On using Word Tree, a blogger described the interaction
capabilities as enabling exploration of his data from overview to detail,
allowing him to discover previously unrecognized inconsistencies (Watten-
berg and Viégas, 2008). As a second example, the Theme River visualization
of streaming news text (Havre et al., 2002) (see Figure 3.11b) contributed
the general technique of stream graphs (contribution type 5), which was
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(a) A Word Tree interactive visual concordance of this dissertation (Wattenberg and Viégas, 2008). Reprinted with
permission.

(b) Theme River, an interactive visualization of streaming news text, contributed the general visualization technique
of stream graphs (Havre et al., 2002). © IEEE. Reprinted with permission.

Figure 3.11: Linguistic visualizations from the information visualization community.
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later improved and applied to other data domains (Byron and Wattenberg,
2008).

3.2.9 Visual Analytics

Visual analytics is an outgrowth of information visualization concerned
specifically with visual tools to support analytical reasoning processes,
such as synthesizing information and deriving insight from massive, am-
biguous, conflicting, and multimedia data. One type of data of interest
is text, particularly named entities and how they relate to other types
of data. Weaver et al. (2007) investigate historical hotel registers, analyz-
ing the names contained within, and correlating them with local news
articles, geographical maps, and other data sources (see Figure 3.12a).
Jigsaw (Stasko et al., 2007) is also based on multiple, coordinated views
of disparate data (see Figure 3.12b). In that system, named entities are
extracted from documents and the relations between sets of entities are
revealed.

3.2.10 Summary

The space of linguistic visualization includes contributions from many varied
communities of practice. Some communities take a linguistically sophisti-
cated but interactively weak approach (CL and NLP), others are focused
on leveraging interaction to enhance analytical power (HCI, InfoVis, Visual
Analytics) but do not often connect the interaction to linguistically sophis-
ticated data models. Still others (artists, some designers, enthusiasts) are
not necessarily aiming to support analysis or discovery, but rather to use
visualization as an expressive medium. Through investigating the variety
of communities, we have simultaneously introduced many of the most
significant contributions to the field of linguistic visualization.

3.3 target audience

We divide the potential audiences for linguistic visualization based on
general linguistic expertise and the amount of effort they may be willing
to put into learning an interface. We will discuss three groups: the general
public, domain experts interested in the content of a particular type of
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(a) The interlinked views of the hotel visitations visualization (Weaver et al., 2007). © Palgrave Macmillan. Reprinted
with permission.

(b) Jigsaw list view relating people and place names extracted from a set of documents (Stasko et al., 2007). © IEEE.
Reprinted with permission.

Figure 3.12: Linguistic visualizations from the visual analytics community.
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linguistic data, and linguistic, CL, and NLP researchers. Figure 3.13

provides an overview of the space of linguistic visualization, grouped
according to target audience.

3.3.1 General Public

When linguistic visualizations are designed for the general public, they are
often deployed online or as an installation in a gallery, museum, or library.
There are examples of both analytically-focused (e. g., Viégas et al., 2007;
Weskamp, 2004) and artistic (e. g., Harris and Kamvar, 2006; Levin and
Lieberman, 2004) linguistic visualizations online. Similarly, analytical (e. g.,
Alexander et al., 2007) and artistic (e. g., Legrady, 2005; Wattenberg et al.,
2004) linguistic visualizations have been exhibited as installations. Hin-
richs et al. (2008) recommend that visualization for public spaces such as
museums should embody the “walk-up-and-use” principle. The design
community similarly acknowledges the general public is unlikely to invest
time to read instructions for an online visualization (Ericson, 2007). The
initial display should be attractive and interesting, and the interaction
should be obvious. The general public will likely be fluent in the language
of the linguistic data underlying the visualization, but may not be knowl-
edgeable about or interested in either linguistics or novel interaction and
visualization techniques.

Many Eyes is a suite of online text visualizations, targeted at the gen-
eral public, which have become very popular. Members of Many Eyes
can upload their own text, visualize it using several different techniques,
interact with the visualization, save preferred views for sharing, and an-
notate their own visualizations or those of others. The available linguistic
visualizations include: tag clouds (one word, two word, and compara-
tive) (Viégas et al., 2007), Wordle (an aesthetically-rendered tag cloud) (Vié-
gas et al., 2009), Word Tree (Wattenberg and Viégas, 2008) (see § 3.2.8
and Figure 3.11a), and Phrase Nets (van Ham et al., 2009). Backing these
visualizations are simple NLP techniques: tag clouds and Wordle uses
word-counting and stemming (removal of suffixes), the Word Tree builds
and displays suffix trees (Stephen, 1994, ch. 4), and Phrase Nets use regular
expression matching. While Many Eyes was envisioned for casual infovis
and to support collaboration amongst the general public, it has also been
used in unexpected ways by several linguistic researchers (Danis et al.,
2008; Wattenberg and Viégas, 2008). Viégas et al. (2009) describe the factors
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Figure 3.14: The Wordle visualization, here depicting the text of this dissertation, was
created to target the general public (Feinberg, 2008; Viégas et al., 2009). Reprinted with
permission.

which made Wordle attractive to the general public (over 600,000 ‘Wordles’
were created in under a year). The public craves aesthetics, a feeling of
creativity, and engagement with the personal nature of data — despite
an acknowledged lack of the traditional supports for analysis, such as
interactive elements and clear data encodings, ‘Wordle’ remains popular.
Figure 3.14 shows a Wordle of the text of this dissertation.

The previously described State of the Union visualization also exemplifies
the “walk-up-and-use” principle for general public visualizations (Wer-
schkul and The New York Times, 2007) (see §3.2.5 and Figure 3.8a).

3.3.2 Domain Experts

Domain experts are people with expertise and interest in a particular
type of linguistic data. Examples of domain experts include political
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scientists (transcripts of government proceedings, texts of legislation), legal
scholars (transcripts of courtroom discussions, written decisions on cases),
historians (news archives, records of personal communication), military
intelligence analysts (recorded conversations and correspondence).

The humanities scholars targeted by Feature Lens are a group of domain
experts (Don et al., 2007) (see § 3.2.4 and Figure 3.7b). The Feature Lens
visualization is visually and functionally similar to the State of the Union
visualization (see § 3.2.5 and Figure 3.8a) from the design community.
However, where State of the Union is based only on word occurrence counts,
Feature Lens is built upon longer patterns, providing added complexity,
but also greater analytical power. The interaction is also different. Where
State of the Union is intentionally simple, offering only one search box and
a drop-down list of suggested words, Feature Lens provides long lists of
patterns and parameter-tuning options. The humanities scholars targeted
by Feature Lens may be willing to invest time into learning an interface if
the interface complexity rewards them with increased opportunities for
insight.

The hotel records visualization from the visual analytics community
(see § 3.2.9 and Figure 3.12a) is targeted at historians, another form of
domain expert.

3.3.3 Linguistic Researchers

On the other end of the spectrum sit linguists, computational linguists,
and natural language engineers. This group can be considered a specializa-
tion within domain experts, where the domain is language itself. Members
of this community are strongly interested in language, and will likely
be eager to interact with and explore linguistic data. They would invest
time in learning to use a new system if it had potential to benefit them
in the long run. We identify two main goals of this target audience. The
first, of interest to linguists and computational linguists, is discovering
new insights about language, such as linguistic relationships (see §3.2.1
and Figure 3.3b) or language evolution patterns (e. g., Brighton and Kirby,
2006; Kempken et al., 2007). The second, of interest to NLP researchers, is
to analyze and improve NLP algorithms and resources. For example, the
previously mentioned DerivTool was created to help diagnose problems
with an MT system (DeNeefe et al., 2005) (see §3.2.1 and Figure 3.5). Simi-
larly, the Constellation visualization was developed to assist the creators of
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the MindNet semantic network to visualize their data in order to improve
their algorithms (Munzner et al., 1999).

3.3.4 Collaboration

An important consideration which cuts across the target audience dimen-
sion is the number of people interacting with the visualization. Visual-
izations can be designed for a single analyst, for example the previously
mentioned iNeATS multi-document summarization (see §3.2.2 and Fig-
ure 3.4b). They can also be designed for multiple people working together
asynchronously or synchronously, co-located or at a distance.

The dynamics of distant, asynchronous (Heer, 2008) and co-located,
synchronous (Isenberg et al., 2008) collaboration over information visu-
alization have been recently studied. The annotation capabilities of the
visualizations within Many Eyes are examples of asynchronous collabora-
tion at-a-distance. There are many synchronous at-a-distance collaborative
visualizations which rely on linguistic input, but use it only as a signal of
social connections (e. g., Erickson et al., 2006; Erickson and Laff, 2001; Tat
and Carpendale, 2002; Viégas and Donath, 1999). These social visualizations
do not actually visualize language data (see §3.4.1 for additional discus-
sion). Cambiera is a visualization for synchronous, co-located collaborative
search which uses language in the presentation of search results and the
specification of queries (Isenberg and Fisher, 2009). However, we know of
no synchronous visualizations for collaborative analysis of linguistic data.

3.4 problem area

Linguistic visualization has been applied to a wide range of problem
areas. Broadly, we categorize these areas as: communication, information
retrieval, content analysis, and linguistics and computational linguistics
research. There are subcategories within each of these, and the breakdown
is not mutually exclusive. Figure 3.15 illustrates the works included in our
study of the space of linguistic visualization, grouped by problem area.
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3.4.1 Communication

Language is the main tool of human communication, especially computer-
mediated communication, where gestures and expressions are, in the
abscence of video, best approximated through emoticons. Interests in visu-
alizing communication can be subdivided into real-time communication
(conversations) and asynchronous communication (leaving messages for
later reading). We will examine examples from each dynamic.

Real-time Communication

Text conversations can take place in near real-time, through technologies
such as instant messaging and mobile SMS. The vast majority of work in
this area has been in the interest of “providing social context for interaction
by providing cues about users’ presence and activities” (Erickson et al.,
2006). These systems reveal real-time and historical online interactions
between participants, while ignoring the content of the messages (e. g.,
Donath and Viégas, 2002; Erickson et al., 2006; Erickson and Laff, 2001).
Therefore we do not classify them as linguistic visualization.

Tat and Carpendale (2002) focus more on the content of online chat in
their prototype BubbaTalk, illustrating volume of text, timing of messaging,
and the use of messaging conventions such as all-uppercase for shouting.
The visualization itself does not display words, but rather uses abstract
representations to convey the dynamics and general character of the con-
versation as based on several surface features of text (see Figure 3.16a).
Similarly, Backchannel (Stamen Design, 2006) provides a real-time view of
the volume and direction of message passing in an IRC channel (see Fig-
ure 3.16b). Both BubbaTalk and Backchannel provide up-to-date views in
the context of the recent history of the conversation, but are not linked
with any NLP. Visualizations of the history of instant messaging chat
have also been reported (Tat and Carpendale, 2006), but as they present
a cumulative view of the history, they are more closely associated with
asynchronous communication visualizations.

Asynchronous Communication

Asynchronous communication is communication in which there is a time
delay between a message being sent and received. This includes the text-
based services that store persistent messages, such as email, newsgroups,
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(a) BubbaTalk represents six conversants by large coloured clouds arranged around a circle.
Messages flow between conversants, leaving traces of their paths. Words written by each
participant hover around their cloud, and simple features of the text are encoded using
symbols (Tat and Carpendale, 2002).

(b) Backchannel (Stamen Design, 2006). Messages flowing between participants in an IRC
room are visualized as increasingly darkly shaded edges. Total volume of text per participant
is shown as a blue bar beside the name.

Figure 3.16: Visualizations of real-time communication. Reprinted with
permission.
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Web forums, blogs, and co-edited wikis. The line is blurring between
synchronous and asynchronous: services such as Twitter provide rapid
dissemination of short messages which are often replied to immediately
(synchronous), but are also archived in a history for future reading and
reflection (asynchronous). As the majority of the published visualizations
of Twitter data aggregate and analyze the historical data, we will discuss
this form of data under content analysis (§3.4.2).

Large-scale, many-to-many discussions, such as Usenet and Google
Groups, present opportunities for diverse conversation but also pose chal-
lenges to finding valuable information among the thousands of messages
posted daily. Work in this area is generally focused on the activity and
connections between participants, not the linguistic content of the postings.
For example, Viégas and Smith (2004) and Smith and Fiore (2001) describe
navigation tools designed around authorship data. These systems aim to
graphically represent the population of authors in a particular newsgroup,
making it easy to discover the most active authors by number of mes-
sages and period of time. Viégas et al. (2004) uses the history of changes
within Wikipedia entries to track patterns of collaboration and conflict over
co-authored documents.

An example of a visualization which is more focused on the linguistic
content of the messages is the Loom (Donath et al., 1999), which scores
newsgroup messages using a set of regular expression rules to roughly
match emotion (e. g., profanity=anger) and then visualizes emotional
content in a matrix plot (see Figure 3.17).

3.4.2 Content Analysis

We choose the generic name content analysis intentionally to be inclusive
of approaches to visually analyzing many types of text repositories: blogs,
newspapers, literature, patents, etc., with the goal of understanding the
content. Types of data one may seek to visualize for content analysis
include emotional content (Gregory et al., 2006), themes (Wise et al., 1995),
relations amongst named entities (Stasko et al., 2007; Weaver et al., 2007)
(see Figure 3.12), lexical choice, writing style, and authorship (e. g., Kjell
et al., 1994; Plaisant et al., 2006), and patterns of repetition (Eick, 1994;
Wattenberg, 2002; Wattenberg and Viégas, 2008) (see Figure 3.11a).

In the fields of CL and NLP, it is common to refer to a large collection
of text documents as a corpus, which is used to train a model (e. g., Collins,
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Figure 3.17: Loom visualization of emotion in asynchronous commu-
nication (Donath et al., 1999). © IEEE. Reprinted with permission.
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2004). However, we mean corpus in the general sense of “collection of
documents” here, not necessarily as linguistic resource.

Linguistic visualization provides for content analysis in three main
ways: by visualizing data about individual documents, by visualizing re-
lationships between documents in a corpus (corpus overview — discrete),
and by visualizing aggregate data about a corpus or a subset (corpus
overview — continuous). These subcategories are related in that visual-
izations of individual documents may be used as small multiples (§2.3) to
provide a discrete corpus overview, or a semantic zoom operation may
adjust the granularity of the view, merging documents into a continuous
corpus overview.

Individual Documents

Visualizations of individual document content take two common forms:
synoptic visualizations for quick overviews and visualizations specialized
for discovering patterns within and between documents. In the remain-
der of this section we will review significant examples in each of these
categories, describing how their feature sets compare.

Synoptic visualizations of text most often use a selected subset of the
language to create a glyph based on word occurrence counts. Glyphs are
then combined in small multiples visualizations to perform comparisons.
Glyph techniques include Starstruck (Hetzler et al., 1998b), which creates
glyphs by arranging lines of varying length in a circular pattern, and
Gist Icons (DeCamp et al., 2005), which builds on this idea by drawing a
smoothed contour around this pattern (see Figure 3.18a). The vocabularies
used are either restricted small-sized user-selected term sets (Starstruck)
or larger, automatically selected sets using latent semantic indexing (Gist
Icons). The selection of word sets with latent semantic indexing quickly
finds a reasonably sized set of terms related to concepts of interest; how-
ever, to the viewer of the visualization, the selection and grouping of
terms can sometimes appear non-intuitive. The high number of dimen-
sions in the Gist Icons may exceed the viewer’s ability to process precise
meaning from shape, which is characterized as quantitative “with effort”
in Table 2.1.

Other synoptic visualizations of document content use space-filling
techniques to provide an overview of the vocabulary a single document,
such as tag clouds and TextArc (Paley, 2002). TextArc is a visualization
which lays out sentences clockwise around a circle, and words are placed
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(a) Glyph-based document content visualization with Gist Icons (DeCamp et al., 2005).

(b) A TextArc visualization of Alice in Wonderland. Instances of ‘rabbit’ are highlighted in the overview and
detail (Paley, 2002).

Figure 3.18: Visualizations of document content. © IEEE. Reprinted with permission.
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within the circle, closest to their places of appearance (see Figure 3.18b).
Thus a common theme, found throughout a text, will be placed near the
middle of the circle while a word occurring mostly near the middle of the
text will be close to the 6 o’clock position. A linked view provides the
ability to read the source document in context.

A second category of document visualizations is those created to reveal
patterns within texts. The previously discussed FeatureLens (Don et al.,
2007) (see Figure 3.7b) suggests repeated phrases which may be of in-
terest, and visualizes analyst selections, while Arc Diagrams (Wattenberg,
2002) provide an overview of repetition throughout a document. Other
pattern-based visualizations focus on distributions of significant features
in a document such as emotion (e. g., extensions (Oelke et al., 2008) of Tile-
Bars (Hearst, 1995)), or hand-annotated properties (e. g., Compus (Fekete
and Dufournaud, 2000)). The Word Tree (Wattenberg and Viégas, 2008)
(see Figure 3.11a) is an example of a pattern-based visualization focused
on repetition in context. While Word Trees provide a unique view on
repetition, overall word frequencies and full document overviews are not
visible.

Discrete Corpus Overview

Document corpora can be visualized by a systematic and meaningful
display of their members. Characteristics of documents in the corpus,
such as their relationship to other documents, their length, or keywords,
have been encoded visually. An example of a discrete corpus overview
is Galaxies, based on the familiar visual scene of a starry night sky (Wise
et al., 1995). Galaxies are built up as an emergent form of blue-green
points (docustars), each representing a document in the corpus, clustered
around orange topic centroids (see Figure 3.19a).

As an extension to the Gist Icons idea, DeCamp et al. (2005) propose a
small-multiples matrix views of icons, one per document (see Figure 3.19b).
As comparing the radius at an arbitrary position across multiple contoured
glyphs would be difficult, interactive supports provide the additional
cognitive aid of brushing interaction — if a word position is selected in
one glyph, it is highlighted in all for easier comparison. Also, glyphs may
be overlaid to compare their shape.
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(a) A Galaxies view of documents and document clusters in a news text database (Wise et al., 1995).

(b) A mock-up of the proposed Gist Icons small multiples view of a document corpus (DeCamp et al., 2005).

Figure 3.19: Examples of discrete corpus overview techniques. © IEEE. Reprinted with
permission.
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(a) A Themescape view of continuous thematic transitions over a spatialized document corpus (Wise et al., 1995).
© IEEE. Reprinted with permission.

(b) The Themail visualization of an email repository (Viégas et al., 2006). © ACM, Inc. Reprinted with permission.

Figure 3.20: Continuous corpus overview visualizations.
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Continuous Corpus Overview

Continuous corpus overview visualizations provide for generalized views
of the contents, or subset of the contents, of a corpus. In this approach
properties of documents are aggregated to create a high-level summative
visualization, whereas in discrete corpus overview each document is rep-
resented by an individual mark or glyph. For example, the Themescape
visualization is created by extracting topic words from individual docu-
ments in a Galaxies visualization, then smoothing the space to create an
undulating 3d surface which represents themes and thematic changes
across the spatialized document set (Wise et al., 1995) (see Figure 3.20a).
Interactions with a continuous corpus visualization may include semantic
zoom operations. An example of semantic zoom would be adjusting the
granularity of the displayed thematic terms in Themescape. Other examples
of continuous corpus overviews include the “haystack” aggregation views
of email collections in Themail. The haystack view reveals frequent words
extracted from collections of emails organized by month and year (Viégas
et al., 2006) (see Figure 3.20b; also discussed in Chapter 6). The previously
examined Theme River (Havre et al., 2002) (see Figure 3.11b) is also a form
of continuous corpus overview.

3.4.3 Information Retrieval

While information retrieval may be considered a field separate from both
NLP and InfoVis, we include it here as a problem area of interest to
linguistic visualization researchers when the corpus to be searched is
linguistic in nature. Presentation of search results is closely related to
providing corpus overview visualizations for content analysis. Indeed,
the discrete corpus overview mode of Gist Icons is also a form of linguistic
visualization for information retrieval, designed to assist people in finding
the document that best matches their interest. Gist Icons is conceptually
related to Tile Bars, an early and well-known example of a linguistic
visualization of search results. Tile Bars uses rows of horizontal bars, one
per search result, to display patterns of relative strength of query terms
within search results (see Figure 3.21a). The visual variable of value, which
is ordered, is used to encode the strength of the query term in a universally
understood gray-scale (Bertin, 1983). The visual variable of position is
used to indicate where in a document query terms co-occur. Despite
theoretically strong design choices, usability studies show that people
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are on average slower when using the interface than with a text-based
search (Hearst, 2002). Other deployed visual search interfaces, e. g., Kartoo
(http://www.kartoo.com) have yet to become widely popular. Hearst
(2009, ch. 10) offers a comprehensive review of this area and hypothesizes
that the lack of uptake of linguistic visualizations of search results may be
due to the linguistic visualizations attempting to play double duty as a
text to be read and a space to be visually perceived for search.

Linguistic visualizations for information retrieval have also been de-
signed for interactively specifying search queries (e. g., Jones and McInnes,
1998). Our VisGets interface is an example of a hybrid interface which
is both a visualization of the contents of a corpus, and a faceted visual
search interface for query specification. The individual VisGets (map, tag
cloud, timeline, etc.) operate both as linked widgets for query specification
and as visualizations of the contents of currently available documents
(see Figure 3.21b).

We do not specifically address this problem area in this dissertation,
choosing instead to focus on the other three areas and incorporate infor-
mation retrieval within our projects as needed. Design studies such as
DocuBurst (Chapter 5) and Parallel Tag Clouds (Chapter 6) provide infor-
mation retrieval capabilities through coordinated views used to retrieve a
particular document or paragraph of a document.

3.4.4 Linguistics and Computational Linguistics Research

While the majority of linguistic visualizations published by the CL and
NLP communities are static information graphics designed for communicat-
ing theories and results, there are examples of interactive visualizations
bridging the linguistic visualization divide, providing useful cognitive aids
to support linguistics, computational linguistics, and natural language
processing research. For example, we have already discussed the Deriv-
Tool (DeNeefe et al., 2005), CAIRO (Smith and Jahr, 2000) and Constella-
tion (Munzner, 2000) systems (see §3.2.1 and Figure 3.5).

Thiessen (2004) describes another linguistic visualization called connec-
tion maps, which was applied to the task of viewing semantic similarity
relationships between verbs in English. Verb similarities were calculated
using the general feature space of Joanis (2002). This visualization is based
on arranging elements of a highly connected graph into a grid format.
Each grid element is then subdivided into individual connection maps,

http://www.kartoo.com
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(a) The Tile Bars visualization reveals the occurrence and co-occurrence strengths of search terms within documents
matching a query (Hearst, 1995). © ACM, Inc. Reprinted with permission.

(b) The individual widgets in the VisGets interface operate both as corpus overview visualizations and visual query
specification widgets (Dörk et al., 2008). Reprinted with permission.

Figure 3.21: Visualizations for information retrieval.
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Figure 3.22: A connection map view of verb classes in En-
glish (Thiessen, 2004). Reprinted with permission.

which are a mini-grid representation of the entire grid. A connection
between element A and element B is indicated by placing B’s colour in
the cell of A’s connection map that corresponds to the position of B in
the main grid. Layout in the connection map is configured to optimally
minimize the distance between connected elements. Adjacent connected
verbs lead to adjacent coloured squares in the connection maps. By the
Gestalt law of proximity, adjacency of coloured squares will be intuitively
interpreted as a group, making easy the task of detecting verb clusters.
Connection maps are filled for all verbs in the collection, presenting an
overall view of the verb set which may enhance the ability of linguistic
researchers to discover patterns of relations (see Figure 3.22).

3.5 level of interactivity

We have proposed that a gulf (the linguistic visualization divide) seems to
exist in space of linguistic visualization: visualization designers do not often
connect interaction with live NLP, but rather pre-processed data; NLP and
CL researchers do not make use of the power of interaction when creating
visualizations of linguistic data. The result is that viewers of linguistic
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(c) Linguistically simple data transformations (word-counting) and often highly interactive visualizations.

Figure 3.23: The linguistic visualization divide.

visualizations are often not able to access or change underlying data or
data transformations (see Figure 3.23).

The level of interactivity dimension is related to the information visual-
ization pipeline (§2.3.2). For a given visualization, to determine its levels of
interactivity, we enumerate the points of the pipeline at which a person
can make adjustments: access/annotate/edit data, modify data transfor-
mations, modify visual mappings, modify the presentation transformation,
and modify the view transformation. The depth-of-interaction is the left-
most (closest to the data) access point available to the visualization user.
As a given visualization may support several levels of interactivity, and
the details of interaction are not always apparent from research reports, a
Bubble Sets diagram of the space of linguistic visualization along this di-
mension would not be practical. Instead, we will focus on some examples
to illustrate how this dimension can be used to describe a visualization.
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For example, the previously mentioned linguistic visualization State of
the Union (see Figure 3.8a) allows for selection of a focus column and focus
term, and provides brushing interaction to view the context of word oc-
currences. These are all changes to the presentation transformation. State
of the Union does not support data access/annotate/edit, view changes, or
modifications to the representational transformation. So, it operates only
at the presentation level of interactivity.

As a second example of how this dimension applies to the collection
of related work, consider the Word Tree linguistic visualization of the the
Many Eyes suite of tools (see Figure 3.11a) (Wattenberg and Viégas, 2008).
The basic concept of Many Eyes is to provide facilities for the general
public to upload data and discuss visualizations. Therefore, Word Tree
supports data annotation. It does not, however, support data editing.
Linguistic datasets in Many Eyes are not editable through the visualiza-
tion or website (they must be re-created to change). Word Tree also does
not provide an access facility to interactively transition between using
the visualization and viewing the underlying source text related to the
current view. Word Tree provides for modifications to the data transforma-
tions through adjusting filters on the data (root tree at a different word).
Presentation transformations (highlight items, layout tree left-to-right or
right-to-left) are supported, but view transformations are not (the zoom
factor is automatically set to fit the tree). Therefore, the levels of inter-
activity for Word Tree are data annotation, data filter, and presentation
transformation. The deepest level of interaction for Word Tree is at the
data annotation level.

3.6 type of linguistic resources

The type of linguistic resources — data and algorithms — backing a
linguistic visualization vary from simple word counting to sophisticated
statistical models to expert-created linguistic ontologies. Figure 3.24

illustrates the related work in the space of linguistic visualization, grouped
by type of linguistic resources used in the visualization. We identify five
types of linguistic resource, roughly increasing in linguistic sophistication:
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word counts

How many times does a word occur (may include stemming)?

text structure

What is the pattern of sections, paragraphs, sentences?

entity extraction

What are the people, places, or emotion words?

statistical methods

Given a trained model, what phenomena are detected?

expert data

How does the data relate to an language-expert-created resource?

Word counting is the most commonly used type of linguistic resource.
For example, State of the Union presents a comparative view of word
counts over time (see § 3.2.5 and Figure 3.8a). Word counting can be
augmented with information about the structure of the text being ana-
lyzed. For example, both Tile Bars (see §3.4.3 and Figure 3.21a) and Text
Arc (see Figure 3.4.2 and Figure 3.18b) show the occurrences of words
distributed from the beginning to the end of the text of interest. Rule-
based entity extraction methods are also widely used, thanks in part to
the popularity of online entity extraction services such as Open Calais
(www.opencalais.com). Visualizations using this type of resource rely on
counts of specific types of words, such as personal names, place names,
and sentiment words (e. g., good, hate, excite). Named entity extraction is
especially common within the visual analytics community (see §3.2.9).

Moving away from the three simpler resources which rely on counting
and rule-based analysis, next we have statistical methods. One may
argue that a good rule-based extraction system (a very thorough set
of regular expressions, for example) may be equally sophisticated as a
trained statistical model. However, we separate these two methods as
they require a very different set of resources and algorithms — rule-
based systems may be hand-written, based on knowledge of the language.
Statistical models are parameterized based on intuition about the language
structure, and typically trained on many thousands of labelled examples.
Linguistic visualizations produced by the CL and NLP communities
often use statistical models, for example, DerivTool is connected to a
statistical translation model (see §3.2.2 and Figure 3.5). Finally, the most
linguistically sophisticated type of resource is the expert-created data.
This includes linguistic-created ontologies such as WordNet (Miller et al.,

www.opencalais.com
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2007) and hand-annotated texts such as the document used in Literary
Organism (see §3.2.7 and Figure 3.10b).

When the communities of practice are grouped on a high level into
linguistic experts (CL and NLP communities of practice) and others, we
can see a correlation between type of linguistic resource and community
of practice (see Figure 3.25). This is expected — it makes sense that
experts in linguistic algorithms and data tend to use more linguistically
sophisticated resources. This clearly highlights the linguistic visualization
divide.

