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Abstract
Lattice graphs are used as underlying data structures in many statistical processing systems, including natural
language processing. Lattices compactly represent multiple possible outputs and are usually hidden from users.
We present a novel visualization intended to reveal the uncertainty and variability inherent in statistically-derived
lattice structures. Applications such as machine translation and automated speech recognition typically present
users with a best-guess about the appropriate output, with apparent complete confidence. Through case studies
we show how our visualization uses a hybrid layout along with varying transparency, colour, and size to reveal
the lattice structure, expose the inherent uncertainty in statistical processing, and help users make better-informed
decisions about statistically-derived outputs.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Graphical user interfaces (GUI); E.1 [Data Structures]: Graphs and networks; I.2.7 [Natural Language
Processing]: Machine translation, Speech recognition and synthesis

Keywords: lattice, uncertainty, information visualization, machine translation, speech recognition

1. Introduction

In this paper we present a generalizable decision support vi-
sualization that reveals uncertainty in lattices generated by
statistical algorithms. While lattice structures are used as
black boxes in many processing systems, we know of no
other visualization to support their use in “human-in-the-
loop” decision making. Our low-cost visualization of un-
certainty uses techniques based on well-known properties of
human perception. We present case studies applying our vi-
sualization to reveal uncertainty in machine translation and
automated speech recognition outputs. By supporting explo-
ration of the alternatives considered by these statistical al-
gorithms, our visualization leads to the discovery of better
solutions.

While general graphs and some subsets of graphs such
as trees have received considerable visualization attention,
other important subsets such as lattices have been largely ig-
nored. Lattice graphs are used as the underlying data struc-
tures in many statistical processing systems and serve well in
holding the possible ranked alternative solutions. Our lattice
graph visualization uses a combination of grid and force-

based techniques to create a layout that focuses on multiple
encodings of the uncertainties using position, transparency,
and colour (see Figure 1). These statistically-derived lattices
are amenable to visualization since the uncertainties are lo-
cally constrained. Our visualization is readily extensible in
general for creating representations of uncertainty in general
lattice graphs.

Many current applications, such as the majority of those
in the realm of natural language processing [Koe04, Jel98,
e.g.], are statistically based. Their outputs represent a “best
guess” by the algorithm, given some training data, parame-
ter settings, and input. These best-guess outputs come from
a very large collection of possibilities, each ranked with a
score. However, these systems present their result in a black-
box fashion, showing only a single response. Since no details
about probabilities, uncertainties, or the workings of the al-
gorithms are provided, it is easy to misconstrue the output
as having a low uncertainty. This lack of detail deprives us
of the context necessary to make well-informed decisions
based on the reliability of that output.

Understanding about the human reasoning process in-
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Figure 1: A speech recognition lattice for which the statistically-identified best path is not the best transcription. The best path
according to the model is shown in green. Node uncertainty is represented by position, fill hue, and edge transparency gradient.
Edges attached to the node under the mouse pointer are coloured gold.

forms us that, while not idealized Bayesian decision-makers,
people do make decisions based on their analysis of the ob-
jective context of the problem and subjective probabilities
informed by their personal body of knowledge [Coh79]. For
example, in the context of a natural language system such
as machine translation, a person makes a decision about the
reasonableness of the output based on their prior knowledge
of likely constructs in the language. Based on Cohen’s re-
view of research on reasoning, we work with the assertion
that the quality of the decision about whether to accept the
algorithm’s best guess can be enhanced by knowing the un-
certainty inherent in the solution. That is, providing easy
access to the objective context will enable people to make
better decisions. Since the effort a person will want to ex-
pend in making a decision is proportional to the perceived
importance of that decision, we want to keep the algorithm’s
best guess obvious while providing visual access to ranked
probabilities. For instance, a person may accept a confusing
translation in casual conversation in an Internet chat-room,
but would reject the same problematic translation in a multi-
lingual business negotiation.

There are many aspects of language modelling that sta-
tistical processing has yet to master — for instance, an out-
put of speech recognition occurring in the corpus we use is,
“the prisoners resisted a rest.” Without our visualization one
would not know that “the prisoners resisted arrest” was the
second-highest scored hypothesis. While any native speaker
would guess the correct reading of the phrase, presenting it
visually in parallel with the algorithm’s best guess removes
the puzzle aspect for a native speaker but provides a learner
with the needed support. By revealing alternative hypotheses
considered by the algorithm, and the uncertainties associated
with each, our visualization shows promise for facilitating
the process of recognizing and correcting of errors.

2. Background

As information visualization as a field has matured, focus on
visualizing uncertainty in a dataset in conjunction with the
absolute data values has increased [JS03]. Amar and Stasko
call for bridging of analytic gaps between data representa-
tion and analysis, and one technique they suggest is to ex-
pose “black box” processes through visualization of meta-
data such as uncertainty [AS04]. Examples from the liter-
ature that are relevant to our approach include using line
thickness and transparency to represent uncertainty in ar-
chitectural drawings of ancient structures [SMI99] and us-
ing iso-surfaces and motion blur to represent uncertainty in
molecular (node-link) diagrams [RJ99]. Zuk and Carpen-
dale [ZC06] present a theoretical analysis of these and other
uncertainty visualizations in which they summarize the sig-
nificant theories of Bertin [Ber83], Tufte [Tuf01], and Ware
[War04] and apply them as heuristics for evaluation of visu-
alizations of uncertainty. We draw upon their analysis for de-
sign guidance. We will reflect more upon our design choices
based on these theories in the following section, after a brief
review of lattice graphs and lattice graph visualization.

Formally, a partially ordered set L is a lattice if, for all
elements x and y of L, the set {x,y} has both a least up-
per bound in L and a greatest lower bound in L. Lattices are
used in formal concept analysis (Galois lattices), and have
been previously visualized using simple force-directed lay-
outs [VGRH03]. Lattice drawing has also been of interest to
the universal algebra and graph drawing communities, where
the focus has been on drawing Hasse diagrams: the edges
must be straight lines and the vertical coordinate must agree
with the order. Reducing edge crossings has been a primary
concern [Fre04]. Our goal differs in that we are not focussed
on understanding the particular formal structure of the lat-
tice, but rather using that structure to support understanding
of the data and uncertainty represented by it.
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The “lattices” in statistical processing do not meet all con-
ditions of this formal definition. Intuitively, we can imagine
a lattice in this work as a partial order with a unique be-
ginning and end. Seen as a graph, for every node in a lat-
tice there exists a path from the beginning to the end which
passes through that node. To our knowledge, neither lattices
for statistical processing nor uncertainty within lattices have
been previously visualized.

3. Lattice Uncertainty Visualization

Traditional statistical processing systems use a large cor-
pus of data to quickly produce a single hypothesis, drawing
on a computer’s strength in dealing with large amounts of
data with the goal of quickly solving a problem. However, if
one is presented with the best result of a statistical process,
but the quality is so poor it is not useful, then the original
goal of providing convenience is not met. Building on the
generalization of human-computer optimization by Scott et
al. [SLK02], we hypothesize that by including a human “in-
the-loop” we can leverage the intelligence of the human and
the processing power of the computer to quickly solve the
same problems with better solutions.

To meet this goal, we identified several constraints to
guide our design process:

• ensure easy readability of paths in the lattice;
• provide an intuitive visual mapping of uncertainty within

the lattice which supports the ordering of nodes;
• provide for visual pop-out of nodes of high certainty and

nodes in the optimal path identified by the algorithm;
• provide alternative representations of the data to clarify

meaning, where possible;
• in most cases, require no interaction;
• where interaction is necessary (providing detail in con-

text and manipulation of best-path tracing), it should be
lightweight and easy to learn.

In order to ground our design in an understanding of hu-
man perceptual capabilities, we investigated the properties
of visual variables [Ber83], leading us to select those that
allow for high-speed estimation [HBE96] to convey rele-
vance, and that provide an ordered reading to convey un-
certainty. From this, we chose edge sharpness, hue, and po-
sition to make nodes of high confidence stand out, and un-
certain nodes less visually prevalent. Also, since value, size,
position, and transparency are ordered (values can be visu-
ally sorted), we used these to encode uncertainty to allow for
comparison of the relative scores between nodes.