3.7 summary

This chapter has explored the space of linguistic visualization using a five-
way categorization based on human- and application-centred measures.
Through this exploration, examples of highly interactive, but linguistically
naïve (e. g., TextArc (Paley, 2002)) as well as non-interactive and linguis-
tically sophisticated (e. g., Semantic Maps (Ploux and Ji, 2003)) linguistic
visualization. These two ends mark the linguistic visualization divide. The
dimensions of the space are summarized in Figure 3.26.

While we have selected five dimensions of categorization, there are
other ways to divide the space, such as across the contexts of use (in-
stallation/large screen/touch table/Web deployment). The dimensions
we selected to structure this chapter balance a focus on human and
application-centric aspects of linguistic visualization.

In the upcoming chapters we present our five design studies of highly
interactive linguistic visualization, closely coupled with NLP systems. In
each chapter, we classify how the design study fits into the space of linguis-
tic visualization and exemplifies a bridge across the linguistic visualization
divide. Where appropriate, chapter-specific related work and background
will be discussed to complement the projects reviewed in this chapter.
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(a) The CL and NLP communities are aggregated in a single set (blue) and correlate strongly with linguistically
sophisticated examples (pink).

(b) The non-linguistic communities are aggregated in a single set (green) and correlate strongly with linguistically
simpler examples (orange).

Figure 3.25: Bubble Sets timelines illustrating the correlation between community of
practice (cool colours) and type of linguistic resource (warm colours).
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Figure 3.26: The dimensions and values demarcating the space of linguistic visualization.





Part II

VISUALIZING REAL-TIME COMMUNICATION





4
VISUALIZING UNCERTAINTY IN STATISTICAL NLP

Items of data do not supply the information necessary for decision-making.
What must be seen are the relationships which emerge from consideration of the
entire set of data. In decision-making the useful information is drawn from the

overall relationships of the entire set.

— Jacques Bertin, 1983 (as translated from “Sémiologie Graphique”, 1967)

In this chapter we present our first visualization design study, which
is a generalizable decision support visualization that reveals uncertainty
in lattices generated by statistical linguistic algorithms. Or, more sim-
ply, this design study presents a visualization which helps a reader of
automatically translated or transcribed text to decide whether to accept
the algorithm’s suggested text or select an alternative from the normally
hidden options. The statistical algorithms of machine translation (MT) and
automatic speech recognition (ASR) underlying our visualization are de-
signed for real-time responsiveness, making them appropriate candidates
for coupling with visualization in a real-time communication scenario.
Through case studies in MT and ASR we show how our visualization
uses a hybrid layout along with varying transparency, colour, and size
to reveal the lattice structure, expose the inherent uncertainty in statis-
tical processing, and help people make better-informed decisions about
statistically-derived outputs. By supporting exploration of the alternatives
considered by these statistical algorithms, our visualization may lead to
the discovery of better solutions.

As with all the research presented in this dissertation, this design
study represents an initial foray into creating linguistic visualizations
that bridge the information visualization (InfoVis) and natural language
processing (NLP) communities of practice. The design is targeted at a
general audience of people who send and receive instant messages or use
speech transcription software — we assume no linguistic expertise.

The problem we consider in this visualization is how to use visuals to
improve machine translation results by bringing “the human into the loop”.
We strive for “walk-up-and-use” usability through careful selection of

95
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visual encodings based on the well-known properties of human perception
(see Chapter 2), as well as drawing on common metaphors such as ‘fuzzy’
meaning ‘uncertain’. While lattice structures are used as black boxes in
many processing systems, we know of no other visualization to support
their use in “human-in-the-loop” decision making.

The levels-of-interaction of this design study are at the presentation
level and the data access/edit level (see §4.5.4). Changes in presentation
such as varying the use of border transparency, edge colour and photo
size are supported. Interaction is also provided through two data change
operations which are persisted in the interaction history (chat log): input
new data and select an alternative best path. Note that unlike most
information visualizations, this design study does not allow for view
changes — the layout and zoom factor are automatically optimized for
reading the representation.

4.1 motivation

Many NLP applications are statistically based (e. g., Jelinek, 1998; Knight,
1999; Koehn, 2004). Their outputs represent a “best guess” by the algo-
rithm, given some training data, parameter settings, and input. These
best-guess outputs come from a very large collection of possibilities, each
ranked with a score. However, these systems present their result in a
black-box fashion, showing only a single response. Since no details about
probabilities, uncertainties, or the workings of the algorithms are provided,
it is easy to misconstrue the output as having a low uncertainty. This
lack of detail deprives us of the context necessary to make well-informed
decisions based on the reliability of that output.

4.1.1 Uncovering Hidden Information in Word Lattices

Applications such as MT and ASR typically present a best-guess about
the appropriate output as their result, with apparent complete confidence.
Internally these algorithms often generate many possible alternatives, all
with assessed degrees of uncertainty. These alternatives are stored in
lattice graphs, which are the underlying data structures in many statistical
processing systems, including many NLP applications. Lattices compactly
represent multiple possible outputs and are usually hidden from view.
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Figure 4.1: Statistical NLP systems often contain word lattices as an internal data structure,
used in a “black box” fashion, with a single best output provided to the viewer. This
design study seeks to expose the lattices using intuitive visualization techniques to give
additional control to the user of the NLP system.

Figure 4.1 illustrates the centrality of word lattices to a typical statistical
ASR system.

While general graphs and some subsets of graphs such as trees have
received considerable visualization attention, other important subsets
such as lattices have been largely ignored. Lattice graphs are used as the
underlying data structures in many statistical processing systems and
serve well in holding the possible ranked alternative solutions (Jurafsky
and Martin, 2000).

As evidence of the linguistic visualization divide, we can find represen-
tations of lattice graphs in published papers from the NLP community.
These information graphics are used to communicate data structures and
algorithm details to an audience of linguistic researchers. They are not
available real-time from working systems, they are not interactive, and
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(a) A simplified word lattice. Dotted lines represent time alignments (Collins, 2004).

(b) A sample word lattice transformed into a weighted finite state machine (Hall, 2005).

Figure 4.2: Depictions of word lattices from NLP research. Reprinted with permission.

do not visually encode the wealth of information, such as uncertainty
scores, available from the MT model. In our own previous work, we have
published manually-created sketches of word lattices for the purposes
of illustrating the structure of the data, which was used as input for a
parsing system (see Figure 4.2a) (Collins, 2004). Similarly, Hall (2005)
published several manually-drawn lattice representations for the purpose
of explaining how the data structure is used in MT and as an input to
a parsing system. Figure 4.2b shows an example of a word lattice rep-
resented as a weighted finite state machine. On the other side of the
divide, the graph drawing community has been very interested in tools to
interactively construct and display Galois formal concept lattices and Hasse
diagrams, neither of which are visualized using methods amenable to our
task (see Figure 4.3).

The design presented in the following sections draws on the aligned
spatialization of Figure 4.2a and the inclusion of uncertainty scores as
in Figure 4.2b. This is automatically drawn using a combination of grid
and force-based techniques to create a layout that focuses on multiple
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Figure 4.3: The Galicia tool for constructing and working with concept
lattices (without any connection to language) (Valtchev et al., 2003).
Reprinted with permission.

encodings of the uncertainties using position, transparency, and colour
(see Figure 4.4). These statistically-derived lattices are amenable to visu-
alization since the uncertainties are locally constrained. The uncertainty
encodings presented here are readily applicable to representations of
uncertainty in general graphs.

4.2 revealing uncertainty to support decision-making

Understanding about the human reasoning process informs us that, while
not idealized Bayesian decision-makers, people do make decisions based
on their analysis of the objective context of the problem and subjective
probabilities informed by their personal body of knowledge (Cohen, 1979).
For example, in the context of a natural language system such as MT, a
person makes a decision about the reasonableness of the output based
on their prior knowledge of likely constructs in the language. Based
on Cohen’s review of research on reasoning, we work with the assertion
that the quality of the decision about whether to accept the algorithm’s
best guess can be enhanced by knowing the uncertainty inherent in the
solution. That is, providing easy access to the objective context will enable
people to make better decisions. Since the effort a person will want to
expend in making a decision is proportional to the perceived importance
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Figure 4.4: A speech recognition lattice for which the statistically-identified best path is
not the best transcription. The best path according to the model is shown in green. Node
uncertainty is represented by position, fill hue, and edge transparency gradient. Edges
attached to the node under the mouse pointer are coloured gold.

of that decision, the algorithm’s best guess should remain obvious while
providing visual access to ranked probabilities. For instance, a person may
accept a confusing translation in casual conversation in an Internet chat-
room, but would reject the same problematic translation in a multi-lingual
business negotiation.

There are many aspects of language modelling that statistical processing
has yet to master — for instance, an output of speech recognition occurring
in the corpus we use is, “the prisoners resisted a rest.” Without our
visualization one would not know that “the prisoners resisted arrest” was
the second-highest scored hypothesis. While any native speaker would
guess the correct reading of the phrase, presenting it visually in parallel
with the algorithm’s best guess removes the puzzle aspect for a native
speaker but provides a learner with the needed support. By revealing
alternative hypotheses considered by the algorithm, and the uncertainties
associated with each, our visualization shows promise for facilitating the
process of recognizing and correcting of errors.

4.3 background

As information visualization as a field has matured, focus on visualizing
uncertainty in a dataset in conjunction with the absolute data values has
increased (Johnson and Sanderson, 2003). Amar and Stasko (2004) call for
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bridging of analytic gaps between data representation and analysis, and
one technique they suggest is to expose “black box” processes through
visualization of meta-data such as uncertainty. Examples from the liter-
ature that are relevant to our approach include using line thickness and
transparency to represent uncertainty in architectural drawings of ancient
structures (Strothotte et al., 1999) and using iso-surfaces and motion blur
to represent uncertainty in molecular (node-link) diagrams (Rheingans
and Joshi, 1999). Zuk and Carpendale (2006) present a theoretical analysis
of these and other uncertainty visualizations in which they summarize
the significant theories of Bertin (1983), Tufte (2001), and Ware (2004)
(see Chapter 2) and apply them as heuristics for evaluation of visualiza-
tions of uncertainty. We draw upon their analysis for design guidance. We
will reflect more upon our design choices based on these theories in the
following sections, after a brief review of lattice graphs and lattice graph
visualization.

Formally, a partially ordered set L is a lattice if, for all elements x and
y of L, the set {x, y} has both a least upper bound in L and a greatest
lower bound in L. Lattices are used in formal concept analysis (Galois
lattices), and have been previously visualized using simple force-directed
layouts (Valtchev et al., 2003). Lattice drawing has also been of interest to
the universal algebra and graph drawing communities, where the focus
has been on drawing Hasse diagrams: the edges must be straight lines
and the vertical coordinate must agree with the order. Reducing edge
crossings has been a primary concern (Freese, 2004). Our goal differs in
that we are not focused on understanding the particular formal structure
of the lattice, but rather using that structure to support understanding of
the data and the uncertainty represented by it.

The ‘lattices’ in statistical processing do not meet all conditions of this
formal definition. Intuitively, we can imagine a lattice in this work as a
partial order with a unique beginning and end. Seen as a graph, for every
node in a lattice there exists a path from the beginning to the end which
passes through that node. To our knowledge, neither lattices for statistical
processing nor uncertainty within lattices have been previously visualized
except for use in explanatory information graphics (see Figure 4.2a, 4.2b).
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4.4 data

The lattices generated by statistical processing are collections of nodes and
edges, each associated with a data value (for example, a word) and a score
(for example, an uncertainty). A lattice is generated as a representation of
the solution space for a given problem; any path from beginning to end
through the lattice represents an hypothesis about the solution. However,
the lattice may or may not contain the true solution. For example, a speech
recognition lattice contains all the potential transcriptions considered by
the algorithm. It may not, in fact, contain the correct transcription. Each
lattice has a best path through it, based on node scores as well as a true best
path which, while it may not have the best node scores, best matches the
true solution. Our goal is to use visualization to provide an opportunity
for people to combine the scores with their world knowledge to discover
the true best path or to reject the entire lattice.

In a lattice generated by a statistical process there may exist a unique
start and end node, representing the beginning and end of all possible
solutions. If such endpoint nodes do not exist, we create them, extending
edges from all starting and ending nodes to the new endpoints. Unique
endpoints provide for an easy to locate visual entry-point to reading
the lattice. Our visualization algorithm reads lattices from the statistical
processing (source) algorithm using either an interface customized to the
application, or the HTK Standard Lattice Format (SLF) (http://htk.eng.
cam.ac.uk). In our current work, we only use labels and scores on nodes.
We convert lattices with edge probabilities to have posterior probabilities
on the nodes using the SRILM lattice toolkit (Stolcke, 2002). Finally, we
retrieve the best path through the lattice, according to node scores, either
directly from the source algorithm or using the SRILM lattice toolkit.

When we discuss the uncertainty of lattice nodes, we do not strictly
mean uncertainty, as might be quantified by an entropic measure, for
example, but rather a more application-specific property that emerges
from the lattice which reflects the probability that the node is part of the
true best path. In particular, node scores are generally relative confidence
scores, not true probabilities, and the presentation of several alternatives
at any slice in the lattice is more an indication of the number of plausible
solutions, rather than of a small margin of preference among those alter-
natives. The score of a node, nevertheless, can be interpreted as a measure

http://htk.eng.cam.ac.uk
http://htk.eng.cam.ac.uk
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of certainty that the node is the correct choice for its span and appears in
the best path.

4.5 lattice uncertainty visualization design

Traditional statistical processing systems use a large corpus of data to
quickly produce a single hypothesis, drawing on a computer’s strength
in dealing with large amounts of data with the goal of quickly solving a
problem. However, if one is presented with the best result of a statistical
process, but the quality is so poor it is not useful, then the original goal
of providing convenience is not met. Building on the generalization of
human-computer optimization by Scott et al. (2002), we hypothesize that
by including a human “in-the-loop” we can leverage the intelligence of
the human and the processing power of the computer to quickly solve the
same problems with better solutions.

4.5.1 Design Goals

To meet this goal, we identified several constraints to guide our design
process:

◦ ensure easy readability of paths in the lattice;

◦ provide an intuitive visual mapping of uncertainty within the lattice
which supports the ordering of nodes;

◦ provide for visual pop-out of nodes of high certainty and nodes in
the optimal path identified by the algorithm;

◦ provide alternative representations of the data to clarify meaning,
where possible;

◦ in most cases, require no interaction;

◦ where interaction is necessary (providing detail in context and ma-
nipulation of best-path tracing), it should be lightweight and easy to
learn.

In order to ground our design in an understanding of human perceptual
capabilities, we investigated the properties of visual variables (§ 2.3.3),
leading us to select those that allow for high-speed estimation (Table 2.3.3)
to convey relevance, and that provide an ordered reading to convey
uncertainty. From this, we chose edge sharpness, hue, and position
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to make nodes of high confidence stand out, and uncertain nodes less
visually prevalent — these visual encoding choices are informed by Zuk
and Carpendale’s 2006 theoretical analysis of uncertainty visualizations.
Also, since value, size, position, and transparency are ordered (values
can be visually sorted), we used these to encode uncertainty to allow for
comparison of the relative scores between nodes.

Data and uncertainty about lattices is localized to individual nodes,
allowing us to take advantage of the concept of small multiples (repeated
graphical elements using the same encoding): once the mapping of uncer-
tainty to node appearance is understood, this can be used to interpret all
the nodes in the graph (Tufte, 2001).

4.5.2 Layout

In the graph drawing community, where the lattices are usually repre-
sentations of an algebra, the convention is to draw the order vertically,
from bottom to top (Freese, 2004). However, in the languages our visu-
alization is designed to support, text-based reading occurs left-to-right.
Additionally, temporal flow (as in the flow of speech signals) is usually
thought of as occurring left-to-right. So, to support our design goal of
easy readability, we align our visualization horizontally to allow for more
natural left-to-right tracing of paths.

Our layout algorithm is a hybrid of grid and force-based layouts. Ini-
tially, the lattice graph is laid out on a grid, anchored by endpoints which
are positioned according to the length of the algorithmic best path through
the lattice. This avoids large gaps or significant overlaps. Horizontal node
positioning is derived from the node order in the lattice from beginning
to end.

Vertical position is assigned to separate nodes covering the same span,
ordered by increasing uncertainty bottom to top. Because the algorithmic
best path is of most interest, we place it along the bottom, regardless of the
individual node scores. This anchors the visualization in the algorithm’s
best-guess solution and facilitates easy reading of it (see Figure 4.5a).
Position, the strongest visual variable, according to Bertin (1983), ensures
that the least important nodes (highest uncertainty) appear furthest from
central visual focus along the bottom. In other words, we assign spatial
rights to nodes most likely to be correct.
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The grid layout can sometimes result in overlaps for nodes with lengthy
labels and for larger lattices. We automatically zoom out the display
to attempt to fit the entire lattice without overlap, but must limit the
scale factor to ensure label legibility. To reduce overlap, we adjust the
layout using a force-directed energy minimization. An unconstrained
force-directed layout alone would create an unpredictable and unordered
layout (see Figure 4.5b). Thus, nodes are anchored by invisible springs
to their grid positions, and to each other by springs represented visually
as graph edges. Repellent forces are applied between nodes to reduce
overlap and the energy minimization is run for several seconds to stabilize
the layout. This hybrid layout allows any overlapping nodes to separate
while not moving far from their grid-determined position, balancing the
need to keep nodes in the rigid layout for easy left-to-right reading and
the demand that nodes do not overlap (see Figure 4.5c).

4.5.3 Uncertainty Encoding

Uncertainty in the lattice is foremost visualized through the presence
of alternative paths through the lattice: more paths can indicate greater
uncertainty, depending on the relative scores for the nodes in each path.
Uncertainty scores are used to colour the nodes using a range from
saturated blue to desaturated gray. However, continuous colour scales
generally should be avoided for numerical data (colour perception varies
due to several factors, including the size of items) (Ware, 2004). To com-
pensate for this, we redundantly encode the scores in the node border
using size and transparency. Hue, border size, and outer edge trans-
parency are all linearly related to the uncertainty score on each node, with
maximum and minimum visual values clamped to the maximum and
minimum uncertainty values within each lattice. This is a consequence of
our case study data in which node uncertainty is only comparable within,
not across, lattices. Note that if the source data had a consistent and
comparable notion of uncertainty scores across lattices, then the visual
encoding would be better as linearly relative to a global maximum and
minimum.

We present two alternatives for encoding, each with its own advantages
(see Figure 4.6). In the “bubble border” view, the node border varies from
a tight solid blue, indicating high confidence, to a transparent, wide, gray
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(b)

(a)

(c)

Figure 4.5: Layout construction: (a) rigid grid-based lattice, (b) force-directed layout, (c)
hybrid layout. The hybrid layout provides the regularity benefit of the grid-based layout
and the overlap avoidance of the force-directed layout.
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Figure 4.6: Two alternative encodings of uncertainty. The top, “bubble border”, uses
border thickness, hue, and transparency to convey uncertainty: tight, solid blue borders
have a higher certainty. The bottom, “gradient border”, uses blurring of the edges
through a gradient and variable transparency: more solid borders have higher certainty.
Both variations also use hue variation from bright blue (high certainty) to gray-blue (low
certainty).

border, indicating uncertainty. Large, semi-transparent borders lead to an
intuitive reading of uncertainty.

In the “gradient border” view, the node border varies from a crisp edge
to a gradient leading to complete blending with the background. The
gradient border is achieved through a linear blending of full opacity at
the node center to variable transparency at the outer edge. This effect
simulates semantic depth-of-field (Kosara et al., 2001) in which items with
crisp focus pop-out (a ‘preattentive’ effect (Table 2.3.3)). Even though the
gradient fill on the nodes in this view does not overlap the text label, in
informal testing we found that the blur effect seemed to make the labels
more difficult to read. So, while the gradient border may be more intuitive
and lead to a more immediate reading, the bubble border may, in the end,
be a more usable encoding.

In both cases, the use of transparency is supported by visualization
theory: transparency blends the visual variables of value and colour in a
redundant encoding from which an ordered reading is possible (Bertin,
1983). These techniques satisfy our goal: to coarsely and quickly indicate
relative uncertainty without providing specifics on the scores of each node.
In fact, the precise numbers are often not very meaningful: they result from
the settings of many variable parameters in the model which generated
the lattice and are generally only comparative within a particular lattice.

4.5.4 Interaction

Simple interaction techniques are provided: when hovering over a node,
its edges are highlighted in gold to disambiguate edge crossings (see Fig-
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Figure 4.7: Edges connecting a node are highlighted on mouse over to
clarify edge crossings.

ure 4.7). Nodes can also be dragged to further clarify edge attachment,
returning to their original location when released. By right-clicking nodes,
one can remove and add nodes to the green-edged best path, thereby
using their knowledge of the context (for example, their prior linguistic
knowledge) to reassign the best path (see Figure 4.8). Where others have
used iterative feedback to recompute a new best path through a (hidden)
lattice based on human feedback (e. g., Liu and Soong, 2006), we provide
complete control to the human decision maker. For our interface, an
iterative process is unnecessary as the entire lattice is visible. Furthermore,
iterative interaction would violate our minimal interaction design con-
straint. In the case studies to follow, we will explore how this functionality
can be applied in real implementations.

4.6 case study: machine translation

Machine translation offers much promise for improving workplace com-
munication among colleagues situated in offices in different parts of the
world. Many corporations use instant messaging chat as a means of
facilitating communication, however current translation quality is too low
to feasibly use it in a critical setting.
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Figure 4.8: Lattice from Figure 4.4 with best path corrected.

In this case study we present a prototype visualization system for
instant messaging conversations which uses our lattice uncertainty visual-
ization to reveal the uncertainty in the translation and provide alternative
translations when available (see Figure 4.9).

Several visualizations of different aspects of instant messaging conversa-
tions have been reported, for example, visualizations have been created of
chat histories (Tat and Carpendale, 2006) and real-time conversations (e. g.,
Tat and Carpendale, 2002; Viégas and Donath, 1999). However, to our
knowledge, no one has investigated visualization as a support for a cross-
language chat.

Despite evidence that social spaces in the Internet are multilingual in
nature, these spaces still lack rich cross-linguistic communication (Herring
et al., 2007) and little research has been directed toward supporting cross-
lingual chat. Recent studies on cross-lingual instant messaging chat
in distributed workplaces show that poor translation quality negatively
affects conversations (Yamashita and Ishida, 2006). To our knowledge,
only a few commercial cross-lingual chat applications (e. g., http://www.
chattranslator.com) exist and they only present the best-path solution
to the viewer.

Visualization tools for translation researchers (e. g., Albrecht et al., 2009;
DeNeefe et al., 2005; Smith and Jahr, 2000) are related to our visualiza-
tion in that they provides a means for exploring alternative translations.
However, where we focus on providing a visual means to understand
translation uncertainty, targeted at end-users of translation systems, the

http://www.chattranslator.com
http://www.chattranslator.com
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other visualizations are tailored for examining and evaluating specific
word correspondences between languages. We will revisit these systems
in Chapter 7, which is more closely related.

4.6.1 Translation Architecture

We chose to work with instant messages as the data for uncertainty vi-
sualization in translation because they offer several advantages for this
work. They tend to be short, keeping translation time low and providing
an appropriate amount of data for a small-scale visualization. The result
should be a manageable number of alternate translations for chat partici-
pants to explore. We developed a bidirectional instant messaging client
which performs translation on messages it receives using a beam search
decoder for statistical phrase-based translation models. We trained the de-
coder, Phramer (Olteanu, 2006) (an open-source implementation of (Koehn,
2004)), on the English, Spanish, French, and German portions of the Eu-
roparl corpus (approximately 1M sentences in each language) (Koehn,
2003). The phrase-based translation is supported by a trigram language
model trained on the same data (Stolcke, 2002). The translation algorithm
evaluates the input data and creates a set of translation hypotheses, as-
signing confidence scores to each word and phrase based on occurrences
in the corpus. The best path through the lattice, according to the scores, is
labelled by the translation system. Using this data, we create a compact
lattice populated with all alternate translations which have a score within
a preset threshold of the best score. This graph, complete with scores for
each node, is then used as the lattice for visualization.

4.6.2 Interface

In following with norms of instant messaging client design, we maintain
a chat transcript: the green-edged best path is recorded to the chat history
when the next message is received. However, it often occurs that a node
along this path has a low confidence score (high uncertainty). The con-
versant can explore alternative translations for this span of the sentence,
or, if no reasonable alternatives exist, use the chat to request clarification
from the author of the original message. When out-of-vocabulary words
are encountered, or the translation uncertainty is particularly high, pho-
tos are retrieved from Flickr (http://www.flickr.com) using the original

http://www.flickr.com
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(untranslated) words as a search query. In some cases, images may easily
clarify the intended meaning (see Figure 4.10).

The main interaction is through the chat message box and reading the
data presented in the visualization. To facilitate accurate chat logging, the
ability to toggle node inclusion in the green “best path” is provided. In
this way, alternate translations can be selected and recorded in the log
instead. Selecting a photo node enlarges it, revealing a set of four images
about that node.

4.6.3 Discussion

This chat system was designed for two participants in online meeting,
neither of whom speaks the other’s language. Through our instant messag-
ing system, they converse, in some cases exploring the lattice uncertainty
visualization structure for clarification of a poor translation, and in other
cases rejecting the entire translation as too low quality based on the node
uncertainties.

This visualization and chat system was demonstrated at CSCW 2006 (Collins
and Penn, 2006). Informal participant feedback indicated an interest in
multi-lingual chat in general, and in the visualization of uncertainty. Par-
ticipants indicated they would like to try the system for a longer period
of time, in particular they liked the inclusion of photos on untranslatable
nodes. From using the visualization, we notice that for English translated
to French or Spanish, many of the lattices have ambiguities on single
words and short phrases, whereas for English to German there are longer
segments of ambiguity, likely due to the freer word order of German.

4.7 case study: automated speech recognition

Automated speech recognition is another application area where lattices
are commonly used in processing but only the best solution is reported.
The selection of the best path is dependent on the quality of the speech
input signal, the acoustic model, and the language model. With many
places to go wrong, speech recognition often produces incorrect results.

There have been investigations into using lattices to suggest alternative
translations in drop-down lists and in multi-modal interfaces, including
handwriting recognition (Suhm et al., 2001), but generally people remain
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dissatisfied with these interfaces. Kemp and Schaaf (1997) report on a text-
based tagging system which labels each word of speech recognition output
with a normalized measure-of-confidence score. However, in their work,
alternative hypotheses are not provided. In all cases, the lattice structure
remains hidden from view. Although much attention has been given to
supporting correction of transcription errors, we know of none that use
the lattice and its scores directly in “human-in-the-loop” interaction.

4.7.1 Recognition Architecture

Algorithms for automated speech recognition are generally arranged as a
pipeline of data transformations. For our purposes, we can think of this
pipeline as a three step process:

1. an acoustic model takes a digitized speech signal and creates a word
lattice with scores,

2. a language model re-scores the lattice based on probabilities of
words occurring in sequence,

3. the best path through the lattice based on the acoustic and language
model scores is output.

The NIST ’93 HUB-1 collection of word lattices represents data captured
from this process after step 2. This collection of 213 lattices comes from
high-quality recordings of 123 speakers reading excerpts of the Wall Street
Journal. Note that in the HUB-1 collection, some node labels may be
repeated, indicating multiple possibilities arising from uncertainty about
the start time or length of the word in the speech signal. The lattices
include acoustic and language model scores along the edges. We used
the SRILM lattice toolkit to calculate scores for the nodes and prune the
lattices to contain at most the 50 best unique paths. We also eliminate null
nodes (silences) and nodes with scores below 0.01% of the best scoring
node. While our visualization is decoupled from the actual speech signal,
it could easily be connected to the speech recognition pipeline directly.

4.7.2 Discussion

Examples of visualization of the HUB-1 lattices appear in Figures 4.4–4.8,
and there are many examples from this case study for which the best
path chosen using the node scores is not the true best path in the lattice.
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In informal testing, it seemed that in many cases, the correct path was
obvious upon reading the optional nodes for a particular span — only one
path made sense. Through using the visualization, we discovered that the
speech lattices seem to generally have a different structure than translation
lattices: where ambiguity in translation often presents an alternative or
two for a span of several nodes, speech recognition lattices show highly
localized ambiguity (see Figure 4.11). This stems from the difficulty of
acoustic models for speech recognition to recognize short words; a short
duration and low signal amplitude lead to elevated uncertainty. By cou-
pling our visualization of uncertainty with human linguistic knowledge,
it is possible to make better informed decisions about the quality of a
transcription, and to correct errors by selecting a new path in the lattice.
In this way our visualization could support real time editing of speech
transcripts on a sentence-by-sentence basis.