3.1. Data

The lattices generated by statistical processing are collec-
tions of nodes and edges, each associated with a data value
(for example, a word) and a score (for example, an uncer-
tainty). A lattice is generated as a representation of the solu-
tion space for a given problem; any path from beginning to

end through the lattice represents an hypothesis about the so-
lution. However, the lattice may or may not contain the true
solution. For example, a speech recognition lattice contains
all the potential transcriptions considered by the algorithm.
It may not, in fact, contain the correct transcription. Each
lattice has a best path through it, based on node scores as
well as a true best path which, while it may not have the
best node scores, best matches the true solution. Our goal is
to use visualization to provide an opportunity for people to
combine the scores with their world knowledge to discover
the true best path or to reject the entire lattice.

In a lattice generated by a statistical process there may
exist a unique start and end node, representing the beginning
and end of all possible solutions. If such endpoint nodes do
not exist, we create them, extending edges from all starting
and ending nodes to the new endpoints. Unique endpoints
provide for an easy to locate visual entry-point to reading
the lattice. Our visualization algorithm reads lattices from
the statistical processing (source) algorithm using either an
interface customized to the application, or the HTK Stan-
dard Lattice Format (SLF) (http://htk.eng.cam.ac.uk).
In our current work, we only use labels and scores on nodes.
We convert lattices with edge probabilities to have posterior
probabilities on the nodes using the SRILM lattice toolkit
[Sto02]. Finally, we retrieve the best path through the lattice,
according to node scores, either directly from the source al-
gorithm or using the SRILM lattice toolkit.

When we discuss the uncertainty of lattice nodes, we
do not strictly mean uncertainty, as might be quantified
by an entropic measure, for example, but rather a more
application-specific property that emerges from the lattice
which reflects the probability that the node is part of the true
best path. In particular, node scores are generally relative
confidence scores, not true probabilities, and the presenta-
tion of several alternatives at any slice in the lattice is more
an indication of the number of plausible solutions, rather
than of a small margin of preference among those alterna-
tives. The score of a node, nevertheless, can be interpreted
as a measure of certainty that the node is the correct choice
for its span and appears in the best path.

3.2. Layout

In the graph drawing community, where the lattices are usu-
ally representations of an algebra, the convention is to draw
the order vertically, from bottom to top [Fre04]. However,
in the languages our visualization is designed to support,
text-based reading occurs left-to-right. Additionally, tempo-
ral flow (as in the flow of speech signals) is usually thought
of as occurring left-to-right. So, to support our design goal
of easy readability, we align our visualization horizontally to
allow for more natural left-to-right tracing of paths.

Our layout algorithm is a hybrid of grid and force-based
layouts. Initially, the lattice graph is laid out on a grid, an-
chored by endpoints which are positioned according to the
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length of the algorithmic best path through the lattice. This
avoids large gaps or significant overlaps. Horizontal node
positioning is derived from the node order in the lattice from
beginning to end. Vertical position is assigned to separate
nodes covering the same span, ordered by increasing uncer-
tainty bottom to top. Because the algorithmic best path is of
most interest, we place it along the bottom, regardless of the
individual node scores. This anchors the visualization in the
algorithm’s best-guess solution and facilitates easy reading
of it (see Figure 2A). Position, the strongest visual variable,
according to Bertin [Ber83], ensures that the least important
nodes (highest uncertainty) appear furthest from central vi-
sual focus along the bottom.

The grid layout can sometimes result in overlaps for nodes
with lengthy labels and for larger lattices. We automatically
zoom out the display to attempt to fit the entire lattice with-
out overlap, but must limit the scale factor to ensure la-
bel legibility. To reduce overlap, we adjust the layout us-
ing a force-directed energy minimization. An unconstrained
force-directed layout alone would create an unpredictable
and unordered layout (see Figure 2B). Thus, nodes are an-
chored by invisible springs to their grid positions, and to
each other by springs represented visually as graph edges.
Repellent forces are applied between nodes to reduce over-
lap and the energy minimization is run for several seconds
to stabilize the layout. This hybrid layout allows any over-
lapping nodes to separate while not moving far from their
grid-determined position, balancing the need to keep nodes
in the rigid layout for easy left-to-right reading and the de-
mand that nodes do not overlap (see Figure 2C).

3.3. Uncertainty Encoding

Uncertainty in the lattice is foremost visualized through the
presence of alternative paths through the lattice: more paths
can indicate greater uncertainty, depending on the relative
scores for the nodes in each path. Uncertainty scores are
used to colour the nodes using a range from saturated blue
to desaturated gray. However, continuous colour scales gen-
erally should be avoided for numerical data (colour percep-
tion varies due to several factors, including the size of items)
[War04]. To compensate for this, we redundantly encode the
scores in the node border using size and transparency. Hue,
border size, and outer edge transparency are all linearly re-
lated to the uncertainty score on each node.

We present two alternatives for encoding, each with its
own advantages (see Figure 3). In the “bubble border” view,
the node border varies from a tight solid blue, indicating high
confidence, to a transparent, wide, gray border, indicating
uncertainty. Large, semi-transparent borders lead to an in-
tuitive reading of uncertainty. In the “gradient border” view,
the node border varies from a crisp edge to a gradient leading
to complete blending with the background. The gradient bor-
der is achieved through a linear blending of full opacity at the
node center to variable transparency at the outer edge. This

Figure 2: Layout construction: (A) rigid grid-based lattice,
(B) force-directed layout, (C) hybrid layout. The hybrid lay-
out provides the regularity benefit of the grid-based layout
and the overlap avoidance of the force-directed layout.

effect simulates semantic depth-of-field [KMH01] in which
items with crisp focus pop-out. Even though the gradient fill
on the nodes in this view does not overlap the text label,
in informal testing we found that the blur effect seemed to
make the labels more difficult to read. So, while the gradient
border may be more intuitive and lead to a more immedi-
ate reading, the bubble border may, in the end, be a more
usable encoding. In both cases, the use of transparency is
supported by visualization theory: transparency blends the
visual variables of value and colour in a redundant encoding
from which an ordered reading is possible [Ber83]. These
techniques satisfy our goal: to coarsely and quickly indicate
relative uncertainty without providing specifics on the scores
of each node. In fact, the precise numbers are often not very
meaningful: they result from the settings of many variable
parameters in the model which generated the lattice and are
generally only comparative within a particular lattice.

3.4. Interaction

Simple interaction techniques are provided: when hovering
over a node, its edges are highlighted in gold to disambiguate
edge crossings (see Figure 1). Nodes can also be dragged to
further clarify edge attachment, returning to their original lo-
cation when released. By right-clicking nodes, the user can
remove and add nodes to the green-edged best path, thereby
using their knowledge of the context (for example, their prior
linguistic knowledge) to reassign the best path (see Figure
4). Where others have used iterative feedback to recompute
a new best path through a (hidden) lattice based on user feed-

c© The Eurographics Association 2007.



C. Collins, S. Carpendale, and G. Penn / Visualization of Uncertainty in Lattices

Figure 3: Two alternative encodings of uncertainty. The top, “bubble border”, uses border thickness, hue, and transparency to
convey uncertainty: tight, solid blue borders have a higher certainty. The bottom, “gradient border”, uses blurring of the edges
through a gradient and variable transparency: more solid borders have higher certainty. Both variations also use hue variation
from bright blue (high certainty) to gray-blue (low certainty).

Figure 4: Lattice from Figure 1 with best path corrected.

back [LS06, e.g.], we provide complete control to the human
decision maker. For our interface, an iterative process is un-
necessary as the entire lattice is visible. Furthermore, itera-
tive interaction would violate our minimal interaction design
constraint. In the case studies to follow, we will explore how
this functionality can be applied in real implementations.

4. Case Study: Machine Translation

Machine translation offers much promise for improving
workplace communication among colleagues situated in of-
fices in different parts of the world. Many corporations use
instant messaging chat as a means of facilitating communi-
cation, however current translation quality is too low to fea-
sibly use it in a critical setting. In this case study we present
a prototype visualization system for instant messaging con-
versations which uses our lattice uncertainty visualization to
reveal the uncertainty in the translation and provide alterna-
tive translations when available (see Figure 5).