4.8 summary

This chapter presented a generalizable visualization for uncertainty in
lattices generated by statistical processing. The techniques for visually
encoding uncertainty may be applicable to other node-link structures, such
as Hidden Markov Model trellises, probabilistic finite state automata, and
general graphs. As our visualization reveals the search space considered
by common statistical algorithms in areas such as NLP, it could be useful
as a teaching tool.

Figure 4.12 summarizes how this design study fits into the space of
linguistic visualization. This study represents a visualization targeted at a
general audience, closely coupled with a statistical NLP algorithm and
applied to problems in the real-time communication domain. Interaction
is provided through two data change operations (input new data, select
an alternative best path). Selecting a new best path is a presentation
change as new nodes and edges are highlighted. Presentation may also
be changed by enlarging photo nodes to view additional images. View
changes are not provided as scaling is automatically calculated to fit the
entire lattice on the screen.

A challenging constraint on visualization for real-time communication
is that it occur in near real-time. Input is received, processed by the NLP
and visualized for the viewer immediately. Visualizations are transitory,
so the design should be targeted to facilitate quick interpretation.
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Figure 4.12: Uncertainty lattice visualization in the space of linguistic visualization.





Part III

VISUALIZATION FOR CONTENT ANALYSIS





5
VISUALIZING DOCUMENT CONTENT USING
WORDNET

It is in the homes of the idlest men that you find the biggest libraries... he knows
their titles, their bindings, but nothing else.

— Seneca the Younger (quoted in (Petroski, 2000, p. 26))

One of the diseases of this age is the multiplicity of books; they doth so
overcharge the world that it is not able to digest the abundance of idle matter

that is every day hatched and brought forth into the world.

— Barnaby Rich (1613)

Visualizations of individual document content is an area of active re-
search and interest as we transition to electronic reading devices and
e-libraries. Document visualizations based on simple attributes such as
relative word frequency have become increasingly popular tools (Viégas
et al., 2009; Viégas et al., 2007). This chapter presents a design study, called
DocuBurst , which goes beyond previous document content visualizations
to grant spatial rights to an expert-created structure of language, using it
as the backbone for semantically organized visualizations of document
content.

Within the space of linguistic visualization, the target audience of this
design study is a general public or domain expert audience. This design
study addresses the problem area of content analysis, specifically by
creating semantically-organized views of text. A viewer can interact
with DocuBurst in many ways, including accessing (loading) new data,
filtering data (altering the data transformation), highlighting and resizing
elements (altering the presentation), zooming and panning (altering the
view). The linguistic resources used in this study are word counting and
the expert-created ontology WordNet.

The interface is multi-dimensional, coordinating views of the DocuBurst
glyph with a zoomable text selection widget and a full-text panel for
detailed reading. Through the use of the ordered visual variable trans-
parency, and the selection of a leafy colour green as the main encoding

121
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hue (Stone, 2003), encoded values within DocuBurst should be intuitively
perceived (“walk-up-and-read”).

DocuBurst is in some ways the simplest of our realized integrations of
linguistics and visualization, using a fixed ontology structure and word
counts (normalized by polysemy scores). From a linguistic viewpoint, it
illustrates the semantic struction of the language as conceived and refined
by expert lexicographers over many years. From an information visualiza-
tion point of view, it quickly reveals the relative usage of particular nouns
and verbs in a long text, and provides for visual summaries at interactively
varying levels of detail. It acts as a form of tag cloud or word cloud with the
added advantage of structured, familiar, and additive relations between
words. DocuBurst brings surface statistics like word counts together with
important linguistic data structures and makes it interactively accessible.

5.1 motivation

“What is this document about?” is a common question when navigating
large document databases. In a physical library, visitors can browse
shelves of books related to their interest, casually opening those with
relevant titles, thumbing through tables of contents, glancing at some
pages, and deciding whether this volume deserves further attention. In a
digital library (or catalogue search of a traditional library) visitors gain
the ability to coalesce documents which may be located in several areas of
a physical library into a single listing of potentially interesting documents.
However, the experience is generally quite sterile: the interface presents
lists of titles, authors, and perhaps images of book covers. In feature-rich
interfaces, page previews and tables of contents may be browsable. If the
library contents are e-books, users may even open the entire text, but will
have to page through the text slowly, as interfaces are often designed to
present a page or two at a time (to dissuade copying). Our motivation
in this design study is the possibility to bring some of the exploratory
experience to digital libraries by creating interactive summaries of texts
which are comparative at a glance, can serve as decision support when
selecting texts of interest, and provide entry points to explore specific
passages. Providing decision support for selecting a text or region of text
is a type of cognitive aid to reduce the burden of information overload.

Prompted by the growing information overload problem (see § 2.1)
due to the lack of effective technology for managing the ever-increasing
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volume of digital text, developing overviews of document content has
been an active research area in information visualization for several years.
However, reported works such as those discussed in Section 3.4.2 do not
make use of existing richly studied linguistic structures, relying instead
on simple word counts, alphabetic spatializations (as in tag clouds) or
on analytic methods such as latent semantic analysis (DeCamp et al.,
2005), which can produce unintuitive word associations. Other document
visualizations do not necessarily share our goal of providing thematic
content summarization at varying levels of granularity (semantic zoom).
For example, TextArc (Paley, 2002) places all the sentences of a book into
a circular layout (see Figure 3.18b). The layout then positions words
based on the centroid of all occurrences of that word within the sentences,
granting spatial rights to the average position of the word in the text. The
resulting visualizations provide detail on structure and content without a
semantic organization or a consistent view that can be compared across
documents.

In DocuBurst, we provide a complement to these works: a visualization
of document content based on the linguist-constructed IS-A noun and
verb hierarchies of WordNet (Fellbaum, 1998) which can provide both
uniquely- and consistently-shaped glyph representations of documents,
designed for intra-document analysis and cross-document comparison.

5.2 organizing tag clouds and making summaries interactive

Previous approaches to the problem area of document content analysis
span both sides of the linguistic visualization divide. From the natural
language processing (NLP) side, researchers have developed a variety of
methods for extracting keywords and sentences from documents. For
example, Mihalcea and Tarau (2004) describe the Textrank method, a
graph-based ranking model for text processing. Textrank is an iterative
algorithm: once seeded with initial text units that best define the task
(the most important words), relations connecting text units (co-occurrence
relations) are identified and traversed to build a graph. While it may seem
like the next step could be “then we view that graph”, in fact it is “sort
vertices based on their final score,” essentially abstracting away the graph
structure. In the publication about the algorithm, an example sketch of
a Textrank graph appears (see Figure 5.1a). Yet, the leap is not made to
see the potential value of the graph itself as a resource. They do not
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investigate methods to automatically draw or interact with that structured
representation of the text. For example, the Textrank graph itself could
potentially be a form of a variable-granularity structured summary.

On the other side of the divide, the information visualization (InfoVis)
community has invented many document content visualizations, some of
which were reported in Chapter 3. In particular, most document content
visualizations simply spatialize words alphabetically and visually encode
their frequency in the font size (a “word/tag cloud”) (Dimov and Mulloy,
2008; Viégas et al., 2009). Hassan-Montero and Herrero-Solana (2006)
alter the layout of traditional tag clouds by clustering co-occurring terms
into rows (see Figure 5.1b). Through Gestalt proximity perception, the
structured version may provide additional cues about word senses (i. e.,
an ambiguous word like ‘bank’ occurring in a row with ‘river’ would
be less ambiguous). It could also reveal higher-level themes through the
collections of related words. Although the clustered tag cloud therefore
has some semantic structure, the structure is statistically determined,
not predictable. In related work, we introduced weighted brushing as an
interactive way to view co-occurrence relations between items in a tag
cloud while maintaining predictable alphabetic layout (Dörk et al., 2008).
Despite these layout and interaction innovations, Hearst (2008) criticizes
tag clouds, writing: “they are clearly problematic from a perceptual
cognition point of view. For one thing, there is no visual flow to the
layout.” She continues, “physical proximity is an important visual cue
to indicate meaningful relationships. But in a tag cloud, tags that are
semantically similar do not necessarily occur near one another, because
the tags are organized in alphabetical order.”

DocuBurst represents an attempt to bridge the divide. While we do
not use the specific techniques of Textrank or co-occurrence tag cluster-
ing, DocuBurst does draw on WordNet, a structured linguistic resource
designed by professional lexicographers. Through WordNet, DocuBurst
brings meaningful and predictable structure to the spatialization of docu-
ment content words.

In order to describe the details of DocuBurst, we will now review some
specific background relevant to this chapter, followed by an explanation
of the visual and interaction design and example scenarios of use.
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(a) The Textrank algorithm iteratively builds a lexical relationship graph. However, the graph
is never visualized — this sketch was published to communicate the method (Mihalcea and
Tarau, 2004).

(b) Although the clustered tag cloud has semantic structure, the structure is statistically
determined, therefore not predictable for visual search (Hassan-Montero and Herrero-Solana,
2006).

Figure 5.1: Contrasting approaches to document content visualization
over the linguistic visualization divide. Reprinted with permission.
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5.3 background on graph drawing

Radial graph-drawing techniques have been previously reported and
serve as the basis of this work. Of particular interest are the semi-circular
radial space-filling (RSF) hierarchies of Information Slices (Andrews and
Heidegger, 1998) and the focus + context interaction techniques of the
fully circular Starburst visualization (Stasko and Zhang, 2000). The In-
terRing visualization expands on the interaction techniques for RSF trees,
supporting brushing and interactive radial distortion (Yang et al., 2002).
TreeJuxtaposer illustrates methods for interacting with very large trees,
where nodes may be assigned very few pixels (Munzner et al., 2003). We
adapt techniques such as tracing the path from a node of interest to the
root and performing interactive accordion expansion from this work.

5.4 background on wordnet

Despite the growing dependence on statistical methods, many NLP tech-
niques still rely heavily on human-constructed lexical resources such as
WordNet (Fellbaum, 1998). WordNet is a lexical database composed ofwords, synsets, and glosses

words, collocations, synsets, glosses, and edges. Words are literally words as
in common usage. A collocation is a set of words such as ‘information
visualization’ which are frequently collocated and can be considered a
unit with a particular definition. For the purposes of this chapter, we
will use words to refer to both words and collocations — they are treated
equally in the visualization. Sets of synonymous words and collocations
are called synsets. Glosses are short definitions that the words in a synset
share, thus they are definitions of synsets. An edge in WordNet represents
a connection between synsets.

Synsets are the most important data unit in WordNet. Throughout
this chapter, we will refer to words in single quotes (e. g., ‘thought’), and
synsets using a bracketed set notation (e. g., {thought, idea}). A word may
be a member of multiple synsets, one for each sense of that word. Word
senses are ranked, either by order of familiarity (a subjective judgement
by the lexicographer) or, in some cases, by using a synset-tagged reference
corpus to provide numerical relative frequencies.

Synsets in WordNet are connected by many types of edges, depending
on the part of speech (noun, verb, etc.). WordNet contains 28 different
types of relations, but the most widely used part of WordNet is the
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hyponymy (IS-A) partial order. An example of hyponymy is {lawyer,
attorney} IS-A {professional, professional person}. When traversing this
graph, we remove any cycles (they are very rare) by taking a depth-first
spanning tree at the user-selected root. In this work we focus on the
noun hyponymy relationships in English WordNet (v2.1), rooted under
the synset {entity} having 73, 736 nodes (synsets) and 75, 110 edges, and a
maximum depth of 14. Verb hyponymy is also supported — that hierarchy
is smaller and takes a more shallow, bushier form. In addition, there is no
single root verb. The visualizations produced can be generalized to any
partial order of a lexicon.

5.4.1 WordNet Visualization

Many interfaces for WordNet exist, the most popular of which is the text-
based WordNet Search which is part of the publicly available WordNet
package. With the exception of the work of Kamps and Marx (2002a,b)
and Kamps et al. (2004) the existing interfaces for WordNet either provide
for drill-down textual or graphical interaction with the data starting at a
single synset of interest or provide path-tracing between two synsets (e. g.,
Alcock, 2004; ThinkMap, 2005). We do not know of any visualization of
WordNet that uses the graph structure to enhance a visualization of other
data such as document content.

5.5 design of the docuburst visualization

The combined structure of WordNet hyponymy and document lexical
content is visualized using a radial space-filling tree layout implemented
with prefuse (Heer et al., 2005). Traversing the tree from center to periphery
follows a semantic path of increasing specificity using the IS-A relation.
In WordNet, synset members are ordered according to their polysemy
count, which WordNet researchers call familiarity. Since more familiar
words come first, we chose the first word in a synset as the node label.
Label fonts are maximized, rotated to fit within the node, and overlap is
minimized.
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5.5.1 Linguistic Processing and Scoring

In order to populate a hyponymy hierarchy with word counts, several pre-
processing steps are necessary. Starting with raw text, we subdivide the
text into tiles based on the pre-existing structure, such as section headings.
If no structure is detectable, we break the text into roughly coherent topic
segments using a segmenter (Choi, 2000). For each tile, we label parts of
speech (NOUN, VERB, etc.) (Brill, 1993). Nouns and verbs are then extracted
and stemmed (e. g., books → book, going → go) using a morphological
processor (Didion, 2003). Punctuation is omitted. If short word sequences,
noted in WordNet, are found in the document, the words are combined
into a collocation, and treated as a single word.

Next we look up in which WordNet synsets the (word, part-of-speech)
pairs occur. Because pairs usually occur in multiple synsets, we do
not perform word sense disambiguation. Instead, we divide the word
count amongst the available synsets. If WordNet supplies relative sense
frequency information for a word, we use this to distribute the count.
Otherwise, we distribute the count weighted linearly by sense rank. This
results in weighted occurrence counts that are not integers, but the overall
results more accurately reflect document content. By dividing the counts,
we dilute the contribution of highly ambiguous terms. The full text of
tiles and their associated (word, part-of-speech, count) triples are then read
into the data structure of the visualization.

5.5.2 Visual Encoding

Node Size

Within the radial tree, angular width can be proportional to the number
of leaves in the subtree rooted at that node (leaf count) or proportional
to the sum of word counts for synsets in the subtree rooted at that node
(occurrence count). The leaf count view is dependent on WordNet and so
is consistent across documents. The word count view maximizes screen
space for synsets whose words actually occur in the document of interest,
thus the shape, as well as node colouring, will differ across documents.
Depth in the hyponymy tree determines on which concentric ring a node
appears. The width of each annulus is maximized to allow for all visible
graph elements to fit within the display space.
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Node Colour

It is possible to look at multiple senses of a word in one view. Views
rooted at a single word contain a uniquely coloured subtree for each
synset (sense) containing that word. In contrast, trees rooted at a single
synset use a single hue. Since luminance variation in the green region
of the spectrum is the most readily perceived, it is the first colour choice
(Stone, 2003, p. 30). Gray is used for nodes with zero occurrence counts,
since their presence provides a visual reminder of what words are not
used.

Transparency is used to visualize relative word or synset count. Similar
to the concept of value, transparency provides a range of light to dark
colour gradations, thus offering ordered (Bertin, 1983) and “pre-attentive”
(Ware, 2004) visuals (Table 2.3.3). Highly opaque nodes have many oc-
currences; almost transparent nodes have few occurrences. Word senses
that are more prominent in the document stand out against the more
transparent context.

Two ways to visualize word occurrence are provided: single-node and
cumulative. In the single-node visualization, only synset nodes whose
word members occur in the document are coloured. In the cumulative
view, counts are propagated up to the root of the tree. In both views,
transparency is normalized so maximum counts achieve full opacity.
When multiple documents are visualized, the cross-document maximum
is used to set the scale. These modes support a gradual refinement of
focus. The cumulative, or subtree, view uses the association of words
into synsets and synsets into a hyponymy tree to aggregate counts for
related concepts. Similar to the TreeJuxtaposer techniques for visualizing
differences embedded deep in a large tree (Munzner et al., 2003), by
highlighting the entire subtree containing the node, salient small nodes
can be more easily located, even if hidden from view by a filter. The
single-node view reveals precise concepts in the document and supports
the selection of synsets whose word members appear in the document
being analyzed. In addition, for a fully expanded graph, the single node
view may highlight nodes that are otherwise too small to notice. The
subtree and cumulative views are compared in Figure 5.2.

While transparency is an effective visual method for distinguishing
large differences and trends, it is difficult to read exact data values using
it. To facilitate the exact reading of synset occurrence counts for the
selected text tiles, we provide a dynamic legend (see Figure 5.3). Brushing
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(a) Synset {cattle, cows, kine, oxen} highlighted.

(b) Synset {world, human race, humanity, mankind, man} highlighted.

Figure 5.3: DocuBurst of a general science textbook rooted at {animal}.
Single-node colouring and occurrence count sizing were used with
zero-occurrence synsets hidden. The mouse hover point is revealed
by blue trace-to-root colouring. The dynamic legend (bottom right of
each image) is enlarged to show the detail.
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over a node reveals its score and where that score falls within the range of
the data.

5.5.3 Interaction

A root node can be a word, in which case its immediate children are the
synsets containing that word. Alternatively the visualization can be rooted
at a synset. Root nodes in the visualization are selectable by searching for
either a word or synset of interest. Once a root is chosen, the visualization
is populated with all its hyponyms.

As there are more than 70, 000 English noun synsets in WordNet, tech-
niques to abstract and filter the data are important. First, we provide
a highlight search function which visually highlights nodes whose la-
bel matches any of the given search terms. Highlight nodes have a gold
background and border, and a darker font colour, drawing attention to
even the smallest of search results. The transparency of the highlight
(gold) background is attenuated to the word occurrence counts so as to
not disrupt this data-carrying value and to provide for stronger pop-out
of search results with high occurrence counts.

Second, we implement a generalized fisheye view (Furnas, 1986) that
collapses all subtrees which are more than a user-specified distance from
the central root node. Changing this distance-based filter allows for a
semantic zoom, creating visual summaries of varying specificity. The
presence of non-zero word occurrence counts within collapsed subtrees
is indicated by using the cumulative colouring, in which counts are
propagated to the root. Optionally, all highlight nodes can be exempted
from the distance filter (by increasing their a priori importance in the
degree-of-interest (DOI) function), effectively abstracting the graph to
all synsets within a given distance from the root or highlight nodes (see
Figure 5.4).

Double clicking on a node of interest restricts the visualization to the
hyponyms of the node’s synset; double right-clicking reverses this action
by reloading the graph at the parent of the clicked node, thus providing
bi-directional data navigation through the hyponymy relation. To create
more space for the details of the children of a given synset, the angular
width of a node and its subtree can be manually increased using the
mouse wheel. This increase provides a radial detail-in-context view which
causes the node’s siblings to be correspondingly compressed. Changes to
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(a) Linked visualizations for details-on-demand.

(b) The details window showing the concordance lines for the selected synset.

Figure 5.4: A search for ‘electricity’ reveals synsets containing that word (gold hue). On
selecting a node, the distribution of the word is revealed in the tile browser. Selecting a
tile reveals the text with occurrences of the selected synset highlighted.
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Figure 5.5: DocuBurst of a general science textbook rooted at {energy}.
At right, mouse wheel interaction was used to shrink the angular
width of the subtree rooted at {radiation} and expand the subtree
under {electricity} exposing the previously illegible node {signal}.

a node’s angular width affect its children equally and its siblings in an
inverse manner (see Figure 5.5).

The visualization can be based on selected subsections of the document.
The initial view is based on all text tiles in the document, but a selection
can limit the tiles from which counts are drawn. Unrestricted visual pan
and geometric zoom of the display space are also supported, as well
as a zoom-to-fit control to reset the pan and zoom to a best-fit for the
currently visible tree. Rendering is dependent on the zoom factor: node
borders are not rendered when the nodes are very small, and labels are
not rendered when they would not be legible. All highlighting, navigation,
and emphasis interactions are provided in real time.

5.5.4 Accessing the Source Text

The full text can be read through accessing the text tiles at the bottom
of the interface. To navigate the text, we use a linked visualization:
the text tile browser. Rectangles representing the text tiles appears in a
linear, vertical array to the right of the DocuBurst. A fisheye distortion
(Bederson, 2000) facilitates navigation and selection of text tiles within this
list. Clicking any tile brings it into view. Furthermore, this visualization



5.6 example: document comparison 135

(a) First 2008 debate (b) Third 2008 debate

Figure 5.6: DocuBurst glyphs rooted at {skilled worker} reveal that the traditional U.S.
focus on military officers and veterans was eclipsed in the third U.S. Presidential debate
by discussions of plumbers.

can be used to see occurrence patterns in the document. By clicking nodes
in the DocuBurst visualization, synsets and entire subtrees can be selected.
Text tiles in which selected synsets appear show as varying intensity of
orange in the text tile browser, depending on number of occurrences in
the tile. Occurrences of those synsets and words are also highlighted in
the full text window.

Displaying concondence lines in a keyword-in-context (KWIC) is a
standard linguistic analysis tool in which all occurrences of a word of
interest are extracted and displayed with their left and right N (usually 5)
context words (Luhn, 1960). KWIC lines for selections are extracted and
shown in the concordance window. Patterns of orange in the tile browser
can indicate how localized concepts are in the document. For example, in
Figure 5.4, we see that {electricity} appears more frequently toward the
end of the document. We can use the tile browser and full text window to
quickly find occurrences of the terms of interest in context. By clicking the
text tile rectangles in the tile browser, we find, in the tile detail window,
that there is a chapter on ‘electricity’ at the end of the book.



136 visualizing document content using wordnet

5.6 example: document comparison

DocuBurst can be used to compare multiple documents. Trees rooted at
the same synset but coloured based on different texts will reveal relative
frequency differences between them. While the other examples in this
chapter were visualization of a high-school general science text book, we
also can apply the technique to other forms of electronic text. In Figure 5.6
we applied DocuBurst to the transcripts of two 2008 U.S. presidential
debates. Note that to ensure comparability when viewing multiple docu-
ments, colour scaling is based on the maximum count for visible nodes
across all documents.

A high-level view of the debates rooted at {person} revealed strong
colour for the {leader} and {serviceman, military personnel, military man}
subtrees. Drilling down revealed {senator} is a descendant of {leader} (both
participants were senators). Attention to military issues and veterans is
also expected given current conflicts. Examining the third debate showed
an additional region of colour under the {craftsman} subtree. Further
investigation, by switching to the occurrence count size function, revealed
a dramatic shift in concentration within the {skilled worker} subtree.
Military people became relatively less important compared to craftspeople
— specifically, plumbers. This is the effect of Senator McCain’s focus on
“Joe, the Plumber” in the third debate, and was the genesis point of this
phrase which dominated the remainder of the campaign.

5.7 summary

We have already briefly reviewed linguistic visualization for document con-
tent analysis in Section 3.4.2. Recall that visualizations of document con-
tent take two common forms: synoptic visualizations for quick overviews
and visualizations specialized for discovering patterns within and between
documents. Specialization in the type of document used as input fur-
ther divides the reported research: books and long documents, historical
documents, multilingual texts, and computer-mediated communication
archives such as emails, instant messages, and threaded discussions. In
this space, DocuBurst focuses on long texts, such as books, and provides
a visualization that is simultaneously synoptic, comparative, and allows
for deeper intra-document analysis of occurrence patterns.
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Freq Y* N N Y N Y* Y Y* Y* Y* 
Compare Y Y P N N Y Y Y Y Y 
Search N N Y Y P Y Y Y Y Y 
All words Y N Y Y Y Y Y Y Y N 
Pattern P+ Y Y* Y Y P+ P+ Y* Y* Y+ 

Table 5.1: Comparison of features available (Y), possible with a trivial
extension (P), or not possible (N) in document visualizations. * de-
notes cases that only visualize a selected subset of words; + denotes a
coordinated visualization. Rows and columns ordered by |N + 1/2P|.

To compare document visualizations, we order a list of the types of
features document visualizations have provided from most unique to
DocuBurst to the most common in other visualizations:

semantic indicate word meaning

cluster generalize by clustering words into concepts

features reveal extracted features (e. g., emotion)

suggest suggest interesting focus words/phrases

overview provide quick overviews of an entire text

phrases can show multi-word phrases

zoom support varying the semantic or graphical detail

read drill-down to original text

freq reveal frequency of individual words

compare compare multiple documents

search search for specific words/phrases

all words can show all parts of speech

pattern reveal patterns within or between texts

Table 5.1 summarizes how these features relate to DocuBurst and other
well known text visualizations. Notice that only DocuBurst provides some
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Figure 5.7: DocuBurst, without word count information, can be used as a form of visual
dictionary. This figure shows the various senses of the word ‘bank’.

reflection of semantics through integrated word definitions and the use
of a semantically-defined linguistic structure. Only DocuBurst and Gist
Icons (see §3.2.1) provide word clustering into higher concepts; however
in Gist Icons the groups are only one level deep and based on statistical
measures whose meaning may not be readily apparent to a reader. Note
that all visualizations which provide overviews of entire texts suffer from
screen real-estate issues with large texts.

Many organizations and individuals have expressed interest in DocuBurst.
Usage requests include as a way to manage document repositories (e. g.,
NATO Legal Department, the University of Calgary Library, the Me-
andre Project, Boeing Research, Verilogue, and several other information
technology firms). Potential use as a document comparison tool for foren-
sic linguistics was also suggested by developers at the RCMP. DocuBurst
has been featured in the media, including the Toronto Star (Bigge, 2007),
CBC Radio (Watt, 2008), and Fairchild Television (Liu et al., 2008).
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Figure 5.8: DocuBurst in the space of linguistic visualization.

Beyond use as a document content visualization, DocuBurst has at-
tracted the attention of educators interested in using the RSF glyphs as a
visual dictionary for teaching purposes — for example, a teacher wrote
to us: “DocuBurst has invaluable potential for writing and vocabulary
development at the secondary level.” An example of a DocuBurst glyph
used as a way to explore the various definitions of ‘bank’ appears in
Figure 5.7.

DocuBurst provides an overview visualization of document content
which is based on a human-centered view of language whereas previous
works were based on linguistically simpler, derivative statistical analyses.
While the statistical analyses previously used to generate semantically
arranged document content visualizations are lingusitically simpler than
our expert-design resource, they are arguabely also more complex to
use. An average reader may not see clearly why a particular statistical
algorithm associates seemingly quite different terms, making extracting



140 visualizing document content using wordnet

the higher-level concept challenging. DocuBurst may suffer from word
sense ambiguity problems, but the structure is predictable, regular, and
interpretation of the relations is straightforward. The visual design is
grounded in established research on human abilities in colour perception.
Semantic and geometric zooming, filtering, search, and details-on-demand
provide a visual document summary, revealing what subset of language is
covered by a document, and how those terms are distributed. The position
of DocuBurst within the space of linguistic visualization is summarized
in Figure 5.8.



6
PARALLEL TAG CLOUDS FOR FACETED CORPORA

Jargon serves lawyers as a bond of union: it serves them, at every word, to
remind them of that common interest, by which they are made friends to one

another, enemies to the rest of mankind.

— Jeremy Bentham (Bowring, 1843, p. 292)

While DocuBurst (Chapter 5) is a content analysis visualization of text
for a general audience, linguistic visualizations can also be tailored to
specific audiences, while remaining highly coupled to the data processing.
In this chapter we describe Parallel Tag Clouds, a lexical visualization
created for legal academics (domain experts) to aid in their investigation
of differences between the types of cases heard in the various U.S. Cir-
cuit Courts of Appeal. This visualization is closely coupled to several
linguistic manipulations, from simplistic techniques like stemming (and
reverse-stemming) to more the more computationally intensive G2 statistic
calculated over all words. The resulting visual interface retains easy access
to the underlying text.

6.1 motivation

Academics spend entire careers deeply analyzing important texts, such
as classical literature, poetry, and political documents. The study of the
language of the law takes a similar deep reading approach (Tiersma, 1999).
Deep knowledge of a domain helps experts understand how one author’s
word choice and grammatical constructs differ from another, or how the
themes in texts vary. While we may never replace such careful expert
analysis of texts, and we likely will never want to, there are statistical
tools that can provide overviews and insights into large text corpora in
relatively little time. This sort of distant reading on a large scale, advocated
by Moretti (2005), is the focus of this work. Statistical tools alone are not
sufficient for distant reading analysis: methods to aid in the analysis and
exploration of the results of automated text processing are needed, and
visualization is one approach that may help.

141
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Of particular interest are corpora that are faceted — scholars often try
to understand how the contents differ across the facets. Facets can be
understood as orthogonal, non-exclusive categories that describe multiple
aspects of information sources. For example, how does the language of
Shakespeare’s comedies compare to his tragedies? With rich data for
faceted subdivision, we could also explore the same data by length of the
text, year of first performance, etc. Documents often contain rich meta-
data that can be used to define facets, such as publication date, author
name, or topic classification. Text features useful for faceted navigation
can also be automatically inferred during text pre-processing, such as
geographic locations extracted from the text (Dörk et al., 2008), or the
emotional leaning of the content (Gregory et al., 2006).

In the legal domain, a question often asked is whether different court
districts tend to hear different sorts of cases. This question is of particular
interest to legal scholars investigating forum shopping (the tendency to
bring a case in a district considered to have a higher likelihood to rule
favourably), and this was the initial motivation for this investigation. Our
research question, then, is whether we can discover distinguishing dif-
ferences in the cases heard by different courts. We address this question
through examination of the written decisions of judges. The decisions
of U.S. Courts are officially in the public domain, but only recently have
high-quality machine-readable bulk downloads been made freely avail-
able (Malamud, 2008). Providing tools to augment our understanding of
the history and regional variance of legal decision making is an important
societal goal as well as an interesting research challenge. Beyond our
specific case study in legal data, we are interested in broader issues such
as easing the barriers to overview and analysis of large text corpora by
non-experts, and providing quick access to interesting documents within
text collections.

Our solution combines text mining to discover the distinguishing terms
for a facet, and a new visualization technique to display and interact
with the results. Parallel Tag Clouds bridges the linguistic visualization
divide by blending the interactive visual techniques of parallel coordinate
plots (Inselberg and Dimsdale, 1990) (see Figure 6.1a) and tag clouds (recall
Wordle, Figure 3.14) with statistical models of lexical significance created
by the natural language processing (NLP) community (see Figure 6.1b).
Rich interaction and a coordinated document browsing visualization allow
Parallel Tag Clouds to become an entry point into deeper analysis. In
the remainder of this chapter we will describe Parallel Tag Clouds in



6.2 background 143

(a) An example of a Parallel Coordinates Plot (Inselberg and Dimsdale, 1990) — each axis
represents a data dimension, each line represents a data item. Image in the public domain.

(b) A list of significant, or distinguishing terms for a document given a reference corpus (Lin
and Hovy, 2002). Reprinted with permission.

Figure 6.1: Contrasting approaches to corpus overview over the lin-
guistic visualization divide.

comparison to existing methods of corpus visualization, the interaction
and coordinated views provided to support analytics, our text mining and
data parsing approach, and some example scenarios of discovery within
the legal corpus.

6.2 background

In order to describe the details of Parallel Tag Clouds, we will now review
some specific background relevant only to this chapter, followed by an
explanation of the visual and interaction design and example scenarios of
use.
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6.2.1 Exploring Text Corpora

For the purposes of our work, we define facets in a corpus as data dimen-
sions along which a data set can be subdivided. Facets have a name, such
as ‘year of publication’ and data values such as 1999 which can be used
to divide data items. Attention to faceted information has generally been
focused on designing search interfaces to support navigation and filter-
ing within large databases (e. g., Healey, 2007). In faceted browsing and
navigation, such as the familiar interfaces of Amazon.com and Ebay.com,
information seekers can divide data along a facet, select a value to isolate
a data subset, then further divide along another facet. For our purposes,
we divide a document collection along a selected facet, and visualize how
the aggregate contents of the documents in each subset differ.

While there are many interfaces for visualizing individual documents
and overviews of entire text corpora (e. g., Collins et al., 2009; Havre et al.,
2002; Wattenberg and Viégas, 2008; Wise et al., 1995), there are relatively
few attempts to provide overviews to differentiate among facets within
a corpus. One notable exception is the radial, space-filling visualization
of Rembold and Späth (2006) for comparing essays in a collection (§3.2.5).
Others have created variants on tag clouds to contrast two specific docu-
ments (e. g., Clark, 2008a; IBM Research, 2009). None of these comparative
visualizations focus on both visualization and appropriate text mining as
a holistic analytic system, but rather use simple word counts to illustrate
differences among documents. The work most related to Parallel Tag
Clouds is Themail (Viégas et al., 2006), a system for extracting significant
words from email conversations using statistical measures and visualizing
them using parallel columns of words along a timeline (see Figure 3.4.2).
The visualization approach of Parallel Tag Clouds shares the focus on dis-
covering differentiating words within subsets of a corpus, and visualizes
text along parallel columns of words. However, Parallel Tag Clouds can
reveal significant absence, or underuse of a word, as well as significant
presence, or overuse. We augment the Themail approach with connections
between related data subsets. Parallel Tag Clouds are also visually similar
to the connected lists view of Jigsaw (Stasko et al., 2007) (§3.2.9), however
Parallel Tag Clouds use size-weighting of words in the display.

Shneiderman and Aris (2006) have previously explored the contents of
faceted legal document databases using matrix-based visualizations to
reveal the number and type of data items matching each facet value. Our
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work differs in that we seek to aggregate and visualize the contents of the
data items, not only their presence or absence. A matrix visualization ap-
proach would not be appropriate as our word-selection method, described
later, seeks to maximize the differences between corpus subsets. Rather
than the single vertical column of words that a words × facets matrix
would contain, our approach allows the entire space to be filled with a
wide variety of words.

VisGets, or visualization widgets, have been used to explore faceted
collections of Web-based streaming data (Dörk et al., 2008) (§3.4.3). Facets
are filtered using scented visual widgets (Willett et al., 2007) appropriate
for the data type, providing both an overview of the available data items
and a method to drill down along several facets simultaneously. A tag
cloud VisGet consists of a traditional tag cloud summarizing all available
documents — text differentiation along a facet is only achieved through in-
teractive brushing. The goal of VisGets is to provide coordinated overview
and navigation tools in a faceted information space, where our work
is customized to providing meaningful differentiating overviews across
facets within large amounts of textual data.

Finally, the Authorlines visualization (Viégas et al., 2004) provides an
overview of individual messages using arrays of circles, sized according
to message length. We borrow this visual encoding and extend it to small
multiples of bar charts in the document browser coordinated view, linked
to the Parallel Tag Cloud.

6.2.2 U.S. Circuit Court Decisions

The words of the iconoclast Bentham (see Chapter epigraph) were not the
last written on the topic of legal language. Law and language meet in
many academic ways: forensic linguists help solve crimes, judges make
semantic rulings on unclear contract wording, and social scholars take a
high-level view, studying the language of lawyers and judges (Tiersma,
1999). By analyzing the written decisions of the U.S. Circuit Courts of
Appeal, we hope to shed light on thematic and potentially linguistic dif-
ferences between subsets of the data. Differences in word usage between
courts has been previously studied using legal databases as a source for
historical lexicography (Shapiro, 2003). However, in that work, text-based
searches provided information on particular words of interest. Through
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Figure 6.2: Structure of U.S. Circuit Court data: Each court case contains various sections
(left). U.S. Court Circuits are multi-state regions (right). Court cases are also time-stamped,
allowing filtering by time (bottom).

text mining and visualization, we select words of interest and provide a
broad overview as an entry point to deeper analysis.

The U.S. Circuit Courts of Appeal are made up of 12 regionally-based
court divisions (numbered First through Eleventh, plus the DC Circuit)
and the Federal Circuit, which hears cases of national relevance, such as
patent-related appeals (see Figure 6.2). This data contains of 628, 000 court
decisions, each labeled by circuit. The judgments are faceted, because they
can be organized along several dimensions, such as the lead authoring
judge, the decision length, the date of the decision, or whether the lower
court was upheld or overturned. For our purposes, we parse the raw data
and divide it into subsets by circuit, but we could equally well subdivide
along other facets.

Each court decision is made up of several parts: the court name, the par-
ties involved in the case, the date of the hearing, the date of the decision,
the authoring and concurring judges, the main decision, optional concur-
ring and dissenting opinions, and optional footnotes (see Figure 6.3). In
the data we obtained, most sections were pre-labeled in XML, but there
were many errors, such as the date coded as the court name. The breaks
between main opinion and consenting/dissenting opinions were not la-
beled. We cleaned the data by re-parsing the full text and labeling each
section using regular-expression matching. Our visualization supports
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Figure 6.3: Each document, or case contains several mandatory elements, such as the
court name, date of decision, and parties involved, etc. Other sections, such as dissenting
opinions, may or may not be present.
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viewing Parallel Tag Clouds by dividing the data along the court facet
and loading cases from a selected time period. Comparisons can be made
between different courts across any of the textual parts of case data: the
entire case, party names, main opinions, concurring opinions, dissenting
opinions, and footnotes.

In the following description and accompanying illustrations we will
discuss examples pertaining to discovering distinguishing words within the
written decisions of each circuit court. While the method for discovering
words of interest is discussed in detail in Section 6.4, it is sufficient for the
following explanation to think of the selected words as characteristic or
representative of the court in which they appear, when compared to the
remainder of the corpus.

6.3 parallel tag clouds

Parallel Tag Clouds combine layout techniques from parallel coordinates
with word-sizing techniques from tag clouds to provide a visualization
for comparing large amounts of text. The basis of the visualization is
the arrangement of words of interest into parallel columns, one for each
distinct subset of the data across a facet of interest (see Figure 6.4). Of
several visual encodings tested by Bateman et al. (2008), font size was the
best way to convey importance, so we use it to encode a pre-assigned
score. We scale by font size rather than the area of a word, as area gives
undue visual prominence to short words. Words that are common across
columns are connected by nearest-neighbor edges. Edges are drawn with
varying width, sized relative to the words at the endpoints to reinforce
relative size differences across columns. An important distinction between
Parallel Tag Clouds and parallel coordinate plots is that in Parallel Tag
Clouds edges may bypass a column (parallel coordinates axis) when a
word is not present.

Through informal trials, we have found that the edges provide useful
information about the degree of overlap among columns in general, but
also tend to increase the complexity of the visualization and reduce the
legibility of the words. To reduce the problem, all edges are drawn
as ‘stubs’ that connect to each endpoint word and fade to transparency
between the words. These edge stubs indicate the presence and direction
of a connection, while not further cluttering the display and disrupting
legibility. An exploration of the many alternative designs for easing edge
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congestion while maintaining some visual overview of connections can
be found in Appendix C. We clarify edges through interaction: when
the pointer hovers over or selects a term, all occurrences of that term,
and the connecting edges between them, are fully drawn and highlighted.
Additionally, an entire column may be selected, making edges attached to
this column visible and revealing all terms it shares with other columns
(see Figure 6.5). This provides the ability to drill across the corpus: by
finding a term of interest in one column, one can easily discover others in
which it is present and expand exploration laterally.

We experimented with two arrangements of words: alphabetical and
ordered by size. Alphabetical arrangement was preferable for several
reasons. While ordering by size offers the ability to identify the most
significant words in each column (by reading across the tops), the layout
is not space-efficient. Inter-column spacing must be wider as all the
largest words cluster at the top. Alphabetical ordering distributes words
of different sizes throughout the vertical space, allowing columns to be
closer together. That is, we can place columns so close that two words
at the largest size will overlap, because two words at the largest size
are unlikely to be adjacent. Additionally, alphabetical ordering supports
visual scanning to determine the presence of words of interest.

6.3.1 Sizing by Rank and Score

In a dense visualization which has the special requirement that nodes are
words which must be legible, maximal use of space is crucial. In order
to maximize space usage, the default view of Parallel Tag Clouds sizes
words by their rank in the column. The result is that each column, as-
suming it has the same number of words, will have the same distribution
of sizes, thus the same length. This provides for efficient usage of the
vertical space and maximizes the average font size for all columns. How-
ever, information is lost about the relative magnitude of the underlying
scores which generate the ranks. As we use a significance threshold to
select words for the visualization, every word in the view is significant,
so arguably maximizing size over precision may be preferable. Sizing
proportional the maximum score across all columns may result in some
columns becoming very small if their relative scores are small. This can be
informative, and we provide this view as an option. For example, using
our scoring function of how distinguishing a word is for a particular court,
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(a)

(b)

Figure 6.5: Brushing on the label for a column highlights all edges
connected to that column, and where they lead. In (a) we can see the
Fourth has connections to many of the circuits to the West, particu-
larly the Sixth, but lacks similarities to the Northeastern circuits First
through Third. In (b) we see very few of the terms significant to the
Federal Circuit are also significant to other circuits.
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a shorter column would represent a court which is overall less different
from the entire corpus than a court with a long column (see Figure 6.6).

Outliers can be distracting to an analyst, and detrimental to the ability
to visually to discriminate among other data items which are closer in
value. Analysts often desire the ability to interactively remove distracting
data items from view (Wattenberg, 2006). Right-clicking a word in the
Parallel Tag Cloud removes it from the view, causing remaining items to
rescale to fill the space.

6.3.2 Exploring Documents in the Corpus

The initial population of the Parallel Tag Cloud occurs by selecting a facet
of interest to subdivide the corpus. In our implementation this is fixed:
we subdivide by court. However, we only visualize courts of interest.
For example, the Federal Circuit is quite different from the others, as
it hears mainly patent-related cases, so it may be omitted. Data is also
filtered by selecting a time period. We use scented widgets (Willett et al.,
2007) to simultaneously allow for courts of interest to be selected while
encoding how many cases are in that court for the selected time-frame.
After selecting a data range, the tag cloud is populated with the top N
words in each column, where N is pre-set to be maximal to allow for
readable font sizes given the current window height, but may be adjusted.
Larger values of N will introduce the need to scroll the visualization to
explore the entire tag cloud.

Text overview visualizations are generally most useful if an analyst
can interactively obtain additional information about specific words. As
our implementation of Parallel Tag Clouds draws on a large collection of
documents, we provide the ability to select terms of interest and explore
their distribution throughout the document collection. When a term
of interest is selected, a coordinated document browser visualization is
populated with bar charts representing the individual documents in which
that term occurs, organized in rows by a second facet in the data, such as
by year. The height of the bar is proportional to the number of occurrences
of the term in that document. When multiple terms are selected, each is
assigned a unique highlight colour on the tag cloud, and the document
glyphs become stacked bar charts. Multiple selections are treated as an AND

query, preventing an overload of document results. Results are grouped
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Figure 6.8: Detailed view of the document browser for ‘patent’ (blue)
and ‘claim’ (gold). These terms often co-occur. We have selected the
Federal Circuit, so cases not in the Federal Circuit are faded out.
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by year and ordered largest to smallest. A maximum of 100 results per
year are shown.

To provide a complete picture of the results, horizontal ‘distribution bars’
beside the year labels show the relative number of documents matching the
search terms and what portion of these are hidden. The total distribution
bar length is broken into two portions: the documents which are visualized
as glyphs in the document browser contribute to a fully opaque grey block,
hidden documents contribute to the semi-transparent region. Thus the
distribution bar reveals the proportion of available documents which
match the search query, and over which years, even when the individual
document glyphs are hidden to save screen space.

Views are interactively linked: brushing across a document icon in the
document browser highlights all the terms occurring in that document
which are also in the Parallel Tag Cloud (see Figure 6.7). Words are
highlighted by increasing the font size and fading out words that are
not in the document. Additionally, we highlight which corpus subset
contains the document by drawing that column in blue. This interaction
provides a lightweight form of document content overview, although only
words which are already in the Parallel Tag Cloud are shown. Tooltips
in the document browser reveal detailed case data, including the citation,
parties, authoring judge, and a keyword-in-context (KWIC) table showing
examples of the selected word in use (Luhn, 1960).

We provide filtering of items in the document browser by selecting
columns of interest in the Parallel Tag Cloud. When any column is
selected, documents from non-selected columns become partially trans-
parent (see Figure 6.7, right). We retain the presence of faded document
glyphs to give an indication of what proportion of total documents con-
taining the selected terms come from the selected corpus subsets.

Finally, an analyst may wish to read a particular document in detail.
Double-clicking a document glyph opens the source document in a Web
browser. Additionally, the full text of the document is visualized in a
separate tab using a Many Eyes tag cloud (Viégas et al., 2007).

In Figure 6.8 we show a detailed view of the document browser for
‘patent’ and ‘claim’, with the Federal Circuit selected. The distribution of
glyphs reveals that while the range of search word occurrences per case
(bar height) is quite large, the majority of the Federal Circuit cases contain
many occurrences of these words. Further investigation through hovering
on some of the short bars revealed that they are not cases of patent
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Figure 6.9: Data changes are highlighted in orange. Here we see the
emergence of ‘methamphetamine’ (second column from right) as we
move from 1990–1995 to 1995–2000. ‘Marijuana’ is present in both time
periods.

litigation, but rather uses of the word ‘patently’. The most significant
cases in 1999 and 2003 are not from the Federal Circuit, which is curious
and invites further reading as to why a patent case was heard outside the
Federal Circuit.

6.3.3 Revealing Change

As we provide interactive ways to filter the data backing the visualization,
such as selecting a time range, we also provide for visual highlighting of
changes in the visualization when new data is loaded. New words can
appear, for example, by selecting a different time period to extract from
a large corpus, or by adjusting the method by which words are selected.
When the data filters are adjusted, some words may be removed from
view, while others are added. We visually highlight all deleted words and
animate them out of view by increasing their size while simultaneously
fading them to transparent. This provides a hint at what has been removed.
In a second stage of animation, we reveal words that have been added.
These remain highlighted until the analyst cancels the highlights through
clicking an icon on the interface (see Figure 6.9).
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6.4 mining faceted corpora

The most common approach to visualizing text as tag clouds is to count
the word frequencies (e. g., Feinberg, 2008). While this provides a relatively
meaningful overview of a single text, or even a collection of texts treated
as one, word frequency does not have sufficient distinguishing power to
expose how subsets of a text collection differ. While one could compare
multiple frequency-based tag clouds for subsets of a document collection,
it is likely that these tag clouds will highlight similar words. If there
is enough text in each subset, on the order of millions of words, each
frequency-based tag cloud will start to approximate the distribution of
terms in the domain generally. That is, the most common words will
be similar in all data subsets. We would be unlikely, for example, to
find much to distinguish among different court districts, where the legal
language common among them will dominate. Such an approach may be
appropriate for comparing text collections where dramatic differences in
common terms were expected, or when similarities are desired.

The information retrieval community has long been interested in dis-
covering words that make a document or collection of documents distinct
from the background noise of a large corpus. These distinguishing terms
are often given higher weight as index terms for a document, for example.
Distinguishing terms have other uses, such as comparing corpora for
similarity and homogeneity (Kilgariff and Rose, 1998), or subdividing
text automatically based on changes in distinguishing terms (Hearst and
Karadi, 1997). While there have been many uses for discovering distin-
guishing terms in a corpus in applications such as information retrieval
and automatic summarization, interactive analysis tools for investigat-
ing distinguishing terms in a corpus have not been reported. In fact,
Rayson and Garside (2000) explicitly call for analyst intervention, claiming
that simply identifying terms is not enough: human expertise is needed
to understand why terms may be identified and if the reason is truly
meaningful in the analysis context. They suggest ‘the researcher should
investigate occurrences of the significant terms using standard corpus
techniques such as KWIC’. Interactive visualization, such as Parallel Tag
Clouds, can offer more powerful analytic avenues for deeper investigation
over standard corpus techniques.

There are a multitude of measures reported in the NLP community for
scoring and ranking distinguishing terms, and indeed much argument
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about their relative quality (e. g., Dunning, 1993; Kilgariff and Rose, 1998;
Morris et al., 2004; Rayson and Garside, 2000). Measures such as TF-IDF
(term frequency-inverse document frequency) (Spärck Jones, 1972) are
commonly used to select distinguishing terms for a paragraph, document,
or collection of documents. The Themail visualization (Viégas et al., 2006)
(Figure 3.4.2) uses a variant of TF-IDF to collect distinguishing terms from
a corpus of emails. While TF-IDF is an appropriate measure for detecting
distinguishing words in a text sample against a reference corpus, it cannot
highlight significant absence, nor do the scores it returns reflect a measure
of significance for which there are reliable thresholds. A common word
that does not appear in a document has a TF-IDF score of zero, the same
as a rare word that does not appear.

Often, multiple metrics are applied in weighted combination or in
sequence by re-ranking term lists. While multi-statistic methods may
return improved results, the numerical scores are difficult to interpret.
Indeed, the common practice is to heuristically choose a threshold and
discard everything below it (Inkpen and Hirst, 2002). We choose to
follow Rayson and Garside (2000) and use a G2 statistic, which is able
to approximate χ2 for words occurring 5 times or more. The G2 metric
can be interpreted as a measure of significance: higher G2 corresponds
a smaller p value. Or, to simplify: G2 tells us the probability that the
frequency of occurrence of a word in one corpus differs significantly from
another.

For low frequency words, Dunning (1993) shows that p values obtained
using a G2 statistic to lookup from a χ2 tables can be off by several orders
of magnitude. However, Morris et al. (2004) suggests a method to ap-
proximate p-values for low frequency events using the linear relationship
between the negative of the natural logarithm of p-values computed from
Fisher’s exact test and log likelihood ratio scores.

Some have argued that applying the statistic in hypothesis testing is
not appropriate given the non-random nature of text: some significant
differences among texts is always expected, making the null hypothesis
non-interesting (e. g., Kilgariff and Rose, 1998; Rayson and Garside, 2000)
. While this is certainly true for any two random documents, our texts
are subsets of a larger corpus in the same domain, and each subset of
text we compare consists of millions of words. With the increased sample
size, the expectation that the subsets will converge on the same domain-
specific overall word distribution grows. Thus, differences found may
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be significant. While hypothesis testing may be theoretically arguable
for judging significance of G2 scores, we follow Mueller (2008) and use a
p < 0.01 threshold of significance when visualizing distinguishing terms.
This allows us to reduce the number of identified terms, as we cannot
visualize all words, and to provide useful hints to an analyst comparing
the relevance of terms identified by our statistical tests. The G2 statistic is
calculated using the following contingency table and equations:

Target Subset Remainder of Cor-
pus

Total

C(word) a b a + b

C(other words) c− a d− b c + d− a− b

Total c d c + d

E1 = c ∗ (a + b)/(c + d) (6.1)

E2 = d ∗ (a + b)/(c + d) (6.2)

G2 = 2 ∗ (a ∗ ln(a/E1) + b ∗ ln(b/E2)) (6.3)

where C(word) is the count of the target word, and E1 and E2 are the
expectation values for the word frequency in the target subset and the
remainder of the corpus respectively. To find a significance level of
p < 0.01, we use Moore’s conservative approach, without assuming the
> 5 word occurrences needed for reliable approximation by χ2 tables:

G2 ≈ −2 ∗ ln(p) + 2.30 (6.4)

which gives us a G2 threshold of 11.15. We employ a Sidak correction
for repeated testing to adjust the significance levels. We assume 50, 000
repeated trials (the approximate number of word forms compared on a
typical run of our system) and adjust p as follows:

p′ = 1− (1− p)1/k (6.5)

where p′ is the adjusted level of significance, and k is the number of trials.
This gives us an adjusted p′ of 2.01 ∗ 10−7, which has a corresponding G2
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cutoff of 33.13, which we use as the threshold in our significance testing. If
a < E1, we know the statistic represents a lower than expected frequency
of occurrence, otherwise the actual occurrence is higher than expected.

While our prototype of Parallel Tag Clouds uses the G2 statistic, our
visualization is neutral to the scoring method applied to the terms: the
visual techniques would work equally well for a frequency-based metric
as for the frequency-profiling techniques we have described.

6.4.1 Occurrence and Case-Based Scoring

Experiences with Themail (Viégas et al., 2006) revealed that techniques for
identifying distinguishing words are prone to identifying words which
are highly occurring in a particularly long document, but may not be dis-
tributed throughout the corpus subset under investigation. For example,
in our analysis, ‘voters’ was identified as a distinguishing term for the
Fifth Circuit, however, further investigation revealed a single very lengthy
decision on an election-related class action which used the word ‘voters’
extensively. While this may be of interest to an analyst, it is important
to support easy discovery of terms which have high occurrence but low
distribution within the corpus subset. To address this, we measure two
G2 scores for each word: an occurrence-based score, and a case-based
score. In the case-based measure, we populate the G2 contingency table by
counting how many individual documents (court cases) the word appears
in at least once. As we will demonstrate in the analysis, the case-based
measure identifies terms which occur in a larger than expected number of
cases in a corpus subset, rather than an absolute number of occurrences.
Both measures have analytical significance and reveal complementary
information about a corpus. We provide for viewing Parallel Tag Clouds
based on either measure but we also provide for interactive tools to allow
for the two forms of score to be compared for a particular word of interest.
Additionally, the document browser can quickly reveal the distribution of
a selected word within the corpus.

6.4.2 Data-Rich Tooltips

While our visualization can only reveal a limited number of words per
parallel column, our word scoring measures assign values for all words
for all corpus subsets. For example, our measure of the distinguishing
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significantly high number of occurrences 

significantly high number of cases

frequency not a reliable indicator of significance

cases not significant
dotted lines indiciate significance cut off

Figure 6.10: The bar chart tooltip provides word score details.

nature of a term can identify words which occur more often than expected,
or less often than expected. Due to space considerations, we choose to
only show words which occur more often than expected. We also calculate
occurrence and case-based measures, but can size the tag cloud based
on only one. We provide for data-rich graphical tooltips which use bar
charts to reveal the score and the normalized frequency of occurrence
for a term across all subsets of the corpus, for both occurrence- and
case-based measures. The column in which the word under the mouse
appears is highlighted in blue to provide easy reference. Threshold lines
reveal the G2 significance threshold, and bars below the threshold are
faded out. These tooltip graphs can quickly reveal where a word which
is distinguishing in a particular corpus subset is unusually unpopular in
another, and whether a term identified using occurrence-based scoring
also appears in a significantly high number of cases in the selected court.

In Figure 6.10, we show a tooltip created by hovering on the word
‘electrocuted’ in the Eleventh Circuit. We can see that this term has a
significantly high score for the Fifth, Sixth, and Eleventh Circuits when
based on the occurrence count, and occurs less than expected in the
Second, Third, and Ninth (bottom left). Note that the significance bars are
at the baseline due to the large scale, so are not visible. However, based
on the case scores (top left), only the Sixth and Eleventh Circuits have a
significantly high score. This indicates that the occurrence-based score
in the Fifth Circuit must be due to a few cases with a high number of
mentions of this term.
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6.4.3 Data Filtering

Parallel Tag Clouds, as with any word-based visualization, cannot reveal
all the words in a given corpus given typically limited screen resolu-
tions. Significant filtering is necessary. In order to provide for interactive
visualization, we carry out several filtering steps at the pre-processing
stage. We optionally remove listed stop words from the data — words like
‘the’, ‘and’ that do not often carry meaning. Domain-specific stop words
are identified as the top 0.5 percentile by overall number of documents
they occur in, and removed. This captures terms such as ‘judge’, ‘court’,
and ‘circuit’ in our data. This filtering is optional because in linguistic
study these common words can be very informative if they are unevenly
distributed across a corpus.

To further reduce the data size, we identify the word frequency at the
40

th percentile when words are sorted ascending by overall occurrence
count. We then remove all terms with overall frequency below this cut-
off. The 40

th percentile was selected to remove much of the long tail
of terms which are unlikely to be identified as distinguishing — most
words removed only occur once or twice in the entire dataset. Our trials
have shown that the vast majority of terms with G2 scores above the
significance threshold have frequency > 7. This achieves a vast reduction
in the number of terms for which G2 scores much be calculated at run-
time, resulting in a significant speed increase and memory savings with
no change to the visualized output.

To reduce the data size further, we also optionally remove words begin-
ning with an upper case letter which do not start a sentence (initial uppers).
Identifying initial uppers is a quick way to approximate proper noun
detection in English. Aside from reducing the data, this technique was
necessary to remove place and judge names from the visualization. Initial
prototypes revealed that the highest scoring terms were almost exclusively
proper nouns. These terms are not informative, as we expect the names of
states and cities within a circuit, or the names judges writing decisions
in that circuit, to be distinguishing. While this was a useful sanity test
on our technique, we removed these terms in the current version. Proper
nouns are interesting, however, when viewing the distinguishing terms in
the parties section of the case data, as common litigants are identified.
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6.4.4 Reverse Stemming

In order to merge word forms with the same root, such as ‘jurisdiction’
and ‘jurisdictions’, we perform stemming using the Lucene Snowball Stem-
mer, an implementation of the Porter stemming algorithm (Porter, 1980).
However, the stemming algorithm strips all suffixes, leaving, for example
‘jurisdic’. While this is acceptable for counting purposes, we discovered
with early prototypes that it is surprisingly difficult to read a text visual-
ization consisting of word stems. As a result, during data pre-processing,
we count all occurrences of (word,stem) pairs generated by the stemmer,
and retain the most common mapping for each stem. Then, as a final
pre-processing step, we reverse the stemming on each term vector using
the most common mapping. Thus the visualization shows real words.