Despite evidence that social spaces in the Internet are mul-
tilingual in nature, these spaces still lack rich cross-linguistic
communication [HPRV∗07] and little research has been di-
rected toward supporting cross-lingual chat. Recent stud-
ies on cross-lingual instant messaging chat in distributed
workplaces show that problems with translation quality do
negatively effect conversations [YI06]. To our knowledge,
only a few commercial cross-lingual chat applications (e.g.,
http://www.chattranslator.com) exist and they only
present the best-path solution to the user. The Cairo sys-
tem [SJ00], a tool for translation researchers, is related to
our visualization in that it provides a means for exploring

alternative translations. However, where we focus on pro-
viding a visual means to understand translation uncertainty,
the Cairo interface is tailored for examining and evaluating
specific word correspondences between languages.

4.1. Translation Architecture

We chose to work with instant messages as the data for un-
certainty visualization in translation because they offer sev-
eral advantages for this work. They tend to be short, keeping
translation time low and providing an appropriate amount of
data for a small-scale visualization. The result should be a
manageable number of alternate translations for chat partic-
ipants to explore. We developed a bidirectional instant mes-
saging client which performs translation on messages it re-
ceives using a beam search decoder for statistical phrase-
based translation models. We trained the decoder, Phramer
[Olt06] (an open-source implementation of [Koe04]), on the
the English, Spanish, French, and German portions of the
Europarl corpus (approximately 1M sentences in each lan-
guage) [Koe]. The phrase-based translation is supported by
a trigram language model trained on the same data [Sto02].
The translation algorithm evaluates the input data and cre-
ates a set of translation hypotheses, assigning confidence
scores to each word and phrase based on occurrences in the
corpus. The best path through the lattice, according to the
scores, is labelled by the translation system. Using this data,
we create a compact lattice populated with all alternate trans-
lations which have a score within a preset threshold of the
best score. This graph, complete with scores for each node,
is then used as the lattice for visualization.

4.2. Interface

In following with norms of instant messaging client design,
we maintain a chat transcript: the green-edged best path is
recorded to the chat history when the next message is re-
ceived. However, it often occurs that a node along this path
has a low confidence score (high uncertainty). The user can
explore alternative translations for this span of the sentence,
or, if no reasonable alternatives exist, use the chat to request
clarification from the author of the original message. When
out-of-vocabulary words are encountered, or the translation
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Figure 5: Translation uncertainty visualization in a chat interface: upper panel records chat history in the language of the local
conversant, lower panel displays the visualization of the most recently received message. Translations of low confidence are
also augmented with representative pictures collected from the Internet.

uncertainty is particularly high, photos are retrieved from
Flickr (http://www.flickr.com) using the original (un-
translated) words as a search query. In some cases, images
may easily clarify the intended meaning (see Figure 6).

The main interaction is through the chat message box and
reading the data presented in the visualization. To facilitate
accurate chat logging, the ability to toggle node inclusion
in the green “best path” is provided. In this way, alternate
translations can be selected and recorded in the log instead.
Selecting a photo node enlarges it, revealing a set of four
images about that node.

4.3. Discussion

This chat system was designed for two participants in on-
line meeting, each of whom does not speak the other’s lan-
guage. Through our instant messaging system, they con-
verse, in some cases exploring the lattice uncertainty visual-
ization structure for clarification of a poor translation, and in
other cases rejecting the entire translation as too low qual-
ity based on the node uncertainties. This visualization and
chat system was demonstrated at CSCW 2006 [CP06]. In-
formal user feedback indicated an interest in multi-lingual
chat in general, and in the visualization of uncertainty. Par-
ticipants indicated they would like to try the system for a
longer period of time, in particular they liked the inclusion
of photos on untranslatable nodes. From using the visualiza-
tion, we notice that for English translated to French or Span-
ish, many of the lattices have ambiguities on single words
and short phrases, whereas for English to German there are

longer segments of ambiguity, likely due to the freer word
order of German.

5. Case Study: Automated Speech Recognition

Automated speech recognition is another application area
where lattices are commonly used in processing but only the
best solution is reported. The selection of the best path is de-
pendent on the quality of the speech input signal, the acous-
tic model, and the language model. With many places to go
wrong, speech recognition often produces incorrect results.

There have been investigations into using lattices to
suggest alternative translations in drop-down lists and in
multi-modal interfaces, including handwriting recognition
[SMW01], but generally people remain dissatisfied with
these interfaces. Kemp and Schaaf [KS97] report on a text-
based tagging system which labels each word of speech
recognition output with a normalized measure-of-confidence
score. However, in their work, alternative hypotheses are not
provided. In all cases, the lattice structure remains hidden
from view. Although much attention has been given to sup-
porting correction of transcription errors, we know of none
that use the lattice and its scores directly in “human-in-the-
loop” interaction.