As an interesting side-effect, the word forms shown in a Parallel Tag
Cloud reveal the most common form of each word within the underlying
dataset. We were interested to note that most verbs appear in their past
tense form, such as ‘averted’ and ‘insisted’, but some appear in present
tense, such as ‘disagree’ and ‘want’. By selecting these words in the
tag cloud and examining KWIC views for the associated documents, we
found a separation between discussion of the facts of a case “The plaintiff
averted the problem.”, “the district judge erred when she insisted that . . . ”
and the commentary of the judges “I disagree with my colleagues because
. . . ”, “We want to reinforce . . . ”.

6.4.5 Visual Variations

The G2 score used to identify distinguishing terms provides information
about significant absence of a word, as well as an unusually high presence.
Through graphical tooltips, we provide both positive and negative scores
for terms which are present in the tag cloud. However, what if a term
is unexpectedly low in a circuit, but does not appear on the tag cloud
because it is not high in any other circuit? A tooltip will not help because
there is no item to create one for. To address this, we provide a view which
selects the top N words per column by the magnitude (absolute value)
of the assigned G2 value. Words are sized and ranked by the absolute
value of the score. Negatively scoring terms are distinguished by a red
hue. In Figure 6.11 we see ‘patent’ scores significantly low in all but the
Federal and DC Circuits. Perhaps more interestingly, we see ‘dissenting’
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Figure 6.12: Parallel Tag Clouds can also be created for two-word
phrases.

in the First Circuit, revealing that dissenting opinions are provided in that
circuit significantly less often than expected.

Extending our approach to two-word phrases brings several challenges.
Tracking multi-word phrases results in an exponential growth in the
dataset, and we have more data to fit onto the display space while main-
taining legibility. However, we have experimented with two-word phrases
using the existing Parallel Tag Clouds implementation, finding differences
in verb usage, such as ‘unanimously finds’ in the Sixth Circuit compared
to ‘unanimously agrees’ in the Ninth (see Figure 6.12).

6.5 implementation

In order to quickly analyze selected subsets of a large corpus such as the
history of the U.S. Circuit Courts of Appeal, significant data preparation
is necessary. Our implementation, written in Java, makes use of the
open-source Lucene search engine, both for its search capabilities, and for
the {word,count} term vectors it stores to support search. In a data pre-
processing step we extract parts of each case and pass them to Lucene for
indexing, stemming, and optional initial upper removal. We also collect
the document ID, court ID, and date for each document into a PostgreSQL
database. In further pre-processing the term vectors are retrieved from
Lucene for each document in the dataset. A module called the Term
Vector Composer takes the term vectors for each document, along with the
court ID and date, and creates yearly summary vectors of {stem,count[ ]}
where count[ ] is an array of counts across each court. The summary
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stemmed te
xt

Figure 6.13: Data flows through two stages: several preprocessing steps to create ag-
greagate term vectors in disk storage and a searchable Lucene index (red), and run-time
processing to retrieve vectors, calculate scores, manage interaction, and generate the
coordinated visualizations (blue).
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vectors are filtered to remove stop words, then written to the disk. At
runtime, selected year vectors are further composed into a single term
vector representing all words in a time range. This is passed to the scoring
module and on to the reverse stemmer and visualization. The sequence of
data processing operations is illustrated in Figure 6.13.

The indexing and term vector preprocessing operations take approxi-
mately ten hours using a 2.53ghz dual core processor with 3gb memory.
Preprocessing document term vectors into year vectors reduces the num-
ber of composition operations at runtime by a factor of 10,000 (but reduces
the time resolution to years). Retrieving and composing term vectors from
the disk takes approximately three seconds per year, with the majority of
this time spent on disk operations. As even thirty seconds feels like a long
wait for a visualization to be populated with a ten year span, after the
initial view is presented, we use a background thread to pre-cache term
vectors for ten years on either side of a selected time range. When the
visualization is closed, the summary vector and the years it contains are
saved. If the same time range is later requested, only one load operation
is necessary.

6.6 analysis

As we developed this visualization, we worked with two legal experts.
In this section we describe some of the phenomena that were revealed
through usage of the system. We do not claim these as original discoveries,
but rather as examples of how Parallel Tag Clouds can point to a range of
interesting patterns in a real-world data set.

6.6.1 National vs. Regional Issues

Because of the arrangement differences between court districts, case law
can reveal geographic cultural (and criminal) variations. For instance,
drug-related terms appear in most circuits, revealing the national di-
mension of this problem. Closer inspection, however, uncovers distinct
regional flavors: methamphetamine seems to plague midwestern and
western states the most, appearing in the Eighth, Ninth, and Tenth circuits.
Cocaine cases afflict the East, emerging in the Fourth, Sixth, Seventh, and
Eighth circuits. Heroin cases are concentrated in the Second circuit, which
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includes New York. These differences might point to either a regional
variation in drug use, or perhaps the level of prosecution (see Figure 6.4).

Issues challenging a particular jurisdiction are revealed through the
data. For instance, ‘deportation’ shows up in the Fifth Circuit, which
includes Texas, the state with largest crossing border in the U.S., ‘gun’
appears in the Seventh Circuit, whereas ‘copyright’ shows up in the Second
Circuit, which includes New York. The common occurrence of words,
shown through edges in the Parallel Tag Cloud, can reveal similarities
as well as differences. For example, in Figure 6.7, we see that the Fourth
and Sixth Circuits are similar by virtue of common terms: coal, mining,
pneumoconiosis. These similarities make sense since the two circuits are
adjacent and share some of the largest coal reserves in the country.

6.6.2 Language Variation

Court cases can also provide insight into variations in legal vocabulary and
linguistic idiosyncrasies of a particular court. For example, we discovered
the odd words ‘furculum’, ‘immurement’, and ‘impuissant’, all in the First
Circuit. By revealing the cases in the document browser and isolating the
First Circuit, we see that almost all occurrences of these terms originate
from a single judge, Judge Selya. A follow up Web search revealed that
Judge Selya is well known for his rich and often obscure vocabulary. One
legal expert we consulted was fascinated by the potential to use these
distinctive pieces of vocabulary as markers to track the influence of a
particular judge. For example, the expert pointed to the presence of the
word ‘ostrich’ in the Seventh Circuit. ‘Ostrich’ here refers to the ostrich
instruction, shorthand for a particular directive to juries. This term was
used almost — but not entirely — exclusively by that circuit over the past
ten years. Our legal expert pointed to this as meaningfully idiosyncratic
piece of vocabulary that might be used to track attitudes toward jury
instructions.

6.6.3 Forum Shopping

When bringing a lawsuit, a plaintiff sometimes has a choice between
several possible venues. The natural tendency to pick the venue whose
judges are historically most favourable to the plaintiff’s case is known as
forum shopping. This phenomenon stands out clearly using our tools. For
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example, we can easily see one class of forum shopping by examining data
from the years leading up to the creation of the Federal Circuit. The term
‘patent’ appears for the Seventh Circuit in the period 1970–1980, highly
scoring on both occurrence and case-based measures. This is an accurate
reflection of legal history: The Federal Circuit was created to combat the
varying treatment given to patent rights in the circuit courts; the Seventh
Circuit was one of the preferred venues (Crouch, 2006).

6.7 summary

Parallel Tag Clouds present a method for visualizing differences across
facets of a large document corpus. Combined with text mining techniques
such as measures of distinguishing terms, this approach can reveal lin-
guistic differences. Within the space of linguistic visualization, Parallel Tag
Clouds is a visualization method intended for the general public and
domain experts to perform content analysis and retrieve documents of
interest. It supports interactivity at the data access, data transformation
(change scoring function), presentation, and view. The visualization relies
on information about the text structure, extracted entities (such as proper
nouns), and statistical scoring methods such as G2. These values are
summarized in Figure 6.14.

In upcoming chapters we move away from interactive visualization for
content analysis and begin to examine the possibilities of visualizations
designed for linguistic, NLP, and computational linguistics (CL) research.
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Figure 6.14: Parallel Tag Clouds in the space of linguistic visualization.





Part IV

VISUALIZATION FOR LINGUISTIC RESEARCH





7
VISUALIZATION TO REVEAL SET RELATIONS IN
MACHINE TRANSLATION RESEARCH

The Milky Way is nothing else but a mass of innumerable stars planted
together in clusters.

— Galileo Galilei, 1611

The Milky Way is some more however a mass of the innumerable asterisks,
which are planted together in the batteries.

— English-French-German-English machine translation (Tashian, 2009)

While many data sets contain multiple relationships, depicting more
than one data relationship within a single visualization is challenging.
We introduce this design study as an example of collaboration with
natural language processing (NLP) researchers to visualize the multiple
relationships within their data.

The resulting algorithms, Bubble Sets, contribute a visualization tech-
nique for data that has both a primary data relation with a semantically
significant spatial organization and a significant set membership relation
in which members of the same set are not necessarily adjacent in the
primary layout. In order to maintain the spatial rights of the primary
data relation, we avoid layout adjustment techniques that improve set
cluster continuity and density. Instead, we use a continuous, possibly
concave, isocontour to delineate set membership, without disrupting the
primary layout. Optimizations minimize cluster overlap and provide for
calculation of the isocontours at interactive speeds. Case studies show
how this technique can be used to indicate multiple sets on a variety of
common visualizations.

7.1 understanding the problem context

This investigation was motivated by data analysis challenges faced by
NLP researchers working on improvements to their phrase-based machine
translation (MT) system. Their problem space is complex: the linguists’
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data consists of hundreds of thousands of sentence pairs (same sentence
in two languages) and millions of learned translation rules; the translation
algorithms run on hundreds of processors in a distributed computing grid;
and the team is made up of more than 10 researchers in several locations.

In order to better understand the issues facing our collaborators, we
conducted observations and interviews to better understand the domain-
specific problems they faced. Preliminary discussions revealed that they
spent most of their time sitting at a computer, programming. The data
analysis parts of their work — examining training data and testing output
— come in unpredictable phases with two weeks or more of coding between
cycles. This did not lend itself to long-term observational study, so a series
of contextual interviews was conducted in their research environment in
order to better understand the work situation.

Our discussions were wide-ranging and covered many areas of the data,
tasks, and work practices: we tried to be as broad as possible, investigat-
ing beyond our assumptions of where we thought visualization may be
generally helpful. We explored the individual researcher’s understanding
of their broader research project, their understanding of the algorithms
and data, their analysis tools (including ad hoc visualizations, white-board
sketches, and notebooks) and practices (using a cognitive walk-throughvisualization in-the-wild

of a typical analysis), their collaboration practices and collaboration sup-
port tools, and the ways they measured the success of their research.
Our observations hinted at a surprisingly sophisticated reliance on in-
formation graphics (custom-made digital graphics and hand drawings)
within a research group unfamiliar with the formal concept of information
visualization (InfoVis).

To better understand the nuances of the data analysis process, we
followed up these discussions with two days of participatory observa-
tion (Somekh and Lewin, 2004). In participatory observation, additional
insights can be gained through first-hand experience of the data analysis
process and context of study. Our collaborators trained me on their typical
data analysis tasks for several hours, and then put me to work on data
analysis using their existing tools and techniques. The outcomes of my
practice data analysis were reviewed with them for validity afterward.
Most of the observations were considered valid and noteworthy by the
domain experts.
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Table 7.1: An example table of translation rules.

7.1.1 Analysis Tasks in Phrase-Based Machine Translation

The task of our translation researcher collaborators is to examine the
outputs of the translation system in order to discover any problems in
the training data that lead to translation errors. Their technique generates
translations by translating segments of a source sentence into fragments
of a linguistic parse tree in the target language. The collection of possible
parse fragments is then assembled to create a complete parse tree. The
translated sentence is read from the leaves through in-order traversal.

This statistical syntax-based machine translation system operates with
two probability models: a translation model and a language model. The
translation model assigns probabilities that a given sentence segment
will translate to a particular parse tree fragment. The language model
assigns likelihoods that the candidate translation is a valid sentence in
the target language. The two models combine to result in an overall
score assigned to a translation candidate. The task of the researchers is
to diagnose translation problems that are most often the result of invalid
translation pairs in the translation model’s training data. To do this,
analysts examine hundreds of translation examples, manually tracing
problems in the translation back to the source segment and target parse
tree fragment pair that caused the problem.

Our NLP collaborators’ diagnostic process consists of two steps: [1]
review an entire (printed) English parse tree for grammatical or obvious
translation problems (see Figure 7.1), [2] if problems are found, scan
through several pages of tree fragment-translation pairs to discover prob-
lem sources (see Table 7.1). A third data resource, the derivation tree (see
Figure 7.2), connects the parse tree and the rules table: rules in the rules
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Figure 7.1: An example English parse tree.

Figure 7.2: An example English derivation tree.
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table are numbered, these numbers appear in the derivation tree such that
if the rules were substituted for their ID numbers, the parse tree would be
generated, along with alignment links to the foreign language sentence.
In discussions, we found that due to these cumbersome steps, the analysts
often skipped the derivation tree and scanned the rules table sequentially
for problems.

In their process, there was no way to directly see on the parse tree
which nodes corresponded to which rule ID, or which nodes in the parse
tree composed a tree fragment (an indivisible unit of translation). Instead,
they correlated the parse tree with the derivation tree to discover the rule
ID, then inspected the rule in the table for problems. Once a problematic
rule was discovered, the derivation tree could be used to trace which
nodes of the parse tree were involved (i. e., which nodes in the parse tree
were part of the problematic rule). When that set was discovered on their
print-outs, analysts often drew bubbles around problematic tree fragments
in the parse. Together we saw many opportunities to build an interactive
visualization to support this analysis process.

On a high level, the analysis process of our collaborators includes
mentally (or manually, through sketching) integrating multiple types of
relations within their data: parse tree fragments, derivation sequences,
and translation rules. Extrapolating from the process of our collaborators,
we observe that many types of data that are important to analysts, such as
social network data, geographical data, text data, and statistical data, often
contain multiple types of relationships. These can include set relations that
group many data items into a category, connection relations amongst pairs
of data items, ordered relations, quantitative relations, and spatially explicit
relations such as positions on geographic maps. Common approaches to
visualizing set data focus on solutions that integrate clustering and bound-
ing outlines. That is, when possible, set members are moved into close
proximity contained within a convex hull. When set member proximity is
not possible, alternate approaches make use of additional visual attributes,
such as colour, symbol, or texture, to indicate that discontinuous items
or groups are in fact members of the same set. With the translation parse
tree analysis task, we have a structured relation (the parse) and other
relations (tree fragment membership) which may not necessarily corre-
spond to node proximity in the tree. Therefore, we designed the Bubble
Sets visualization to provide continuous bounding contours, creating out-
lines analogous to the hand-drawn enclosures without requiring spatial
reorganizing.
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Before describing the details of our solution and its application to the
analysis challeges of our MT collaborators, we first review some back-
ground related to multiple-relation visualizations. We advocate generally
for careful consideration of spatial rights when visualizing multiple re-
lations and review the related work using spatial rights as a means to
differentiate between the types of visualizations that contain both con-
nection and set relations. Then we outline our algorithmic approach to
determining and rendering set boundaries, and illustrate our technique
with four case studies.

7.2 background

We use the common definition of set: a collection of unordered items,
possibly empty, with no repeated values. This includes Freiler et al.’s
(2008) definition of set membership by set-type attribute. Also, we include
sets that are defined implicitly by relationships amongst members (a
group of friends), sets which share data attribute values (all cars with
air conditioning), and sets which are arbitrarily specified (personally-
selected).

One approach to set visualization is to consider the set relation as
primary and create a spatial layout according to set membership (Freiler
et al., 2008). In this situation spatial proximity within sets can be achieved.
Another approach is to spatially adjust or re-cluster a given visualization
to bring set members into closer proximity, making it possible to visually
group them with a convex hull. Since both of the above approaches result
in spatially clustered set members, visually containing them in convex
hulls can be effective (Dwyer et al., 2008; Heer and danah boyd, 2005;
Perer and Shneiderman, 2006). Convex hulls are fast to calculate and
well-suited to cohesive clusters which are separated from neighbouring
groups. However, if the layout contains items that are not set members
but are within the set region spatially, these items appear within the
convex region determined by set members, and thus will appear to be set
members. This is seen in ScatterDice (Elmqvist et al., 2008) when scatter
plot axes change after sets are defined with the lasso tool.

Additionally, in some spatially assigned layouts, such as scatter plots,
and in other data representations, such as maps, the semantics of the
layout preclude spatial re-positioning. In these situations use of convex
hulls to encircle set members is not effective. Here set membership is
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sometimes indicated through discontinuous set outlines and/or the use
of colour and symbols. To provide a method that can visually contain
set members within an outline, we calculate a polymorph hull which can
have convex and concave regions. This hull can avoid including items
which are not set members, except in very dense arrangements where
a human would also have difficulty manually drawing the enclosure.
We use implicit surfaces similar to those used by Watanabe et al. (2007)
and apply them to create contiguous multi-set visualizations over multi-
relational information visualizations. The requirement for more complex
hull outlines to support set visualization within many different types
of visual representations is closely tied to the spatial semantics and the
concept of spatial rights.

The requirement for more complex hull outlines to support set visual-
ization within many different types of visual representations is closely
tied to the spatial semantics and the concept of spatial rights.

7.2.1 Assigning Spatial Rights

Since research into how we perceive visualizations indicates that the
spatial positioning of data items may be the most salient of the possible
visual encodings such as position, colour, shape, etc. (see §2.3.3), it may
well be important to preserve positioning of data items while providing
set membership visual containers. We refer to this concept of granting
primacy to the particular aspect of the data on which the layout is based
as spatial rights (see §2.3.6).

Social network data exemplify the different types of relations we con-
sider. These sorts of rich data sources are important to understanding
organizations, online culture, and computer-based collaboration. A con-
nection relation may be that friends are directly connected to one another,
or that supervisors are connected to their direct reports in a management
hierarchy. A set relation could be defined in several ways: based on
graph characteristics such as cliques of closely connected friends, based
on demographic information such as occupation or level of education,
or arbitrarily determined, for example, by an analyst. Set relations are
sometimes called categorical relations, where all items sharing a value for
a categorical data attribute comprise a set. Finally, additional ordered and
quantitative attributes may be present, and could be used to annotate or
position the visual items, such as arranging by date of birth or annual
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income. With these data, it is likely most intuitive to provide a layout
based on the connectedness information, as that is the ‘network’ in social
network analysis. In this case, it may not be possible or desirable to adjust
the layout to maximize set contiguity or density. Doing so may disrupt
the meaning provided by the connection-based layout. Traditional set
visualization techniques will not be adequate, and our approach may be
more applicable.

Traditionally, either the connection relation or the set relation is afforded
primacy, and the spatial layout of a visualization is based on that relation.
There is a trade-off in design — optimized layouts for connections may
lead to unclear sets; optimized layouts for sets may lead to confusing edge
crossings and a loss of visible structure. An alternative is to design a
coordinated view system, in which one view is based on the set relation,
and the other is based on the connection relation. However, in this
work we will restrict ourselves to tightly coupled relations in a single-
view visualization. Our implicit surface solution clarifies set membership
while not disrupting information-carrying layouts based on connection
relations and ordered attributes. We will explore the related work by
defining five configurations of spatial rights and giving examples from the
literature where possible. Figure 7.3 illustrates this discussion by showing
in diagrams different ways to indicate set membership in scatterplots and
on tree layouts.

Simultaneous Spatial Rights

If a dataset contains one set relation and one connection relation, it may
be spatialized based on either. One may desire contiguous, compact
clusters to represent sets, or one may wish to design a layout to minimize
overlap of edges in the connection relation. These two goals are not always
mutually exclusive. In some cases, set membership is a direct function of
the connectedness characteristics of a graph, or even the spatial proximity
resulting from a layout based on graph structure. In these cases the
desired layout can be created based on the connection relation, and sets
will appear closely clustered and contiguous, giving both spatial rights.
Figure 7.3a shows a scatter plot (top) and a tree (bottom) where each
set’s spatial proximity allows for bounding by a convex hull. Examples of
this include the friend clusters in Vizster (Heer and danah boyd, 2005) or
spatially-determined aggregates in level-of-detail visualizations (Balzer
and Deussen, 2007). Our investigation of the design space of multi-
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relationship visualizations reveals that assigning simultaneous spatial
rights is not always possible.

Hybrid Spatial Rights

The set relation may be pre-determined by data characteristics or set
membership may be arbitrarily selected by an analyst. In these cases
the layout may be adjusted to bring set members closer together. In this
condition, the connection relation and set relation share spatial rights in a
hybrid layout. However, reorganizing a layout to create more continuous
and denser sets may have serious consequences for the readability of the
primary connection relation. For example, nodes in a tree may have a
meaningful order which reorganization may disrupt. In Figure 7.3b for
both the tree and scatterplots set membership is discontinuous and is
indicated by node colouring. In Figure 7.3c the tree from Figure 7.3b is
re-organized to provide set proximity, however, this re-organization would
destroy meaning in the scatterplot. While we do not know of examples
which explicitly create a hybrid layout for set and connection relations,
Phan et al. (2005) report a hybrid layout based on hierarchical clustering
and adjusted to provide node separation. Dwyer et al. (2008) use a hybrid
layout technique to provide for fast calculation of large-scale overviews
which are adjusted in detailed views for higher-quality layout.

Spatial Rights for Set Relations

When the set relation is the primary relation, it can be assigned spatial
rights. Items are then arranged to maximize set separation, continuity,
and density. Connection relations are drawn atop this layout (Figure 7.3d),
however, this approach does not apply to scatterplots. We do not know
of any research that affords primary spatial rights to a set relation while
drawing a connection relation atop. The closest analogues are approaches
using multiple connection relations, such as using hierarchical data to lay
a treemap out, then drawing additional connection relations atop (Fekete
et al., 2003).

Spatial Rights for Connection Relation

When the connection relation is the primary relation, it is best to assign
it spatial rights. When set membership is not based on the connection
relation, but rather on an unrelated data attribute, or even interactive
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selection, common visualization techniques such as convex hulls are not
sufficient (Figure 7.3e). Visualizing set relations for data items in a pre-
determined visual layout is often difficult due to spatial discontinuities,
and set overlaps. Set-membership ambiguities can be introduced by the
use of convex hull algorithms. Noting set membership with another vi-
sual encoding such as symbols or colours on the data items is helpful
but lacks the clarity of a single enclosure. Indicating set membership
with ‘bubbles’ — contours that tightly wrap set members — has been
attempted in the past, however, this approach only offered continuous set
membership enclosure for proximal groupings (Heine and Scheuermann,
2007; Watanabe et al., 2007). Byelas and Telea (2006) provide connected
set enclosure visualizations for UML using outer skeleton construction
and handle incorrectly included items by second pass cutouts. In this
work, we introduce an efficient implementation of implicit surfaces which
allows for contiguous sets to be drawn over arbitrary layouts, while reduc-
ing set membership ambiguity problems using interactive highlighting
(Figure 7.3f).

Spatial Rights Explicit in Data

With some data types such as maps the spatial rights are explicit in the
data semantics. Here set memberships can exist across multiple distances
such as the sets of all capital cities or the cities with populations over a
million. With this type of data spatial re-organizing is not an option and
solutions such our approach diagrammed in Figure 7.3f) are essential.

7.2.2 Implicit Surfaces

While implicit surfaces have been previously used to illustrate set relations
over graphical objects (Heine and Scheuermann, 2007; Watanabe et al.,
2007), in both works, the set relation is defined by the spatial proximity
of graphical objects — increasing an item’s distance from the set centroid
removes the item from the set; pushing an item toward the set centroid
adds it. As we aim to maintain the visualization of set membership for
any spatial relationship between set members, dragging an item away
from a set centroid will not remove it from the set. Thus we provide
alternative interaction techniques to modify set membership. Watanabe
et al. provide no option for set members existing across long distances.
Heine and Scheuermann allow for a single set to be divided into multiple
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subgroups separated by distances by using bubbles of the same colour.
They do not detect an isocontour, rather using pixel-based shading to
display sets. Thus rich interaction with the set is not possible. In our work,
we maintain a continuous and connected contour around all set members
irrespective of distance or spatial organization.

7.3 algorithms

Our approach arose from observing curved and complex boundaries
hand-drawn by people to indicate set relations. To simulate these natural-
looking boundaries, our method requires: (a) all set members to be
enclosed, (b) non-members to be excluded, (c) where non-members occur
within boundaries, visual and interactive hints to clarify membership, (d)
rendering to allow for interactive adjustment.

Implicit surfaces, more accurately called implicit contours in 2d, are well
suited to address these requirements (Blinn, 1982). In this section we will
describe our version of implicit contours (bubbles) and the heuristics we
employ to fulfill the requirements and create accurate and aesthetically
pleasing bubbles around set members. A high level overview of the steps
to creating Bubble Sets is outlined in Figure 7.4. In the remainder of this
section we will elaborate on the steps in the process.

7.3.1 Surface Routing

Before drawing an implicit contour around set members, we first create
an invisible skeleton of connections between set members. We call these
connections virtual edges and their structure forms a basis for contour
routing between members and around obstacles, allowing set boundaries
to flow in an aesthetically pleasing way while avoiding overlaps with
nodes and maintaining set connectivity.

First, for each set, we identify the set members. Using the locations
of the set members, we then define an active region as the rectangular
bounding box which includes all set members, increased on all sides by a
buffer of R1. Because R1 is the maximum distance of the set boundary to
any item in the set, only items in the active region can be close enough to
set members to affect the bubble creation. Therefore, for speed purposes,
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(a) Primary layout: The items in a visualization are positioned according to the pre-determined primary spatial
layout.

(b) Identify set members: In this image set members are distinguished from non-set members by opacity. Set
membership is not based on proximity, but rather relations within the data that are not otherwise spatialized.

Figure 7.4: Process overview for building Bubble Sets.
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(c) Determine the virtual edges: Set members are connected by virtual edges, which are routed around obstacles.
Virtual edges are shown here in green.

(d) Determine active region: The smallest area which is guaranteed to contain all items in the set is determined
using a bounding box and buffer of R1.

Figure 7.4: Process overview for building Bubble Sets (continued).



7.3 algorithms 189

(e) Calculate energy field: Items in the set contribute positive energy (red), items outside the set contribute negative
energy (blue). The energy field within the active region is visualized here for illustration.

(f) Determine set boundary: Using the marching squares algorithm, an iso-contour is determined where the energy
equals a set threshold. After a continuous contour is determined, all set items are tested for containment within the
contour. If any test fails, energy parameters are adjusted and the energy and contour calculations are repeated.

Figure 7.4: Process overview for building Bubble Sets (continued).
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Figure 7.5: Contour connectedness is assured through virtual edges which add to the
energy distribution for the set. (l-r): A virtual edge passing through a node is detected.
A new control point is created at a corner of the obstacle’s bounding box and the test
repeated. As the test fails, the diagonally opposite corner is then used and no obstacle
is found. Additional control points are created at the corners to route edge around the
obstacle. The final set of virtual edges contributes to the contour calculation, allowing the
set contour to avoid the obstacles and remain connected. Far right: the configurations for
creating virtual nodes with Algorithm 7.1.

items and pixels outside the active region are not included in the energy
calculations.

There are two options for routing the bubble surface. First, if structural
edges (edges that are part of the data) are included, the bubble surface
should follow them. For example, if a set over a node-link graph includes
both nodes and edges, we simply use these items to calculate the bubble
surface. However, as discussed previously, set relations may not have
any dependence on a connection relation in the data. In these cases,
we ignore any edge structure in the visualization and determine bubble
routing based on the constraint that bubbles must, where possible, avoid
overlapping or including non-set members within the bubble boundary.
To achieve this, we route the bubble surface around items which should
not be enclosed using an invisible backbone of edges that connect set
members while avoiding non-included items. This backbone is initialized
by iterating through set members and connecting them to an optimal
already-visited member of the same set using a straight line between item
centers. The optimal neighbour joptimal for node i is selected to minimize
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the function cost(j) = distance(i, j) ∗ obstacles(i, j) where obstacles(i, j) is
the count of non-set members on the direct path between i and j. This
function balances a preference for close connections with the simplicity
of straighter paths. We start this operation with the item nearest the
set centroid and proceed outward. This encourages ‘blob’ shapes rather
than ‘snake’ shapes (Figure 7.6). This process ensures all set members are
connected.

Extending the edge routing algorithm of flow maps (Phan et al., 2005),
we then test all non-set members within the active region for intersection
with the virtual edges. If an intersection is found, we split the edge and
route it around the blocking node by creating a new control point offset
from one of the node corners and connecting the original edge endpoints
to this control point, creating 2 virtual edges. We place the control point
R1 away from the corner to provide for a buffer around the blocking
item. If the creation of the new control point initially fails, we iteratively
try routing around other corners of the obstacle and reducing the buffer.
This process, detailed in Figure 7.5 and Algorithm 7.1, is repeated for the
new segments until an iteration limit is reached or no intersections are
found. This method does not work for the case where a set member’s
bounds are completely contained within a non-set member (see scatter
plot case study). Our algorithm is O(KN(N + HW)) for K sets, N items,
and a pixel field of H by W. However heuristics such as restricting energy
calculations to the active region around an item reduce the average case
considerably.

An implicit surface is simply a contour such that the energy E(x, y) = c
where c is a constant energy value. We consider the display space to be
a grid upon which we calculate energy values for each cell (pixel). When
the energy function is continuous, continuous contours are guaranteed.
However, there may be more than one separate contour in the energy grid.
Contours are defined by the presence of items on the grid. An item is an
object that may or may not be a set member. For each pixel the energy is
the sum of influences of nearby items, as a function of distance:

spixel = {j|j ∈ items, distancej,pixel < R1} (7.1)

energy(pixel) = ∑
i∈spixel

wi(R1 − distancei,pixel)
2/(R1 − R0)

2 (7.2)
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Algorithm 7.1 Route virtual edges around obstacles (see Figure 7.5).

while ∃ virtual edge lk,m which intersects obstacle do
n← null, swap← false
while (n = null∨ n intersects obstacle) ∧ (buffer > 0) do

if lk,m intersects adjacent edges of obstacle bounds then
add virtual node n at corner of adjacent edges

else
if Area(A) ≤ Area(B) then

if i > j then
add virtual node n at (swap ? c1 : c3) + buffer

else
add virtual node n at (swap ? c2 : c4) + buffer

end if
else

if i > j then
add virtual node n at (swap ? c3 : c1) + buffer

else
add virtual node n at (swap ? c4 : c2) + buffer

end if
end if

end if
if swap then

reduce buffer
end if
swap← ¬swap

end while
split virtual edge into lk,n and ln,m
reset buffer

end while

where R0 is the distance at which energy is 1, R1 is the distance at which
energy reaches 0, w is the weight assigned to the item, items is the set of
all items in the space, and spixel is the set of influencing items within R1 of
the pixel. An isolated point item, then, will have a circular isocontour at
radius R0 and an energy field extent of R1. As items are often not points,
but rather shapes such as rectangles, we use Euclidean distance to the
nearest point on the shape surface. Inside shapes we assign distance = 0.
As the energy function reaches its root at R1, only items within R1 of
a pixel are included in the energy calculation and will have a non-zero
effect. After calculating energy values for all grid cells, we use a 2d

version of marching cubes (Lorensen and Cline, 1987) to trace the contour.
As described in the following sections, we adapted this general method
with additional steps to ensure sets are connected and contain all set
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Algorithm 7.2 Determining a bubble set boundary.

given items with positions
for all sets s ∈ S do

find centroid c of s
for all items i ∈ s, order ascending by distance to c do

find optimal neighbour j ∈ s
find best route from i to j
for all cells (pixel or pixel group) within R1 of i do

add energy due to i
add energy due to nearest virtual edge i→ j
subtract energy due to nearby non-set members k 6∈ s

end for
end for
repeat

perform marching squares to discover isocontour s̄
reduce threshold

until ∀i ∈ s, isocontour s̄ contains(i)
draw cardinal splines using every Nth point on the contour

end for

members, while excluding items not in the set. The simplified algorithm
for calculating bubble boundaries is presented as Algorithm 7.2.

7.3.2 Label Placement

If the data contains a label for the Bubble Set, it is placed along the longest
virtual edge in the set (see Figure 7.8). If there are no virtual edges long
enough to accommodate the label at the minimum font size, the label is
drawn above the first item in the set. Labels can be placed before or after
energy calculations. If placed before energy calculations (the default), the
label is treated as a set member item, ensuring the set boundary includes
the label bounds.

7.3.3 Energy Calculation

To calculate the energy field, several techniques are employed to gain
speed. First, the display space is divided into square pixel groups which
are treated as a single pixel. While this lowers the resolution of the surface
calculation, the visual artifacts introduced are minimal, and it actually
has the effect of smoothing the bubble surface. We dynamically adjust the
pixel group size to provide interactivity when items are dragged (pixel
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1
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Figure 7.6: The order of connecting set members with virtual edges affects the generated
shape. Left-to-right, top-to-bottom connection generates a snake-like virtual edge config-
uration (left), while connecting from the centroid (black circle) outward generates a more
blobby shape (right).

group 9× 9) and higher quality rendering when the scene is static (pixel
group 3× 3).

The energy field is calculated for each set in sequence. Nodes and edges
(both structural and virtual) in the set are given a positive weight of 1.
Negative energy influences result in the implicit surface being pushed
away from items not included in the set. Nodes not included in the set are
weighted −0.8. Non-set edges are usually given a weight of 0, as bubbles
will not be able to avoid edge crossings, and energy reductions at edge
crossings can cause surface discontinuities. The energy contribution of
visual items is also dependent on R0, and R1 — these parameters must be
tuned for a particular application depending on the size and spacing of
items, and the bubble margins desired.

For a given set, we first calculate the positive energy influences for each
pixel group in the active region. That is, for all set members and virtual
edge sets, we calculate energy contributions for all pixel groups within R1

of the item. For a given pixel group and virtual edge set (route between
two nodes), only the edge segment closest to the pixel group contributes
energy. This avoids overly large positive energy values near segment
connection points, which would lead to bulges in the final surface. Next,
for pixel groups with total energy greater than zero, we add the negative
influence of entities which are not in the set. As regions of zero or negative
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Figure 7.8: If a Bubble Set has an associated label, it can be drawn along the longest
unobstructed virtual edge. If no such edge will fit the label at a minimum font size, the
label is drawn across the top of node. Labels can be optionally included as set items in
the energy calculation, guaranteeing containment within the Bubble Set contour.

energy will never be part of the isocontour, we do not calculate negative
energy contributions unless the pixel group already has a positive energy.
This provides a significant reduction in the time required to fill the energy
surface of the active region. A visualization of the energy field underlying
a set is shown in Figure 7.7.

7.3.4 Contour Discovery

We used a 2d version of marching cubes (Lorensen and Cline, 1987) to
discover an isocontour for each set. After discovering the isocontour,
we check all set members to ensure their centers are within the contour
enclosure. If they are not, this indicates a disconnection. In this case,
we iteratively reduce the energy threshold by a factor alpha, repeating
marching squares until all members are included. In very dense layouts,
it may be necessary for the set contour to pass through items which are
not included in the set, for example if items are adjacent without space
for routing around. In practice, such situations would be difficult for
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a person to draw — if no space is available for the set to route around
an obstacle, our algorithm will eventually go through it. The marching
squares step is fast to repeat: O(H + W) for an active region of H by W
pixel groups. If, however, after N iterations the set is still disconnected, we
manipulate the energy field, a slower process (O(HWK) for K items in the
active region). We increase the positive weights by a factor β, decrease the
negative weights by a factor γ and recalculate the energy field, followed by
another iteration of marching squares. We repeat the energy manipulation
for N additional iterations or until the set boundary encloses all member
items.

Negative energy contributions serve to ‘push’ the set boundary away
from non-set members near the contour boundary. Surface routing at-
tempts to work the boundary around obstacles, but when a dense set
encloses a non-set member, the algorithm may fail to exclude that item. If
a non-set member is discovered within the contour, we highlight it with a
white border. It would also be possible to create a hole using an iteration
of marching squares beginning at the center of the non-set member and
working outward to discover an interior contour. We leave this for future
work and use highlighting and interactivity to clarify such occurrences.

To render the surface we use cardinal splines, using every Lth point
on the surface discovered by marching squares as a control point. The
selection of L involves a trade-off between smoothing and precision, and is
dependent also on the pixel group size. We lean toward smoother surfaces
and select L = 10 in the examples that follow. We colour the interiors
of the surfaces with a transparent version of the border colour to more
clearly indicate the extent of the set region.

7.3.5 Interaction

Interactions such as adding items to sets, removing items from sets,
creating new sets and moving items within sets are provided. Since
proximity does not determine set membership, we use moded interaction.
First a set is made active with a right-click, then individual items can be
added or removed by clicking them. When complete, the set is deactivated
and its new contents are fixed. Depending on the application requirements,
it is also possible to select and move an entire set by clicking on the set
background. Our requirement for surface calculation and rendering at
interactive speeds is met, as discussed, by defining active regions, pixel
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groupings, and only calculating negative influence for pixels with energy
greater than zero. Sets are rendered from largest to smallest to facilitate
picking, ensuring smaller sets are not completely covered. After the
initial rendering, we recalculate only the contours for sets with changing
configurations. Specifically, for any moved item i, we recalculate only the
surfaces for sets s ∈ S if i is in the active region of s. The speed gain of
this heuristic is dependent on the density of the display space and the
number of sets.

We cannot guarantee that non-set member items will be excluded from
the set boundary in all cases. The use of surface routing and negative
energy influences minimizes this occurrence, but it remains possible
depending on the density of the graph and the particular layout of items.
To clarify set membership, we visually separate overlapping or enclosed
non-set items from the set using a white border. Additionally, when a set
member or set boundary is under the mouse, all non-set member items
are faded out (made partially transparent).

7.4 bubble sets over machine translation parse trees

Returning to our collaboration with the NLP researchers, the data for
the visualization consisted of a connection relation (parse tree) and a set
relation indicating which tree fragments were a unit of translation. We
assigned spatial rights to the connection relation, laying out the parse
tree with an improved version of Reingold and Tilford’s layout (Buchheim
et al., 2002). The set relations are not determined by proximity in the parse
tree, but rather are specified by the way in which the tree is constructed
from fragments. However, the set relation is not completely independent
of tree structure — individual sets are guaranteed to be connected through
tree edges. Thus, the structural edges rather than our virtual edges are
used for surface routing.

Our set visualization approach is well-suited to reveal the tree fragments
directly on the output parse tree. Set background hue is selected on the
basis of the category of the fragment (a classification important to the
analysts), and the background transparency is based on the confidence
score assigned to the set by the translation algorithm (darker means more
confident) (Figure 7.9). Traditional methods such as convex hulls would
not suit this application, as they are unable to exclude non-set members
(see Figure 7.10). As part of a tool for analyzing translation models, our
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(a) (b)

Figure 7.10: Contrasting surface drawing techniques: (a) The blue convex hull includes
non-set members within the boundary, whereas the corresponding Bubble Set (b) does
not.

visualization allows translation researchers to review translation parse
trees for problems and annotate discoveries directly on the visualization,
without the need for lengthy tables of translation tree fragments.

7.5 generalizing bubble sets

Bubble Sets were originally developed for MT parse trees, but can gen-
erally be applied over any exisiting 2d visualization for which set mem-
bership visualization is desired. In the remainder of this section, we will
describe additional case studies using Bubble Sets, showing the versatility
of this approach.

7.5.1 Research Articles Timeline

Spatial tools to organize personal archives of pdf documents have been
reported, including the Dynapad tool which provides both clumped (set-
based) and timeline (attribute-value-based) layouts (Bauer et al., 2005).
However, Dynapad is not able to display the set relation when the PDF
article icons are displayed in the timeline formation. Combined timeline
and set views of the research literature are used for personal information
organization, and for communicating an organization applied to a set of
articles (Tat, 2007, p. 23). Several people were involved with the discus-
sion about which articles belonged in each set, and the groupings were
revised several times. Inspired by this activity and the manually-created
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Figure 7.12: Items can be expanded to reveal a larger image or the article’s abstract. The
boundary moves to accommodate the larger item, and other items move along the y-axis
to remain visible and selectable.

Figure 7.13: The research articles timeline Bubble Sets prototype can be explored using
touch input on a large, high resolution digital table.
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sketches (Tat, 2007), we provide an automatic creation of similar visualiza-
tions as a tool to support collaborative discussion and categorization of
research articles (Figure 7.11).

In our prototype implementation, we use the data from Tat (2007): a
collection of 60 research articles in the area of visualizing communica-
tion patterns. We manually collected characteristic images and abstracts
from the electronic documents, but document thumbnails could easily be
generated using the PDF icon generation method of Bauer et al. (2005).
The layout used in this example provides hybrid spatial rights: the initial
layout places article icons on a timeline according to the year of publica-
tion. The layout is then adjusted to improve density of the pre-determined
set memberships using a force-directed layout algorithm, restricted to
movement on the y-axis. Forces draw items that share at least one set
toward one another and repel members of other sets. This layout mecha-
nism provides for dense sets with minimal interference from other sets.
However, in years where many articles appear on the timeline, interference
cannot be avoided. In these cases, the surface routing algorithm creates
an invisible structure of edges to route the set surfaces around obstacles.

Interactive movement of items along the y-axis allows for creation of
customized views. Set membership is specified in the dataset, but can
be changed at run time. To aid interactive classification of articles, the
data can be queried for additional details, such as a larger image or the
abstract, by clicking (desktop) or tapping (interactive tabletop) a document
icon. The set boundary expands to contain the enlarged item, and a force-
directed algorithm moves neighbouring items to maintain partial visibility
(Figure 7.12). The interface is designed for use on a desktop computer,
but can also be explored on a high-resolution touch-sensitive display,
facilitating collaborative discussion (see Figure 7.13).

7.5.2 Sets over Scatterplots

Bubble Sets were developed to aid in machine translation research, but
the technique is generally applicable to visualization problems outside the
linguistic domain. Scatterplots have clearly defined spatiality due to the
numerical positioning of items. We add Bubble Sets to a reimplementation
of the well known GapMinder Trendalyzer (Rosling, 2009). This scatterplot
shows fertility rate against life expectancy and is animated over time.
Data points represent countries, sized by population. Colour (and set
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Figure 7.14: A scatterplot of fertility rate (x-axis) by life expectancy (y-axis) by country
(circles, sized by population, coloured by continent). The plot can be animated over time.
Hovering on a set member causes all non-members and other sets to be made transparent,
clarifying set membership. Here, enclosure eases discovery of the outliers in the upper
left, as well as giving a general impression about the spatial distribution of the set.
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Figure 7.15: Bubble Sets in the space of linguistic visualization.

membership) is defined by the continent. The grouping of the sub-Saharan
Africa countries, highlighted in Figure 7.14, reveals that while most of the
countries in this set had high fertility rates and low life expectancies in
1985, there are two outliers, Mauritius and Reunion, which are islands in
the Indian Ocean. As the data set includes data for many years, and since
Bubble Sets are calculated at interactive rates, the temporal changes can
be convincingly shown through animation.

7.6 summary

Guided by the needs identified through collaboration with MT researchers,
we have contributed Bubble Sets: a method for automatically drawing set
membership groups over existing visualizations with different degrees
of requirements for primary spatial rights. In contrast to other overlaid
containment set visualizations, Bubble Sets maximizes set membership
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inclusion and minimizes inclusion of non-set members. In fact, Bubble
Sets can guarantee that all set members will be within one container, as
opposed to the more common multiple disjoint containers. While Bubble
Sets cannot guarantee non-set member exclusion, the care taken with the
routing algorithm minimizes these occurrences.

Within the space of linguistic visualization, the applicability of Bubble
Sets is quite broad. Applications of the technique can be targeted at all
of the target audience groups. Our examples include applications for
content analysis of a document corpus, and linguistic research in MT. The
level of interactivity will vary for each specific application. Generally,
data access, data edit (assign sets), presentation transformations, and
view transformations are provided. Adding data annotate to facilitate
collaboration would be a trivial extension. The MT case study uses
statistical models and expert data. The research articles timeline case study
uses information about text structure and expert-annotated categorizations
of articles. These dimensions are summarized in Figure 7.15.



8
REVEALING RELATIONS AMONGST VISUALIZATIONS

All these constructions and the laws connecting them can be arrived at by the
principle of looking for the mathematically simplest concepts and the link

between them.

— Albert Einstein, 1921

As information visualizations continue to play a more frequent role in
information analysis, the complexity of the queries for which we would
like visual explanations also continues to grow. While creating visual-
izations of multi-variate data is a familiar challenge, the visual portrayal
of two sets of relationships, one primary and one secondary, within a
given visualization is relatively new (e. g., Fekete et al., 2003; Holten, 2006;
Neumann et al., 2005). With VisLink, we extend this direction, making it
possible to reveal relationships, patterns, and connections between two or
more primary visualizations. VisLink enables reuse of the spatial visual
variable, thus supporting efficient information encoding and providing for
powerful visualization bridging which in turn allows inter-visualization
queries.

For example, consider a linguistic question such as whether the for-
mal hierarchical structure as expressed through the IS-A relationships
in WordNet (Miller et al., 2007) is reflected by actual semantic similarity
from usage statistics. This is best answered by propagating relationships
between two visualizations: one a hierarchical view of WordNet IS-A

relationships and the other a node clustering graph of semantic simi-
larity relationships. Patterns within the inter-visualization relationships
will reveal the similarities and differences in the two views of lexical
organization.

Demonstrating the linguistic visualization divide, the idea of viewing
the patterns in edges between two 2d plots of related items has previ-
ously been expressed as a static information graphic in the computational
linguistics (CL) community. For example, Figure 8.1 describes the concept
of signal-to-meaning mappings to model language in a manually-created
sketch (Brighton and Kirby, 2006). We do not know of any previous
interactive systems demonstrating this concept.

207
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Figure 8.1: Brighton and Kirby (2006) illustrate the concept of degrees of compositionality
in language. At left, signals and meanings are randomly mapped (representing a non-
compositional language). In the center, a language where similar meanings do map
to similar signals. At right is a representation of a fully distance-correlated mapping
(compositional). Reprinted with permission.

In this chapter, we will describe VisLink, a new visualization technique
which bridges this divide by realizing the display and querying of multiple
2d visualizations in 3d space, each with its own use of spatial organiza-
tion and each placed on its own interactive plane. These planes can be
positioned and re-positioned supporting inter-visualization comparisons;
however, it is VisLink’s capability for supporting cross-representational
queries that is our main contribution. Propagating edges between visual-
izations can reveal patterns by taking advantage of the spatial structure
of both visualizations. In the next few pages on we will explain our
new visualization technique in comparison to existing multi-relationship
visualizations.

8.1 formalizing visualizations of multiple relations

VisLink extends existing approaches to visualizing multiple relationships
by revealing relationships amongst visualizations while maintaining the
spatial rights of each individual relationship type. In order to discuss
more precisely the distinctions between previous work and our contribu-
tion, we will first introduce some notation for describing multiple view
visualizations.

Given a data set, DA, and a set of relationships, RA, on DA, we will
write this as RA(DA). Note that with the relation RA we are not referring
to a strict mathematical function, but rather any relation upon a data set,
for example, a type of edge among nodes in a general graph. A second set
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(a) (b) (c)

Figure 8.2: Current approaches to comparing visualizations include (a) manual compar-
ison (printed diagrams or separate programs), (b) coordinated multiple views (linked
views with highlighting), and (c) compound graphs (layout based on one relationship,
other relationships drawn upon it).

of relationships on the same data set would be RB(DA), while the same
set of relationships on a different but parallel data set would be RA(DB).
For example, if the data set DA was housing information in Montreal,
an example of RA could be the specific house to property tax relation
RA(DA) and a different relationship RB could be the house size as related
to the distance from transit routes RB(DA). Then an example RA(DB)

would be property tax on houses in Toronto. Creating a first visualization,
VisA, of these relationships RA(DA) we will write VisA → RA(DA) (for
example, a geographic map with houses coloured based on their property
tax). A second visualization, VisB, of the same set of relationships would
be VisB → RA(DA) (for example, a histogram of number of houses in
each property tax range).

In the remainder of this section, we use this notation to define, compare,
and contrast each of the current approaches to relating visualizations.
We will show how VisLink provides capability beyond what is currently
available.

8.1.1 Individual Visualizations

As a viewer of any given set of visualizations it is possible to do the cog-
nitive work of developing cross visualization comparisons. For instance,
visualizations can be printed and one can, by hand with pen and pencil,
create annotations and/or new visualizations to develop the comparisons
needed for the current task. Any relations on any data may be compared
manually in this way (see Figure 8.2a).
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8.1.2 Coordinated Multiple Views

Coordinated views provide several usually juxtaposed or tiled views of
visualizations that are designed to be of use in relationship to each other
(e. g., Snap-Together Visualization (North and Shneiderman, 2000)). These
can be of various flavours such as VisA, VisB and VisC of RA(DA) or
perhaps VisA of RA(DA), RB(DA) and RC(DA). The important factor
for this visualization comparison discussion is that these coordinated
views can be algorithmically linked such that actions and highlights in
one view can be reflected on other views. Coordinated views allow for
reuse of the spatial visual variable, thus each relationship type is afforded
spatial rights. The temporarily activated visual connections can be a
great advantage over finding the related data items manually but the
relationships themselves are not explicitly visualized (see Figure 8.2b).

8.1.3 Compound Graph Visualizations

There are now a few examples of compound graph visualizations, such as
overlays on Treemaps (Fekete et al., 2003), ArcTrees (Neumann et al., 2005),
and Hierarchical Edge Bundles (Holten, 2006). Figure 8.2c shows a simple
diagram of this. Compound graph visualizations are created as follows:

given: Data set DA, containing two (or more) types of relationship:
RA(DA), RB(DA), . . . , RN(DA).

problem: Show multiple relationship types on the same visualization.

step 1: Choose a relationship type, e. g., RA, to be the primary relation-
ship.

step 2: Create a visualization VisA → RA(DA), providing an appro-
priate spatial layout. Since spatial organization is such a powerful
factor in comprehending the given relationships, we refer to this as
giving RA spatial rights.

step 3: Create a visualization of RB(DA) (and any other desired sec-
ondary relations) atop VisA → RA(DA).

This in effect creates VisA → RA, RB(DA) using the spatial organization
of VisA → RA(DA). While this is an exciting step forward in comparative
visualization, note that RB(DA) has no spatial rights of its own. That is,
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while viewing how the relationships in RB(DA) relate to RA(DA) is pos-
sible, there is no access to a visualization VisB → RB(DA). Hierarchical
Edge Bundles (Holten, 2006) started an interesting exploration into using
the spatial organization of RA(DA) to affect the readability of the drawing
of RB(DA) atop VisA → RA(DA) and also indicated possibilities of ad-
dressing the readability needs of RB(DA) by altering the spatial drawing
of VisA → RA(DA) so that RB(DA) and RA(DA) occupy different spatial
areas. This gives RB(DA) partial spatial rights in that its presence affects
the VisA → RA(DA) layout.

8.1.4 Semantic Substrates Visualizations

Shneiderman and Aris (2006) introduce Semantic Substrates, a visualiza-
tion that is both quite different and quite similar in concept to VisLink.
We will use our notation to help specify this:

given: Data set DA and a set of primary relationships RA(DA).

problem: A given unified visualization creates too complex a graph for
reasonable reading of the visualization.

step 1: Partition the data set DA into semantically interesting subsets,
DA1 , DA2 , . . . , DAn .

step 2: Use the same visualization VisA, with spatial rights, to create
visualizations of the subsets VisA → RA(DA1), VisA → RA(DA2),
. . . , VisA → RA(DAn).

step 3: Juxtapose one or more of VisA → RA(DA1), VisA → RA(DA2),
. . . , VisA → RA(DAn), aligned in a plane.

step 4: Draw edges of RA(DA) across VisA → RA(DA1), VisA → RA(DA2),
. . . , VisA → RA(DAn) to create VisA → RA(DA).

8.1.5 VisLink Visualizations

Now we will use our notation to clarify the contribution of the VisLink
visualization:

given: Data set DA and a set of primary relationships RA(DA), RB(DA),
. . . , RN(DA).
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problem: Provide a visualization that aids in improving the understand-
ing of RA(DA), RB(DA), . . . , RN(DA) by indicating how one set of
relationships is related to the structure in another.

step 1: Create visualizations VisA → RA(DA), VisB → RB(DA), . . . ,
VisN → RN(DA), each with full spatial rights for any of RA(DA),
RB(DA), . . . , RN(DA) that are of interest.

step 2: Place selected visualizations VisA → RA(DA), VisB → RB(DA),
. . . , VisN → RN(DA) on individual planes to support varying types
of juxtaposition between visualizations (at this point we are limiting
these to 2d representations).

step 3: Draw edges of second order relations T(RA, RB, . . . , RN(DA)),
from Visi → Ri(DA) to Vis(i+1) → R(i+1)(DA) and Vis(i−1) →
R(i−1)(DA) to create VisLink inter-plane edges between neighbour-
ing planes.

So, where Semantic Substrates operates with a single visualization type
and single relation across multiple subsets of a data set, VisLink can
operate on multiple visualization types and multiple relationship types on
a single dataset. A natural extension of VisLink is to inferred or indirect
relations across multiple data sets:

given: Data sets DA, DB, . . . , DN and the existence meaningful relation-
ships, T(Di, Dj), among datasets such that (i, j) are any of A, B, . . . ,
N.

visualize: VisLink can be used with no further extensions to relate
VisA → RA(DA), VisB → RB(DB), . . . , VisN → RN(DN), by using
T(Di, Dj) to create inter-plane edges. An example of cross-dataset
visualization is presented in Section 8.4.

We have presented a series of multi-relation visualizations, differing in
the level of visual and algorithmic integration between relations and the
amount of spatial rights accorded to secondary relations. VisLink can be
used equivalently to any of the mentioned multi-relation visualization
approaches (see Figure 8.3a–c) and extends the series to simultaneously
provide equal spatial rights to all relations for which a visualization can
be created, along with close visual and algorithmic integration of different
relations (see Figure 8.3d).
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8.2 design of vislink

In order to provide for a visualization space in which multiple data-
related visualizations can be analyzed, we have developed VisLink. We
start our explanation with a very brief description of the lexical data set
and the lexical data relationships which are used to illustrate VisLink’s
functionality and interactive capabilities. Next we show a sample set of
2d lexical visualizations displayed on visualization planes within VisLink,
followed by the possible interactions with these visualization planes. Then
the inter-visualization edges are explained and the ability to use inter-
plane edge propagation to answer complex queries is presented.

8.2.1 Visualizations of Lexical Data

The example figures in this chapter are drawn from application of VisLink
to a lexical data set. This is an area of interest to computational linguists,
and several visualizations using lexical data have been reported including
DocuBurst (Chapter 5) and several others (e. g., Barrière and St-Jacques,
2005; Dunn, 2007; Kamps and Marx, 2002a; Manning et al., 2001; Ploux
and Ji, 2003).

Using our formalism, we have a dataset DA containing all the words in
the English language. There are many types of relationships among words,
for example, the lexical database WordNet (Miller et al., 2007) describes
the hierarchical IS-A relation over synsets, which are sets of synonymous
words. For example, {lawyer, attorney} IS-A {occupation, job}. The IS-A

relation is also called hyponymy, so chair is a hyponym of furniture. We
use hyponymy to build animated radial graphs (Yee et al., 2001), which
serve as our VisA → RA(DA). Synsets are shown in the radial graph as
small squares, and the synonymous words that make up the set are shown
as attached, labelled, nodes. An example 2d radial hyponymy graph is
in Figure 8.4a.

Words can also be related by their similarity. Similarity can be a surface
feature, for example, orthographic (alphabetic) similarity, or it can be
based on underlying semantics. We use a force-directed layout to perform
similarity clustering on words (Battista et al., 1999). In our examples we
use orthographic similarity, so that all words are connected to all others
by springs whose tension coefficient is inversely related to number of
consecutive character matches in the substring, starting at the beginning.
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Words that start with the same letters will cluster together. This is a very
different structure than hyponymy and serves as VisB → RB(DA). An
example 2d alphabetic clustering visualization is in Figure 8.4c. We have
also experimented with clustering using the semantic similarity measures
implemented by Pedersen et al. (2005), for example similarity as measured
by lexical overlap in the dictionary definitions of words. However, those
measures did not produce visible clusters and further investigation is
needed into the appropriate relationship between the similarity measure
and the spring coefficient.

Using VisLink, we investigate relations between the hyponymy layout of
synsets and the orthographic clustering layout of words. With this, we can
investigate questions such as: do some synsets contain high concentrations
of orthographically similar words?

Data is loaded into the VisLink lexical visualization by looking up a
synset in WordNet to root the hyponymy tree. The orthographic clustering
is then populated with the relevant words from the dataset.