5.1. Recognition Architecture

Algorithms for automated speech recognition are generally
arranged as a pipeline of data transformations. For our pur-
poses, we can think of this pipeline as a three step process:
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Figure 6: Translation lattice for the German sentence, “Hallo, ich bin gerade auf einer Konferenz im Nationalpark in Banff.”
The statistically-identified best path (along the bottom) was incorrect and has been repaired. Photo nodes provide an alternative
representation for words not in the translation vocabulary. Mouse over expands the node and reveals four photos, while other
nodes move away to avoid occlusion.

(1) an acoustic model takes a digitized speech signal and
creates a word lattice with scores, (2) a language model re-
scores the lattice based on probabilities of words occurring
in sequence, (3) the best path through the lattice based on the
acoustic and language model scores is output. The NIST ’93
HUB-1 collection of word lattices represents data captured
from this process after step 2. This collection of 213 lattices
comes from high-quality recordings of 123 speakers reading
excerpts of the Wall Street Journal. Note that in the HUB-
1 collection, some node labels may be repeated, indicating
multiple possibilities arising from uncertainty about the start
time or length of the word in the speech signal. The lattices
include acoustic and language model scores along the edges.
We used the SRILM lattice toolkit to calculate scores for the
nodes and prune the lattices to contain at most the 50 best
unique paths. We also eliminate null nodes (silences) and
nodes with scores below 0.01% of the best scoring node.
While our visualization is decoupled from the actual speech
signal, it could easily be connected to the speech recognition
pipeline directly.

5.2. Discussion

Examples of visualization of the HUB-1 lattices appear in
Figures 1–4, and there are many examples from this case
study for which the best path chosen using the node scores
is not the true best path in the lattice. In informal testing,
it seemed that in many cases, the correct path was obvious
upon reading the optional nodes for a particular span — only
one path made sense. Through using the visualization, we
discovered that the speech lattices seem to generally have a
different structure than translation lattices: where ambiguity
in translation often presents an alternative or two for a span
of several nodes, speech recognition lattices show highly lo-
calized ambiguity (see Figure 7). This stems from the diffi-
culty of acoustic models for speech recognition to recognize
short words; a short duration and low signal amplitude lead

to elevated uncertainty. By coupling our visualization of un-
certainty with human linguistic knowledge, it is possible to
make better informed decisions about the quality of a tran-
scription, and to correct errors by selecting a new path in
the lattice. In this way our visualization could support real
time editing of speech transcripts on a sentence-by-sentence
basis.

6. Directions for Future Work and Conclusion

At the conclusion of our design process, we identified sev-
eral opportunities for future work on lattice uncertainty vi-
sualization. Our visualization relies on embedding of uncer-
tainties on the nodes. Some statistical processing algorithms
also provide scores for edges. Extending the visualization to
incorporate edge uncertainties is a natural next step.

We would like to conduct user studies to confirm whether
our visualization would be preferred over a simple single
best solution presented “black box” style, and to what extent
it helps people make better decisions about the data. Such
a study could be conducted with our the instant messaging
client in a multi-lingual distributed workplace. Additionally,
multi-modal approaches to correction of speech recognition
transcripts have previously been reported, and it would be
interesting to discover how interacting with the word lattice
directly in our visualization performs in comparison to indi-
rect approaches.

We have presented a generalizable visualization for un-
certainty in lattices generated by statistical processing. The
techniques for visually encoding uncertainty may be appli-
cable to other node-link structures, such as Hidden Markov
Model trellises, probabilistic finite state automata, and gen-
eral graphs. Following a set of design constraints grounded
in a review of relevant literature on human perceptual ca-
pabilities and visual variables, we introduce a new hybrid
layout which conveys confidence through position while en-
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Figure 7: Speech recognition lattices often have localized ar-
eas of high uncertainty.

hancing readability of lattices. Our visualization reveals the
search space considered by common statistical algorithms in
areas such as natural language processing, and could be use-
ful as a teaching tool.
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