8.2.2 Navigation and Plane Interaction

VisLink is a 3d space within which any number of 2d semi-transparent
visualization planes are positioned. These visualization planes act as
virtual displays, upon which any data visualization can be drawn and
manipulated. They can be rotated and shown side by side similar to multi-
program or coordinated views, or rotated in opposition with included
connections. Interaction and representation with each plane remains
unchanged (representations do not relinquish any spatial rights nor any
interaction rights).

While VisLink is a 3d space, the visualization planes are 2d equivalents
of a display, similar to windows in Miramar (Light and Miller, 2002)
or view-ports in the Web Forager (Card et al., 1996). We provide view
animation shortcuts to transition between 2d and 3d views. Similar to
interaction provided by Miramar, any visualization plane may be selected,
activating an animated transition in which the selected plane flies forward
and reorients to fill display space. When a plane is selected, 3d interaction
widgets and inter-plane edges are deactivated, and the display becomes
equivalent to 2d (see Figure 8.4). Because VisLink visualization planes
have the same virtual dimensions as the on-screen view-port, transition
between 2d plane view and 3d VisLink view does not require any resizing
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of the selected plane. When the plane is deselected, it falls back into the
VisLink space, reverting to the original 3d view.

Interaction with the visualization on a visualization plane is always
equivalent to 2d: mouse events are transformed to plane-relative coordi-
nates and passed to the relevant visualization (irrespective of the current
position and orientation of the plane). Visualizations can be manipulated
directly in the 3d space (using equivalent-to-2d mode is not necessary).
Thus interaction techniques developed for 2d visualizations become im-
mediately available in VisLink. For example, we provide for a radial
node-link view of the WordNet hyponymy (IS-A) relation, restricted with
a generalized fish eye view to show only nodes of distance N or less from
the central focus. The focus node can be reselected by a mouse click, acti-
vating radial layout animation (Yee et al., 2001). Double clicking any node
restricts the view to the tree rooted at that node, providing for drill-down
capability. Drill down and other data reload interactions are propagated
to all planes. Interaction techniques such as panning and zooming in 2d

are provided by clicking and dragging on a visualization plane the same
as one would on an equivalent stand-alone 2d visualization.

In addition to interaction with the visualizations on VisLink planes, we
also provide for interaction with the planes themselves. While the usual
capabilities for navigation in a 3d space (pan, zoom, rotate of camera
position) are available in VisLink, in providing a 3d perspective projection
virtual space, we must address the difficulties that arise from 6-degrees-
of-freedom (DOF) control with 2-DOF input devices (Bowman et al., 2005).
Free navigation can result in disorientation and non-optimal viewing
positions, while free manipulation of 3d objects can result in difficulty
achieving precise desired positioning.

Therefore, we also provide shortcuts for cinematic animated reposi-
tioning of the camera and planes to preset viewpoints (Light and Miller,
2002). These viewpoints allow visualization planes to be viewed from
the front (planes parallel and side by side) (see Figure 8.5a), with relative
plane orientation of book view (planes perpendicular and meet at an edge)
(see Figure 8.5b), top (see Figure 8.5c and d), or in opposition (planes
parallel and stacked) (see Figure 8.5d and e). By choosing one of these
viewpoints, users can recover from any disorienting manipulation.

As a solution to 2d plane interaction in a 3d space, we follow McGuffin
et al. (2003) and provide for manipulation of visualization plane position
and orientation using a set of restricted movement widgets. Edge widgets
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(a)

(b)

(c)

(e)(d)

Figure 8.5: Keyboard shortcuts provide for animated transition to default views, easing
navigation in the 3d space. Views are (a) flat, (b) book, (c) book top, (d) top, and (e) side.
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(a) Side book pages rotation widget.

(b) Center accordion translation widget.

(c) Bottom garage door rotation widget.

Figure 8.6: Visualization planes are independently manipulated with
three types of widgets (blue areas).
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provide for hinge movement (up to 90 degrees) about the opposite edge,
and a center widget provides for translation, accordion style, along the
axis between the planes (see Figure 8.6). Widgets become visible when
the pointer is over their position, otherwise they are hidden from view to
prevent data occlusion.

8.2.3 Adding Inter-Plane Edges

Edges are drawn in 3d to bridge adjacent visualization planes. Relation-
ships between the visualizations can either be direct (nodes representing
the same data are connected across planes) or indirect (items on different
planes have relations defined within the data).

For example, in our lexical visualization, we examine the formal struc-
ture of WordNet hyponymy (the IS-A relation) on one plane, and the
clustering of words based on their similarity on another. The inter-plane
relationship in this case is direct: nodes on plane one represent the same
data as nodes on plane two. In this case, it is the difference in the spatial
organization of the layouts that is of interest. In essence, the pattern of
inter-plane edges reveals a second-order relation: the relationship between
different types of node relations on the same data. If the clustering by
similarity approximates the formal structure, edges from synonyms in the
structured data will go to the same cluster (i. e., edges from synonyms
will be parallel).

Indirect relations can also be visualized. For example, a visualization
plane could be populated with a general graph about self-declared friend-
ships in a social networking system. A second visualization plane could
be populated with a tag cloud from a folksonomy, for example a book-
mark sharing database. A third visualization plane could be populated
with a visualization of the hypertext links between bookmarked pages.
The three types of indirect inter-plane connections could be derived from
three cross-dataset rules: Person used Tag, Page tagged with Tag, and
Person bookmarked Page. With effective inter-plane edge management
and data filtering, patterns between planes in such a visualization could
reveal people who share tagging habits, or bookmarked pages with similar
tag sets.

All inter-plane edges are specified with a single source node on plane i
and one or more target nodes on plane j. Single source to single target
edges are drawn as straight lines. Single source to many target edges
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Figure 8.7: VisLink inter-plane edge detail: one-to-one edges are
straight, one-to-many edges are bundled. Alpha blending provides for
stronger appearance of bundled edges.
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are drawn using multiple curves calculated with corner-cutting (Chaikin,
1974). For each curve from the source to a target, the starting control
point is set as the source node, a middle control point is set as the
average (world coordinates) position of all target nodes and the source,
and the end point is set as the target. Five iterations of corner-cutting
provide for smooth curves which start along the same straight line and
then diverge as they approach their targets. By using alpha blending,
the more semi-transparent curves that are coincident, the stronger the
bundled edges appear (see Figure 8.7). Inter-plane edge positions are
recalculated as appropriate so that edges remain fluidly attached to their
source and target nodes throughout all manipulations of the constituent
visualizations, plane positions, and the 3d viewpoint.

For visual clarity, edges are drawn between items on adjacent planes
only. For more than two visualization planes, if the data contains relations
among all visualizations, these relations can be explored by reordering
the visualization planes using the center translation (accordion) widget
to move planes along the inter-plane axis. As a plane passes through
another, the rendering is updated to show the relations between the new
neighbours. Similar to axis ordering in parallel coordinates plots (Inselberg
and Dimsdale, 1990), the ordering of visualization planes strongly effects
the visibility of interesting patterns in the data. Investigation into methods
for choosing plane orderings is left for future research.

8.2.4 Using Inter-Plane Edges

Inter-plane edges can be revealed either on a per-plane basis (see Fig-
ure 8.8) or a per-node basis (see Figure 8.9). Activating an entire plane
can reveal structural patterns that may exist between the visualizations,
while individual node activation provides for detailed views of particular
relations.

We provide for spreading node activation between planes, which adds
additional analytic power to VisLink. When a node is manually activated
on one plane, it is highlighted in orange with a green border and all inter-
plane edges originating at that node are revealed. The target nodes for
those edges are then activated. Edges originating at these nodes are then
drawn and the activation is propagated iteratively up to a user-selected
number of reflections between planes. Deactivation of a node reverses
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(a) (b)

Figure 8.8: Three visualization planes. (a) Side view with center plane (lexical similarity
clustering) activated, indicated by its orange frame. (b) Top view in book orientation.
Several nodes are activated on the outer planes, spreading their activation through
inter-plane edges.

the process, spreading the deactivation and hiding edges. The level of
activation exponentially decays with each iteration.

Nodes are assigned activation values from 0 (deactivated) to 1 (manually
activated by user through selection, search, or plane activation). Node
activation values determine inter-plane edge visibility: edges between
nodes with non-zero activation are revealed. Level of activation is inversely
related to the alpha transparency of activated nodes and the inter-plane
edges. So, the more transparent an activated node or edge, the further it is
from a user-selected fully-activated node. Edge colour is used to indicate
the direction of spreading activation. For each edge, the third closest to
the source of edge activation is orange, the middle third is interpolated
from orange to green and the final third, closest to the edge target, is
green. Along with edge transparency decay, edge colouration will help an
analyst follow the path of spreading activation. However, tracing a series
of edges across planes may be a difficult task, even with the visual support
provided through colouration and transparency. We plan to investigate
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Figure 8.10: The left plane is activated, revealing all edges from it.
Through a click and drag on the right plane, a 2d zoom is performed,
isolating a cluster of interest. The inter-plane edges are filtered in real
time to show only those connecting visible nodes, revealing that this
lexical cluster is related to a region of the WordNet hyponymy tree
near the bottom.
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techniques such as animated edge propagation to help trace relationships
amongst visualizations.

Inter-plane edges support cross-visualization queries. For example,
alphabetic clustering, while a common organization for word search, is
not useful for finding synonyms. Using VisLink to propagate an edge
from a selected word in the clustered graph to a WordNet hierarchy will
find this word within its synset structure, propagating back will find its
synonyms within their alphabetic structure, allowing quick answers to
questions such as, “Across all senses, which synonyms of ‘locomotion’ start
with ‘t’?” This analysis is illustrated in Figure 8.9.

Inter-plane edges are only shown among visible nodes. So, if a tech-
nique such as filtering through degree-of-interest or distance measures,
or clipping through zooming and panning the visualization on a plane
causes some nodes to be invisible, their edges are not drawn. This can
be used as an advantage for exploring the space of inter-plane edges: by
filtering the view on a plane, the inter-plane edges can also be filtered
(see Figure 8.10). Conversely, search techniques can be provided to re-
veal and activate nodes that match a query, thereby also activating their
inter-plane edges (recall Figure 8.4).

8.3 implementation details

VisLink is implemented in Java, using the Java2d-Java Opengl (JOGL)
bridge to import any Java2d rendering onto a visualization plane. We have
augmented the popular prefuse interactive visualization toolkit (Heer et al.,
2005) with the VisualizationPlane class, which implements the same
API as the default 2d prefuse Display, the InterPlaneEdge class, which
handles edge drawing between planes, and a controller which places
visualizations in 3d space and connects them with rendered 3d edges. The
result is that our visualization plane can accept any prefuse visualization
without any changes. Interaction techniques on prefuse visualizations are
also handled equivalently. In addition to providing for easy integration
of existing visualizations with VisLink, this implementation provides for
efficient rendering of the 3d space, achieving frame rates greater than
45fps on standard hardware (Intel Core 2 Duo, 2.4GHz processor with an
NVIDIA GeForce 8800 graphics card). Inter-plane edges can be specified
in the data set by referencing source and target visualization plane and
node indices, or can be defined by a rule, such as, “Create inter-plane edges
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Input data: WordNet IS-A hierarchy    Input data: Pairwise word distance scores

Interplane edge set: 
[1] a rule: e.g. link visual items with same label
[2] a table: e.g., link item j on plane 0 with item k on plane 1

VisLink 
Controller 

(Display3D)Active visual items: 
x, y, label, other attributes

Active visual items: 
x, y, label, other attributes

Render interplane edges
Mouse events, 

active item updates
Mouse events, 

active item updates

Visualization plane 0 
containing prefuse 

node-link visualization

Visualization plane 1
containing prefuse

clustering visualization

Figure 8.11: VisLink is implemented by connecting visualizations and a set of interplane
edges through a controller, which directs input events and cross-plane queries, as well as
rendering of visualization planes inter-plane edges.
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among nodes with matching labels” (rules such as these must be translated
into code that produces paired node indices). The connections between
input data, the component visualizations, and the controller are illustrated
in Figure 8.11.

The prefuse visualizations are shown on the visualization planes as
textures, updated only when prefuse calls for a display repaint. Because
the prefuse visualizations are drawn as textures on a 2d plane, VisLink
could easily be extended to draw other shapes of visualization objects,
such as cubes or spheres.

8.4 linking existing visualizations

To demonstrate the ability of VisLink to add analytic power to existing
prefuse-based visualizations, we used VisLink to bridge several of the
demonstration applications that are distributed with the prefuse source
code (Heer et al., 2005) (with minor colour changes). Data on the occupa-
tions of members of the 109th Congress before election was mined from
the Congressional Directory along with the zip codes they represent (Gov-
ernment Printing Office, 2008). This was combined with databases of zip
code locations and fundraising totals of candidates in three recent federal
elections, both provided with the prefuse distribution. We used three
visualization planes and defined indirect relations between them.

First, a prefuse Treemap (Johnson and Shneiderman, 1991) was used
to show the relative popularities of various occupations before election
(see Figure 8.12, left). This was linked through the rule Candidate had

Occupation to the prefuse-provided ¢ongress visualization by Heer (2007).
¢ongress is a scatterplot of individual fundraising success, ordered along
the x-axis alphabetically by state of candidacy (Figure 8.12, center). This
plot shows the candidates’ party through node colour and whether they
were running for the House or Senate through node shape. The y-axis
shows fundraising success, and the range can be interactively altered with
a slider (not shown in figure). This was linked to the prefuse reimple-
mentation of the zipdecode (Fry, 2007) visualization of zip code geographic
locations (Figure 8.12, right) through the rule Candidate represents Zip

Code. Inter-plane edges link occupations to candidate nodes and candi-
dates to map regions they now represent. Complex questions such as,
“Where did the most successful fundraising former journalist get elected?” can
be quickly answered. To implement this visualization, the bulk of the
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Figure 8.12: VisLink was applied to bridge existing prefuse visualizations. Views of the
constituent visualizations, from 2d equivalency mode, are shown along the bottom. The
Treemap node ‘journalist’ is activated, propagating inter-plane edges to the scatterplot
(showing journalists are not particularly outstanding fundraisers), and onward to the zip
code regions that elected journalists now represent.
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work came through creating and parsing the new database (occupations
and zip codes) to generate inter-plane edges from our rules.

8.5 discussion

The VisLink technique offers a new way to look at the relationships
amongst visualizations, but there remain several difficulties and unre-
solved issues for future research. The creation of a VisLink visualization
starts with the selection of the constituent visualizations to compare. Mak-
ing this selection — finding appropriate data and choosing appropriate
representations — is as difficult within VisLink as it is in everyday visual
analytics work, and may be best handled by data and visual experts.
Some visualizations, such as node-link diagrams, seem to work better
with inter-plane edges than others, such as Treemaps and other types of
embedded hierarchy, where it is more difficult to see the connections to
non-leaf nodes.

For visualizations with rich sets of inter-plane relations, the famil-
iar spaghetti graph of edge congestion can quickly become a problem.
Through bundling of edges, individual node activation, filtering tech-
niques, and the ability to view the edge set from a series of angles, we
have attempted to provide tools to handle this. However, additional tech-
niques, for example edge lenses (Wong et al., 2003) for 3d spaces, may
improve the situation. The edge bundling technique we use works only
for one-to-many edge sets. Many-to-many edge bundling as reported
by Holten (2006) requires a hierarchical structure as an invisible backbone.
In the datasets we used, such a structure was not available. However, since
this work was completed, a promising solution which does not require
a hierarchical backbone has been proposed (Holten and van Wijk, 2009)
and may be a promising area for future development of VisLink.

Because VisLink contains any number of visualizations which may be
pre-existing, the selection of colours for inter-plane edges is challenging.
The orange-to-green colour scheme was selected because it interfered the
least with the existing (predominantly blue) visualizations we imported
into VisLink, and worked well both against a white background (for
print) and a black background (on screen). However, orange-to-green is
difficult to perceive for people with some forms of colour blindness. Inter-
plane edge colouring will likely have to be customized to the constituent
visualizations.
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When working in a 3d space, issues of perspective must be considered.
It is possible that perspective projection introduces a visual bias for closer
regions of the planes and closer inter-plane edges. Directional bias may be
introduced by the default views (side view presents bias toward vertical
inter-plane patterns). 2d false symmetry effects may also occur. An analyst
must be careful to view a VisLink visualization from several directions
before drawing conclusions about apparent patterns in the data.

8.6 summary

In this chapter we have described VisLink, a visualization environment
in which one can display multiple 2d visualizations, re-position and
re-organize them in 3d, and display relationships between them by prop-
agating edges from one visualization to another. Through reuse of the
powerful spatial visual variable, we have introduced a method for visu-
alizing multiple relations without any relation relinquishing its spatial
rights.

The VisLink environment allows the viewer to query a given visualiza-
tion in terms of a second visualization, using the structure in the second
visualization to reveal new patterns within the first. By choosing a set
of data items in visualization A and doing a one level propagation to
visualization B, VisLink shows where items in A are related to items in
B. Propagating the edges back again reflects the information gathered
from visualization B to the structure of visualization A. Thus, using the
example in Figure 8.9, starting from a similarity-based word visualization
A, propagating edges from a chosen word into WordNet visualization B
and back again reveals synonyms of the selected word in visualization A.
Through spreading activation, bundled edges can be propagated between
visualizations to any chosen depth.

VisLink displays multiple 2d visualizations on visualization planes
while maintaining full 2d interactivity for each component visualization.
3d interaction widgets are provided to simplify 3d interaction and naviga-
tion. Relationships among visualizations can be revealed using methods
such as selection and filtering for addressing edge congestion.

In the space of linguistic visualization, VisLink addresses the needs of lin-
guistic, natural language processing (NLP), and CL research, is designed
for expert analysts, and offers a interaction at the data-annotate level (add
inter-plane edges) as well as adjustments in the visual mapping (choice
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Figure 8.13: VisLink in the space of linguistic visualization.
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of representation), presentation, and view. The characteristics of VisLink
are summarized in Figure 8.13. VisLink is also a general technique, appli-
cable outside the linguistic visualization. VisLink enables investigation
of new types of linguistic problems through interactive visualization. For
example, VisLink would enable instantiation of the model/signal map-
pings illustrated by Brighton and Kirby (2006) in order to understand the
different types of linguistic evolution. We could also apply the system
to additional lexical distance measures, to link clusterings over various
measures. In this case, the inter-plane edge patterns would reveal whether
‘nearness’ by one distance measure is dependent on the other measure.
Cross-visualization queries would allow for targeted explorations of the
space.

VisLink can be a tool for bridging the through linking and providing
interactive views over pre-existing information graphics. For example, a
static visualization created by a CL could be imported into VisLink. The
data items on the plane could be hand-annotated by clicking their position
to create an invisible visual item at that location. Then the previously static
graphic can be connected to other graphics or interactive visualizations
with VisLink 3d edges.
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CLOSING





9
CONCLUSIONS

Man is still the most extraordinary computer of all.

— John F. Kennedy

In the previous five chapters we have described five distinct design stud-
ies covering the problem areas of real-time communication, content anal-
ysis, and natural language processing research through directly linking
highly interactive visualizations with natural language processing (NLP)
algorithms and models of linguistic structure created by linguistic experts.
In this chapter we will discuss some of the general linguistic visualization
challenges that arose in more than one design study. We then review the
contributions of this dissertation, leading into a discussion of possibili-
ties for future research both leading from each design study and more
generally for linguistic visualization. We conclude with some higher-level
closing remarks.

9.1 challenges of visualizing language

In designing and implementing the five design studies discussed in this
dissertation, some common challenges arose which, while shared by other
visualizations which use text for labeling, were particularly noticeable due
to the textual nature of the core data in linguistic visualization. Many of
these challenges were previously discussed within the design studies, but
we collect them here as a coherent set of common issues affecting more
than one of our designs.

In the following discussion, we will identify the specific design studies
involved as: Uncertainty Lattices UL (Chapter 4), DocuBurst DB (Chap-
ter 5), Parallel Tag Clouds PTC (Chapter 6), Bubble Sets BS (Chapter 7),
VisLink VL (Chapter 8).

237
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9.1.1 Legibility

As the core data of our collection of design studies is textual, each of
our five representations contain a significant amount of rendered text.
The legibility of rendered text — the ability to discern the characters —
is a complicated function, affected by anti-aliasing (Aten et al., 2002),
luminance contrast between text and background (Stone, 2003, p. 259), size
and choice of font (Bringhurst, 1996), blur/semantic-depth-of-field (Kosara
et al., 2001), and text orientation (Grossman et al., 2007; Larson et al., 2000).
In creating these visualizations, we identified possible legibility challenges
related to these factors:

◦ small font size due to: screen real estate (UL, DB, VL); data-based
scaling (DB, PTC)

◦ orientation in 2d (DB, BS, VL)

◦ orientation in 3d (VL)

◦ foreground/background luminance contrast due to text atop a
colour-mapped background (UL, DB)

◦ overlapping text due to: screen real estate (BS, PTC); transparent
overlay (VL)

◦ interference due to the proximity of blurry borders (UL)

In each of these cases, a design trade-off was necessary. For example,
text size is sometimes small in DocuBurst and Parallel Tag Clouds because
of wide-ranging data values, or outliers. Selecting a scaling function
which offers enough separation amongst items can require that some
items are illegible. Wattenberg and Viégas (2008) present evidence of
viewer preference for illegible type rather than a symbolic representation
of missing text. Related to legibility is readability, or the ease of reading
text — readability challenges we identify include following paths through
Uncertainty Lattices to read a sentence as a coherent unit. To address this,
the Uncertainty Lattices layout facilitates left-to-right reading, and places
the algorithm’s most likely solution along the bottom.

9.1.2 Text Scaling

As discussed in Chapter 2, studies show human perception to be more
accurate for estimating a quantity from a length when compared to an
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Figure 9.1: A large score for a long word can result in words overlap-
ping with neighbouring words, but the average case is more legible
than if the text were scaled to disallow possible overlaps.

area. When using text size to encode quantitative data, a designer has a
choice: scale by the area of the rendered word, or scale the text size (e. g.,
in points). If an unbiased reading were possible, it would also be easier to
read data from text size accurately (height of text = 1d length). However,
scaling by text size can result in long words appearing disproportionately
large. Conversely, scaling by total word area can result in selecting a very
large text size for short words. Drawing on the findings of Bateman et al.
(2008), who report text size to be the more accurate quantitative encoding
for tag clouds, we scale by text size in both DocuBurst and Parallel Tag
Clouds. This created a trade-off in Parallel Tag Clouds, however. In order
to maximize the legibility of the average case, we had to set the base size
to a level which would permit long words to overlap adjacent columns in
rare cases (see Figure 9.1). Normalizing by the longest word and highest
score resulted in almost all words being too small to read.
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9.1.3 Ambiguity of Language

Several different types of ambiguity and uncertainty related to language
arose in these design studies. Uncertainty Lattices was designed to por-
tray the ambiguity within the translation outputs, but in other places
ambiguity is not easily measured and displayed. Automatic word-sense
disambiguation (WSD) is an active area of NLP research — some ap-
proaches use WordNet as both a resource and a target (e. g., Banerjee and
Pedersen, 2002). This means the glosses and relations in WordNet provide
both the data used for disambiguation as well as the set of senses to choose
from. The results to date are not promising: Banerjee and Pedersen (2002)
achieve a 32% accuracy on the standard SENSEVAL-2 WSD evaluations.

Achieving highly accurate automatic WSD at the granularity of Word-
Net senses would be difficult. Consider the word cat — if this occurs
in a text, it most likely means a feline animal of some sort. However,
WordNet includes cat in eight noun synsets and two verb synsets, listed in
Appendix A. Note that the designers of WordNet place synset members
in approximate rank order by frequency and only three of those eight
synsets have ‘cat’ as the first member (some senses are quite obscure, even
to a native English speaker).

In the absence of WSD, to ameliorate the effects of ambiguity in
DocuBurst, we attempted several simple alternatives to distributing word
counts evenly to all senses of a word: apply count only to the first word
in synset, dividing by number of senses and distributing score evenly
amongst synsets (to discount the impact of highly ambiguous terms),
dividing the score across synsets in which the word appears using rela-
tive frequency information provided within WordNet (not available for
very many words), using a linear drop-off function to reduce the weight
assigned to lower-ranked synsets. None of the options are as useful as
we expect full word sense disambiguation would be (but we use the last
option). For example, examining a book about ‘cats’ with DocuBurst will
reveal a small signal on the branch for {large vehicle} (Caterpillar, a brand
of heavy equipment).

Word sense disambiguation is also a challenge faced by the viewers of
interfaces such as Parallel Tag Clouds, which display words somewhat
out-of-context (“somewhat” because at least the domain, legal cases, is
known). Recall, our legal scholar expert saw ‘ostrich’ in a Parallel Tag
Cloud and understood it in the correct way, where we assumed the bird
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was being referenced (see § 6.6). Beyond applying domain knowledge,
the other ways to disambiguate problematic words in Parallel Tag Clouds
include: providing interactive access to the underlying source text, so
that the reader can perform the disambiguation in context, and providing
keyword-in-context (KWIC) overviews in tooltips.

9.1.4 Selecting an Appropriate Level of Abstraction

When designing the content analysis visualizations DocuBurst and Paral-
lel Tag Clouds, where complete overviews of the entire dataset (or even
a significant fraction of it) was impractical without abstraction or filter-
ing of the data (both for computational and perceptual reasons), it was
challenging to automatically determine an appropriate level of abstraction.

In DocuBurst this manifested in two ways: first, the problem of knowing
where to start an exploration of a particular text (i. e., which root synset
will make for an informative glyph?). Currently the analyst must specify
a starting point. The second problem in DocuBurst is how to abstract the
DocuBurst tree once it is created. For a great many synsets, the structure
in the hyponomy tree is too large to visualize completely on standard
computer hardware using DocuBurst. In the current implementation, we
apply degree-of-interest (DOI) techniques to create distance-to-focus-node
based filters over the tree (i. e., collapse all nodes further than N steps
away from the root or any selected focus node).

Abstracting on metrics such as distance-to-focus node falls into the
category of linguistically naïve, as the filter does not take into account any
of the semantics of the data. Ideally, the ontology itself would be designed
in a manner to allow for normalized and comparable distance metrics
(perhaps through a weighted hyponomy relation). Specifically, with
WordNet, Hirschberg and Nakatani (1998) report examples of semantically
inconsistent distances. From our own observation the level of specificity
of a synset is only loosely related to the number of IS-A steps from the
DocuBurst root. For example, “fissure of Sylvius: the deepest and most
prominent of the cortical fissures” is at the same depth as foot, finger, and
leg (see Figure 9.2a).

The specific selection of terms for the parallel tag clouds visualization
is based on several filtering mechanisms, such as removing initial-uppers,
the use of a frequency cut-off beam to ignore the most common (because
they would not likely differentiate the facets) and most uncommon words
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(a) The depth of a particular synset, and the number of steps in a chain of hyponomy links
relating two concepts cannot be interpreted easily. Paths within WordNet composed of the
same number of relations are often different semantic distance. Here we see {fissure of
Sylvius} is at the same depth as {finger, leg, toe} in a DocuBurst view.

(b) The log likelihood technique for extracting significant terms selects terms of varying
overall frequency and specificity, here specific terms ‘ferritin’ and ‘misbehavior’ appear in
the same Parallel Tag Cloud with generic words ‘here’ and ‘have’.

Figure 9.2: Level of abstraction challenges in linguistic visualization.
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(because there are just too many of them), and a threshold on the log
likelihood score. After all this processing, the top N words are selected to
for each facet. The semantics of these words varies widely — some are
quite specific while others are very generic (see Figure 9.2b).

9.1.5 Handling Proper Nouns

Within DocuBurst, proper nouns were simply ignored. As proper nouns
generally do not appear in WordNet, they had no place within the structure
of the DocuBurst tree. Proper nouns and the relationships between them
carry important information. Integrating proper nouns into DocuBurst
or in a linked, coordinated view would likely enhance the utility of the
system.

In Uncertainty Lattices proper nouns were usually not translatable. In
these cases, the translation model is abandoned in favour of a Web search
for representative pictures. The only proper nouns to give recognizable
results with this technique were place names and the names of famous
individuals.

In Parallel Tag Clouds we excluded initial uppers, which caught most
proper nouns due to the typographical conventions in English. We did
this because the particular facet across which we divided the data (court
division) could basically be classified by the proper nouns (place names
and judges in the district). So, these names were all that would appear in
the display.

9.2 summary of contributions

This dissertation explored the space of closely linking NLP algorithms with
information visualization (InfoVis). Our contributions fall into three main
groupings: design studies, technical innovations, and general visualization
concepts.

9.2.1 Design Studies

Through five design studies, we have introduced new techniques to couple
interactive visualization with natural language processing and data:
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lattice uncertainty visualization exposes the black box of statis-
tical machine translation (MT) and automatic speech recognition
(ASR), to help people to make decisions about the quality of the
outputs (Chapter 4).

docuburst presents the first document content visualization spatialized
using an expert-created linguistic ontology (Chapter 5).

parallel tag clouds contribute a method for detecting, displaying,
and exploring differences within very large faceted text corpora
(Chapter 6).

bubble sets address a specific and repetitive analysis task important to
a group of MT researchers (Chapter 7).

vislink provides a general platform within which multiple visualiza-
tions of language (or other data types) can be connected, cross-
queried, and compared (Chapter 8).

9.2.2 Technical Innovations

In the development and implementation of the design studies, we have
contributed eight technical innovations:

encoding uncertainty in graph nodes We explored the use of
both graduated transparency and increasing degrees of boundary blurring
as two possible methods for encoding uncertainty in the background of
graph nodes. These techniques were designed to intentionally leave the
center of the node clear for a text or other type of label (§4.5).

interacting with radial space-filling trees We contribute the
interaction technique of adjusting the angular width of subtrees in RSF
layouts using the mouse wheel while retaining the availability of the other
buttons for simultaneous click+drag operations such as pan and zoom
(§ 5.5.3). The source code for our radial space-filling (RSF) Tree layout
and interaction is available from http://www.christophercollins.ca/

research/docuburst and has been used in published extensions to the
technique (e. g., Byrne et al., 2007; Hancock et al., 2009; Pan and Wang,
2009).

http://www.christophercollins.ca/research/docuburst
http://www.christophercollins.ca/research/docuburst


9.2 summary of contributions 245

interactive stub edges to indicate distant connections In
order to hint at the presence of distant connections between items in a
visualization, we developed edge stubs: edges which are opaque near
their connections but fade to transparency at a distance. The edges use
a three-state interaction model: edges change to full opacity when the
mouse pointer brushes over either endpoint and remain opaque if an
endpoint is clicked. Groups of edges can also be activated to reveal
patterns of connections.

composing and caching term vectors In order to quickly create
lists of significant terms based on any arbitrary subset of a corpus, we
developed a method for precomputing, storing, and dynamically compos-
ing lists of significant words extracted from large faceted text corpora at
interactive speeds (§6.5).

edge-routing algorithm to maintain set connectedness To
create a skeleton for the implicit surfaces used in Chapter 7, we developed
an edge-routing algorithm which subdivides edges to move them around
any obstacles which are blocking the shortest path between between set
members. The algorithm recalculates edge routes on realistic datasets at
interactive speeds (§7.3).

set membership assignment at a distance Interfaces which use
implicit surfaces to group objects commonly base membership on prox-
imity. We contribute a method for adding items to a set through first
activating a set then selecting the objects to add or remove. The set
boundary flows around obstacles to connect members in arbitrary layouts.

relating multiple 2d visualizations in 3d space We contribute
a general technique for re-using the spatial visual variable, making it
possible to reveal relationships, patterns, and connections between two or
more primary 2d visualizations within a constrained navigation 3d space
(§8.2).

interaction widgets for manipulating 2d planes in 3d space

In order to facilitate changing the relative alignment of 2d planes in 3d

environment using a 2d mouse, we create the garage door, accordian, and
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book widgets which provide constrained interaction leading to preferred
views (§8.2.2).

9.2.3 Visualization Concepts

Arising from this dissertation are three high-level conceptual contribu-
tions:

Spatial Rights

The use of spatial rights in this work is a new way of framing the primacy
of the spatial visual variable. Used in Chapters 4, 7, and 8, this concept
can be used as a reminder for visualization designers to consider which
data dimension or dimensions should be given spatial rights. Making this
decision then provides helpful constraints to guide further design.

Formalism for Multiple Relationship Visualizations

Visualizations of datasets containing multiple types of relations are in-
creasingly common. In Section 8.1 we provide a formalism through which
one can describe how spatial rights are preserved or infringed upon when
more than one data relation is visualized. This conceptual framework
allows for differentiation amongst existing approaches which employ mul-
tiple relations, multiple visualization types, and potentially coordinated
views.

Cross-Visualization Query Technique

One of the primary purposes of creating a visualization for a data set is to
query the data for specific details. Bertini et al. (2007) has categorized the
types of queries that a visualization commonly supports. These include
a range of queries from details about a given data item to comparative
questions between pairs of data items to trends over subsets of data items
to overviews of the dataset. All of these types of queries are within
a single visualization. Visualizations in themselves can encode a great
variety of types of relations within the data. Through VisLink, we provide
the opportunity to visually formulate queries that make use of more than
one visualization simultaneously. These visual queries are represented by
connections between visualizations using bundled edges to link related
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data items in the visualizations that match the query. Patterns in the
cross-visualization edges may allow an analyst to see secondary relations
between representations. Use of cross-visualization queries opens the
door to expanding the expressive power of representations by connecting
already existing visualizations (§8.2.3, §8.2.4).

9.3 beyond word counts: future research opportunities

Each of our design studies has inspired ideas for future research direc-
tions. You may notice that some of these have generated extensive ideas,
resulting from interest within the research community. Many of the ideas
for future directions discussed below arise from the challenges we identify
in Section 9.1.

9.3.1 Communication

Our Uncertainty Lattices visualization relies on embedding of uncertain-
ties on the nodes. Some statistical processing algorithms also provide
scores for edges. Extending the visualization to incorporate edge uncer-
tainties is a natural next step. Additionally, the hybrid layout algorithm
used in this work does not reorganize the layout based on the viewer’s
selection. A more generic graph layout algorithm may allow for smoothly
animating the currently selected best path to the bottom row of the lattice.
This would enhance readability and reduce the jitter produced by the use
of a force-directed algorithm. One potentially useful layout algorithm is
the enhanced Sugiyama layout.

While our visualization of real-time communication is tightly coupled
to two types of statistical NLP algorithms, the information flow follows a
transactional model with no feedback component: the interface receives
input, sends it to the NLP algorithm, which produces a set of results
embedded in a lattice which is returned to the visualization for display.
After this, the viewer may correct the translation or transcription using
the interactive interface. The correction goes to the log, but is not fed
back to the statistical model. The viewer-generated corrections could be
informative for refining the statistical model.

Informal demonstrations of the Uncertainty Lattices system generated
enthusiastic feedback. If cross-language visualized instant messaging was
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provided as a service on the Web, the collection of anonymized records of
corrective actions could quickly grow to become a significant resource.

Beyond the specifics of the Uncertainty Lattices visualization, opportu-
nities to visualize communication include exploring personal information
management: can closer coupling of NLP and InfoVis ease feelings of
information overload felt due to overflowing e-mail inboxes and unchecked
RSS feeds?

9.3.2 Content Analysis

DocuBurst

Initially motivated by the current lack of a digital equivalent of flipping
through a book, this work leads well into an investigation of the DocuBurst
technique to view the differences between two or more documents, which
may be useful for plagiarism detection, document categorization, and
authorship attribution. Existing digital library interfaces could be en-
hanced with arrays of DocuBurst glyphs, allowing comparison against
one another or a baseline reference corpus to portray content in more
pleasing and information-rich ways.

As previously discussed in Section 9.1, there are several common chal-
lenges which arise when designing linguistic visualizations. Here we
divide ideas for future work to match the previously explained challenge
it would address.

scalability From a data perspective, the original goal of creating
a structured view of which parts of an entire language are included in a
document, merits further research. Recall that DocuBurst only encom-
passes nouns and verbs within WordNet. As with all text visualizations,
it is necessary to view a subset of language due to limited display space
and computational resources with extremely large data. Views rooted
at {entity} and covering all English nouns appear cluttered and interac-
tion is too slow for comfortable use. It is commonly held that WordNet
sense-divisions are too fine-grained for many computational applications;
investigation into other ways to abstract WordNet or application of the
technique to an alternative ontology may help alleviate this problem. It
may also be advantageous to use more advanced rendering techniques to
render clusters of tiny, unreadable nodes as a single shape.
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(a) Even (distance-based) tree cut, with zero-count
nodes removed. Nodes highlighted in pink would
be candidated for removal by an uneven tree cut.

(b) Sketch of uneven tree cut based on distance from
central focus and the underlying data profile. For
example, as the vast majority of the {aquatic ver-
tebrate} synset is present under {fish}, we abstract
to the most generic term without losing much in-
formation. But, as {salamander} is present under
{amphibian} while the {frog} subtree is not, we leave
the more specific synset.

Figure 9.3: Comparing even and ideas for uneven tree cut methods to abstract DocuBurst.



250 conclusions

improved and uneven abstraction The goal here is to create a
method which will abstract away unnecessary detail to clarify the view
while retaining salient information. Beyond simple distance measures, it
would be useful to be able to abstract an uneven ontology like WordNet
with an uneven tree cut. Such a tree cut could be based on the word counts
gathered from the document as well as the structure of the hyponymy
tree.

First, we need appropriate ways to abstract and filter the data. We
propose to explore uneven tree-cut models as the scoring function used
by the DOI filter. As a starting point, the score value would be a function
of both the structure of the tree and the meta data (e. g., word counts)
assigned to nodes of the tree. For example, if a node has five children,
and four of them have significant non-zero occurrence counts, we may
propagate the counts from the children to the parent and remove the
children. This is because of the transitive nature of the IS-A relation in
WordNet. As a concrete example: if the synset {fish} has three member
synsets, {bony fish}, {food fish}, {cartilaginous fish}, and all have significant
occurrence counts, we may safely remove the members, propagating their
occurrence counts up to {fish}, because generally the document is about
{fish}. Alternatively, if the synset {amphibian} has two member synsets,
{salamander} and {frog}, and only {salamander} has a non-zero occurrence
count, we cannot assume the document to be about {amphibians} generally
and must retain the node {salamander}. This is illustrated in Figure 9.3.

suggesting starting points Finding a place to begin exploration
is another challenge with the current implementation. Providing hints
for which synsets may be of interest as visualization roots for a particular
document or set of documents may assist an analyst to find views of
interest. Methods which may be useful include suggesting synsets with
a high fraction of non-zero leaves below them, synsets with an unusual
pattern of non-zero nodes below them, or synsets for which the cumulative
count divided by the number of leaves is high, indicating an area of
unusual concentration.

additional scoring functions Currently word occurrence count
is the only available word scoring function. Other scoring functions, such
as the log-likelihood ratio (Dunning, 1993), could be used to highlight
important or unusual words in a document. Other text features, such as
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hapax legomena (words which occur only once) could be used with the
WordNet-based layout to provide special-purpose summaries of content.

visual encodings Visually, the use of transparency to indicate word
occurrence creates an intuitive mapping between data and visual appear-
ance. However, it also introduces the possibility of misleading illusions.
For instance, siblings in DocuBurst are unordered; furthermore, non-
sibling nodes may be adjacent. By chance, unrelated nodes that both
have high occurrence counts can appear as a large swath of strong colour.
Gestalt perception may lead viewers to impart significance to this co-
incidence. Stronger node borders would distinguish these regions, but
node borders become obstructive on small nodes. Finding an experimen-
tally validated solution to this design trade-off could impact space-filling
visualizations in general.

Parallel Tag Clouds

clarifying word senses It may be possible to partially disambiguate
words by re-organizing the vertical arrangement of the layout to cluster
words into co-occurrence-based sets. If ‘bank’ and ‘river’ appear the
same set, one would assume the financial institution sense of ‘bank’ is
unlikely. Such clustering could alternatively be visually achieved by
adding an additional dimension of visual encoding such as encoding
set relations with hue. Clusters could also be displayed overParallel Tag
Clouds without reorganizing the alphabetic layout by using Bubble Sets.

automatic reorganization of columns The ordering of axes is
an important factor when designing a parallel coordinates view. In this
work, we took the approach that the data contains a semantic relation (the
ordering of the circuits from First to Eleventh). Disrupting semantically
meaningful arrangements is potentially problematic (Misue et al., 1995).
For other data sets, automatic column reordering may be appropriate,
or a facility for interactive reordering could be provided. If the facets
have no natural order, then the columns of the visualization could be
rearranged interactively or automatically (e. g., Inselberg and Dimsdale,
1990) to enhance the probability that related columns would be adjacent.

revealing change Our instantiation of Parallel Tag Clouds includes
change highlighting through colour. Additional methods to reveal change
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are needed, particularly to reveal which terms are removed from view
when a parameter changes.

improving speeds at run-time Accomplishing view changes at
interactive speeds presents a computational challenge. While in our initial
prototype we pre-processed the court data into year-long chunks, there
remained some lag in loading a selected time period. During this lag,
word count by facet arrays are loaded for each year, then composed to
a single vector. The assignment of G2 scores requires a single frequency
vector computed over the selected subset of the data. This prevents pre-
calculation of the G2 score as it would need to be calculated over the
power set of data subsets (in our case, time ranges). This also prevents
extensive filtering of the word set in the pre-processing stage, as it is
difficult to predict which words may have a significant G2 score when
examining only frequency data. We apply some well-motivated heuristic
approaches to reducing the lexicon at the pre-processing stage, but these
methods are approximate and may introduce errors.

On-line calculation of the significance score results results in a bottle-
neck in the pipeline at runtime: load operations (slow) are followed by
scoring (slow), filtering, representational transformations, presentation
transformations, and the creation of a view. New ways to pre-process
large corpora for fast loading of arbitrary subsets of data, or new scor-
ing methods which can be calculated quickly or (better) in advance will
improve the capacity of this method to handle larger corpora.

9.3.3 Linguistic, NLP, and CL Research

Bubble Sets

Within our isocontour approach we have implemented several heuristics to
reduce surface calculation and rendering time, such as grouping pixels for
potential calculations and restricting the regions in which items influence
the potential field. The current implementation works without noticeable
lag (items can be dragged and the surface follows) for our examples
(order of 100 nodes, 10–20 sets). However, as the number of items, the
screen resolution, or the number of sets increases, so will the rendering
time. Additional techniques, such as grouping close items into larger
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pseudo-nodes, and caching the energy field values between frames may
increase the capacity of the system.

VisLink

applications We have described VisLink primarily with examples
from a single data set. VisLink may be applicable to a rich set of problems
in linguistic data analysis. For example, using different lexical distance
measures to organize words on VisLink planes, it would be interesting to
observe the patterns of inter-plane edge connections as we did with the
simple spelling-related similarity measure. Other possible applications
include relating parse tree representations, comparing different ontologies
and structured knowledge sources, and investigating language change
over time. It may also be useful to relate linguistic and non-linguistic data
with VisLink, and we have been approached by researchers from large
firms such as DOW Chemical to investigate relating data such as chemical
diagrams with linguistic information such as patent texts. Opportunities
also exist to expand the capabilities of inter-representational queries, for
example, by providing for a rich query language that can filter each
visualization plane separately.

linking information graphics VisLink can be a tool for bridging
the through linking and providing interactive views over pre-existing
information graphics. For example, a static visualization created by a
computational linguistics (CL) could be imported into VisLink. The data
items on the plane could be hand-annotated by clicking their position to
create an invisible visual item at that location. Then the previously static
graphic can be connected to other graphics or interactive visualizations
with VisLink 3d edges. In future work we plan to create an easy-to-use
import utility to import, scale and position, and annotate information
graphics with visual items and inter-plane edges.

managing edge congestion VisLink suffers from sometimes re-
vealing an unwieldy set of 3d edges when an entire plane is activated.
Depending on connection patterns, the inter-plane edges can even grow
quite large through query propagation. Future research will investigate
techniques for managing edge congestion, such as 3d edge bundling tech-
niques, the use of interaction tools to isolate edge sets of interest, and
stepwise animation of the propagation of cross-plane activation.
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Exploratory Data Analysis

An area of linguistic visualization within the problem area of linguistic,
CL, and NLP research for which visualization offers much promise is
exploratory data analysis. One type of exploratory analysis is visualizing
corpora, either through overviews or discrete document views. This is a
specialized type of content analysis targeted at understanding linguistic
data. Interactive exploratory techniques could be used for quality control
of a corpus, to deeply investigate patterns of inter-annotator disagreement,
and to discover areas of imbalanced coverage. Exploratory data analysis
could also take the form of algorithm visualizations, providing insight
into ‘black box’ models through visualizing variance in model predictions,
e. g., “What changes when I adjust this parameter?”.

Understanding NLP Processes

Our work on Uncertainty Lattices and Bubble Sets began an investigation
into visualization to aid in understanding NLP processes. This direction
has a lot of avenues to explore, including algorithmic visualization of
automata (as they are running), visualizing non-determinism, visualizing
dynamic programming processes such as chart pruning and beam search,
and tracking the search space of hypotheses in statistical models such as
MT and ASR.

9.4 closing remarks

Despite the improvements in NLP algorithms and the increase in com-
puting power, humans are still clearly needed in the linguistic analysis
process. The joys of human language — the ability to recombine words to
produce new meaning, to say one thing yet mean another, to poetically
use metaphors without even noticing, to say a very few words and have
friends know your intent — these are the very reasons computers cannot
replace us. But given the information society we live in, we need new tools
and techniques to manage and comprehend all the linguistic data we
are producing, sharing, and archiving. Information overload, information
anxiety, and information addiction (Bawden and Robinson, 2009) are be-
coming more common phrases in our vocabulary. Just as representing
numbers with pen and paper acts as a cognitive aid for processing long
division, perhaps new forms of cognitive aids are possible to increase
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our capacity to consume linguistic data. Computers are exceedingly fast
when faced with bulk data processing; humans are nuanced at interpret-
ing meaning. This dissertation explores the possibility that interactive
linguistic visualization, grounded in state-of-the art natural language pro-
cessing, may produce new forms of human-computer optimized systems
to collaboratively analyze linguistic data.

To understand the how the growing number of linguistic visualizations
relate to one another, and to the design studies presented in this disserta-
tion, we frame of the space of linguistic visualization along five dimensions:
the community of practice creating the visualization, the target audience,
the problem area, the level of interactivity provided by the interface, and
the type of linguistic resources used. We also introduce the concept of a
linguistic visualization divide — The gulf separating sophisticated natural
language processing algorithms and data structures from state-of-the-art
interactive visualization design..

A greater number of close collaborations between researchers and de-
signers with expertise in CL, NLP, and InfoVis would help us move
towards closing this divide. Two current factors are facilitating an increas-
ingly fast movement in this direction. First, there is a greater focus gen-
erally on improving support for interdisciplinary collaborations. Second,
many other disciplines, such as visual analytics and digital humanities,
are beginning to draw on techniques from both NLP and InfoVis in their
own research processes. So, it may be that the innovations that close the
divide come from communities of practice outside the two research fields
that primarily inform this work.

Additionally, the Web is opening up the space of innovation to provide
for rapid prototyping and wide dissemination of visualizations using
open application programming interfaces (APIs) for data provision and
commonly available protocols for visualization display. What is missing in
the realm of software-as-a-service computing are the open APIs for NLP.
The general lack of sophistication in the NLP which is linked to linguistic
visualizations may be because NLP algorithms are perceived as unreliable,
difficult to interpret, resource intensive, and complex to implement. The
provision of open APIs for NLP would address these issues. First, if
such APIs are developed, they should not present their results as black
box solutions, but allow for access to metadata about the NLP, such as
confidence scores. This reliability information can be used in information
visualizations to assist people in interpreting the outputs of NLP. Second,
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on interpretation, the API could provide approachable and clear documen-
tation about how the outputs are calculated, then, through good design,
visualizations could make interpretation even easier. Third, by providing
software-as-a-service over the Web, resource-intensive algorithms such as
translation, sentiment analysis, summarization, and keyword detection
could be parallelized and calculated ‘in the cloud’. Restricted computing
resources for NLP within the browser setting was the most challenging
issue blocking deployment of the Uncertainty Lattices, DocuBurst, and
Parallel Tag Cloud design studies as Web applications. Fourth, by pro-
viding NLP algorithms as a service, the complexity of implementation
issues are removed. A developer could rely on the underlying NLP to be
state-of-the-art, while knowing the interface to the visualization will not
change.

The media we use for communication, representation, and storage of
linguistic information are always evolving. In an information society
faced with growing problems of information overload, development of
new external cognitive aids in the form of linguistic visualizations may be
a practical next step in this evolution.
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A
WORDNET SENSES OF CAT

1. (n) Synonyms: cat, true cat
Sense: feline mammal usually having thick soft fur and no ability to
roar: domestic cats; wildcats

2. (n) Synonyms: guy, cat, hombre, bozo
Sense: an informal term for a youth or man; "a nice guy"; "the guy’s
only doing it for some doll"

3. (n) Synonyms: cat
Sense: a spiteful woman gossip; "what a cat she is!"

4. (n) Synonyms: kat, khat, qat, quat, cat, Arabian tea, African tea
Sense: the leaves of the shrub Catha edulis which are chewed like
tobacco or used to make tea; has the effect of a euphoric stimulant;
"in Yemen kat is used daily by 85

5. (n) Synonyms: cat-o’-nine-tails, cat
Sense: a whip with nine knotted cords; "Sailors feared the cat"

6. (n) Synonyms: Caterpillar, cat
Sense: a large tracked vehicle that is propelled by two endless metal
belts; frequently used for moving earth in construction and farm
work

7. (n) Synonyms: big cat, cat
Sense: any of several large cats typically able to roar and living in
the wild

8. (n) Synonyms: computerized tomography, computed tomography,
CT, computed axial tomography, CAT
Sense: a method of examining body organs by scanning them with
X rays and using a computer to construct a series of cross-sectional
scans along a single axis

9. (v) Synonyms: cat
Sense: beat with a cat-o’-nine-tails

10. (v) Synonyms: vomit, vomit up, purge, cast, sick, cat, . . .
Sense: eject the contents of the stomach through the mouth; . . .
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B
BUBBLE TREE DTD

<!--

DTD describing a bubble tree containing a tree & a list of bubbles over nodes.

Inspired by the TreeML DTD by Jean-Daniel Fekete and Catherine Plaisant

See http://www.cs.umd.edu/hcil/iv03contest/index.shtml

-->

<!ELEMENT bubbleTree (attribute*,bubbleType*,bubbleDeclarations?, tree, fsentence?, bubbleEdgeList?)>

<!ATTLIST bubbleTree

label CDATA #IMPLIED

>

<!-- e.g. <bubbleType id="reorder" color="102">re-order rule</bubbleType> -->

<!ELEMENT bubbleType (#PCDATA)>

<!ATTLIST bubbleType

id ID #REQUIRED

colour CDATA #IMPLIED>

<!ELEMENT bubbleDeclarations (declarations?, bubbleDecl+) >

<!-- declarations will specify the names & types of attributes available for each node -->

<!ELEMENT declarations (attributeDecl+) >

<!ELEMENT attributeDecl EMPTY>

<!ATTLIST attributeDecl

name CDATA #REQUIRED

type (Integer|Long|Float|Double|String|Date|Category) "Integer"

>

<!-- comments about a bubble or any part of the tree -->

<!ELEMENT comments (comment+)>

<!ELEMENT comment (#PCDATA)>

<!ATTLIST comment

author CDATA #IMPLIED

date CDATA #IMPLIED

score CDATA #IMPLIED

>

<!ELEMENT bubbleDecl (attribute*,comments?)>

<!-- id must be unique for each bubble, set bubbletypeid to

distinguish tree bubbles from sentence bubbles -->

<!ATTLIST bubbleDecl
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id ID #REQUIRED

bubbletypeid IDREF #IMPLIED>

<!-- e.g. <bubbleDeclarations><bubbleDecl id="1" bubbletypeid="reorder">

<attribute name="rule number" value="2203" /></bubbleDecl></bubbleDeclarations> -->

<!-- TREE -->

<!ELEMENT tree (declarations?, (branch | leaf)* )>

<!-- nodes can appear in multiple bubbles;

not present in current data, but allowed for generalizability -->

<!ELEMENT branch (attribute*, bubbles+, comments?, (branch | leaf)+ ) >

<!ATTLIST branch label CDATA #REQUIRED>

<!ELEMENT bubbles EMPTY>

<!ATTLIST bubbles

memberof IDREFS #REQUIRED>

<!ELEMENT leaf (attribute*, comments?, bubbles+)>

<!ATTLIST leaf label CDATA #REQUIRED>

<!-- names and types of values should match declarations -->

<!ELEMENT attribute EMPTY >

<!ATTLIST attribute

name CDATA #REQUIRED

value CDATA #REQUIRED >



C
PARALLEL TAG CLOUDS INTER-COLUMN EDGE
DESIGNS

In the process of developing the final design for Parallel Tag Cloud inter-
column edges, we investigated several alternatives. Ideally, the edges
should:

◦ reveal patterns of connections between columns;
◦ show where a particular word appears more than once in a plot;
◦ not interfere with reading the words;
◦ be traceable over long distances;
◦ not overload the visualization (perceptually or aesthetically).

The following figures explore the pros and cons of some of the alterna-
tive designs considered.

Figure C.1: Semi-transparent edges connect words across columns and
become opaque when selected. Advantage: reveals patterns in edges.
Problems: interferes with legibility of words, large volume of edges
makes tracing edges difficult.
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Figure C.2: An opaque background on words places the semi-
transparent edges behind. Advantage: improves legibility over C.1.
Problem: more difficult to follow edges.

Figure C.3: Word hue indicates the presence of an edge. Edges are
only shown on hover or select. Advantage: edges do not interfere
with legibility, grouping of words with edges are visible in columns.
Problems: hue variance may reduce legibility of words, different hues
may have different perceived weight, no indication of edge direction
or distance.

Figure C.4: A dot beside a wor indicates the presence of an edge.
Edges are shown only on hover or select. Advantage: edges to not
interfere with legibility. Problems: dots are difficult to see, dots do not
indicate direction of edge, patterns of connections not visible.
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Figure C.5: The colour of an edge stub indicates the column it is
connected to. Words are coloured according to their column. Complete
edges are only shown on hover or select. Advantages: edges do not
interfere with legibility, hue and stub direction indicate destintion.
Problems: use of many hues creates an overwhelming visual effect,
cognitive load of tracing hue from edge to column is high, text hue
may compromise legibility.

Figure C.6: The colour of an edge stub indicates the column it is
connected to. Column backgrounds are filled in column-specific hue.
Complete edges are only shown on hover or select. Advantages: edges
do not interfere with legibility, hue and stub direction indicate destin-
tion, column background hue clearer than using text hue. Problems:
use of many hues creates an overwhelming visual effect that is dif-
ficult to look at, cognitive load of tracing hue from edge to column
is high, coloured background does not extend to fit text, which may
compromise legibility.
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Figure C.7: The colour of an edge stub indicates the column it is
connected to. Word backgrounds are filled in column-specific hue.
Complete edges are only shown on hover or select. Advantages:
edges do not interfere with legibility, hue and stub direction indicate
destintion, word background is clearer than using text hue. Problems:
use of many hues creates an overwhelming visual effect, cognitive load
of tracing hue from edge to column is high.

Figure C.8: The random colour of a wedge matches the colour of the
other end of the edge. Wedges would meet at a point at destination
if extended, using the technique of (Gustafson et al., 2008). Complete
edges are only shown on hover or select. Advantages: wedges to not
interfere with legibility, hue can be matched to find edge connections,
destination of wedge can be extrapolated by extending edges to meet
at a point. Problems: discerning hue on a wedge border is difficult
due to small area, extrapolating destination point for wedge increases
cognitive load.
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Figure C.9: The random colour of a stub matches the colour of the
other end of the edge. Stub width at each end corresponds to word
height. Complete edges are only shown on hover or select. Advantages:
wedges to not interfere with legibility, hue can be matched to find edge
connections. Problems: discerning hue on a stub border is difficult due
to small area.

Figure C.10: The colour of an edge stub indicates the column it is
connected to. The column labels are filled in a column-specific hue.
Complete edges are only shown on hover or select. Advantages: edges
to not interfere with legibility, hue and stub direction indicate desti-
nation, colouring of column label avoids negative effects on legibility.
Problems: use of many hues creates an overwhelming visual effect,
referencing stub colour and column label colour requires repetitive
visual search.
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Figure C.11: Edge stubs are drawn in a single hue. Complete edges
are only shown on hover or select. Advantages: edges to not interfere
with legibility, stub direction indicates destination, stub shape indicates
relative size of words on each end of edge, simple colouring creates a
pleasing aesthetic. Problems: without hover or select, determining the
destination column for a stub is not possible. This is the version used
in the final prototype presented in Chapter 6.
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